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1. Macdonald conjectures

In 1962, Freeman Dyson discovered the following combinatorial identity
which he was unable to prove (see F.J. Dyson, ‘Missed opportunities’):

CT

{∏
i̸=j

(1− xix
−1
j )k

}
=

(nk)!

(k!)n
, k = 0, 1, 2, . . .

Here “CT ” stands for the constant term of a Laurent polynomial.

G. E. Andrews (1975) proposed a q-generalization of the Dyson conjecture:

CT

{∏
i ̸=j

(εij xix
−1
j ; q)k

}
=

[nk]q!

([k]q!)n
, k = 0, 1, 2, . . .

where (x; q)k :=
∏k

l=1(1− ql−1x) and εij = 1 (for i < j) or q (for i > j).
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In his 1982 paper ‘Some conjectures for root systems’, I. G. Macdonald
proposed a ‘root system’ generalization of the above conjectures.

Let g be a finite-dimensional reductive Lie algebra (over R or C), h ⊆ g its
Cartan subalgebra, R ⊂ h∗ a root system of g, Q = Q(R), the root lattice
(spanned by R). Write the elements of Q as formal exponentials eα and
define the contant term map CT : Z[Q] → Z ,

∑
k∈Zl ak e

kα 7→ a0 .

Macdonald conjectured that

CT
{ ∏

α∈R+

k∏
i=1

(1− qi−1e−α)(1− qieα)
}

=

l∏
i=1

(
kdi
k

)
q

(1)

where l = dim h and d1, d2, . . . , dl are the fundamental degrees of R.
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Macdonald also proposed a generalization of (1) to affine root systems by
introducing a new extra parameter t ∈ C∗. This became his famous

Constant Term (q, t)-Conjecture:

1

|W |
CT

∏
n≥0

∏
α∈R

1− qneα

1− qnteα

 =
∏
n≥0

l∏
i=1

(1− qnt)(1− qn+1tdi−1)

(1− qn+1)(1− qntdi)
(2)

Note that specializing t = qk reduces (2) to (1).

In full generality, (2) was proved by Ivan Cherednik (1995), using
representation theory of double affine Hecke algebras (DAHA).

Besides the above well-known conjectures, Macdonald’s 1982 paper
contained a number of less precise (and therefore less known) ones.
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Let G be a compact connected Lie group associated to g. Macdonald
observed that, using the classical Weyl integration formula, (1) can be
written in the form

∫
G

k−1∏
j=1

det(1− qj Ad g) dg =

l∏
i=1

k−1∏
j=1

(1− qkmi+j) ,

where mi = di − 1 are the exponents of G and dg is the (normalized) Haar
measure on G.

If we set k = 2 (and change q 7→ −q), we get the well-known identity

∫
G

det(1 + qAd g) dg =

l∏
i=1

(1 + q2di−1) . (3)
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The identity (3) arises from comparing the Poincarè series of both sides of
the classical Hopf-Koszul-Samelson Isomorphism

Λ(g)G ∼= Λ(Prim g) ,

where Prim g is the subspace of primitive elements in the (Hopf) algebra of
G-invariants in the exterior algebra of g.

Now, the identity (3) has a natural ‘even’ analogue:∫
G

dg

det(1 − qAd g)
=

l∏
i=1

1

1− qdi
, (4)

which comes from the well-known Chevalley Isomorphism

S(g∗)G ∼= S(h∗)W .
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Motivated by these observations Macdonald asked

Is there a (q, t)-generalization of Identity (4) similar to (2) ?

In joint work with G. Felder, A. Ramadoss, Th. Willwacher and S. Patotski,
we have (apparently) answered Macdonald’s question:

Conjecture ([BFPRW]):

(1− qt)l

(1− q)l(1− t)l
CT

{∏
α∈R

(1− qteα)(1− eα)

(1− qeα)(1− teα)

}
=

∑
w∈W

det(1− qtw)

det(1− q w) det(1− t w)

where the determinants are taken in the natural representation of W on h.
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The above identity can be written equivalently in the integral form:∫
G

det(1 − qtAd g)

det(1 − qAd g) det(1 − tAd g)
dg =

1

|W |
∑
w∈W

det(1− qtw)

det(1− qw) det(1− tw)

from which it is obvious that the specialization t = 0 yields (4).

Theorem ([BFPRW]). The identity holds for gln and sln for all n .

We now come to our main question:

Where do these identities come from?

We will answer this question — in fact, give a natural topological refinement
of the above identities — in terms of a certain (non-abelian) homology
theory of topological spaces, HR∗(X,G), called representation homology.
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2. Representation varieties

Throughout k denotes a field of characteristic zero.

Let Γ be a (discrete) group, and let G be an affine algebraic group over k.
The space RepG(Γ) of all representations of Γ in G is naturally an algebraic
variety (more precisely, an affine k-scheme).

Examples

1. If Γ = Fn (n ≥ 1), then RepG(Γ) = Gn.

2. If Γ = Z2, then RepG(Γ)
∼= {(x, y) ∈ G×G |xy = yx} is the classical

G-commuting variety.

3. If X is a (based) topological space, then RepG(X) := RepG[π1(X)] is
called the G-representation variety of X.
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Applications

Representation varieties play an important role in many areas, most notably
in representation theory and low-dimensional topology.

• Representation theory. RepG(Γ) carries a natural G-action. The
G-orbits in RepG(Γ) are in natural bijection with the equivalence classes
of representations of Γ in G. The geometry of G-orbits determines the
algebraic structure of representations of Γ.

• Topology. One is usually interested in global algebro-geometric
invariants defined in terms of representation varieties of fundamental
groups. For example, if K is a knot in S3, many classical invariants of
K arise from its character variety RepG(XK)//G, where XK := S3 \K.

Examples include the Alexander polynomial (G = k∗), the A-polynomial,
Chern-Simons invariant, Casson invariant, KBSM (for G = SL2), . . .
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Representation varieties are very useful but there are some problems:

1. This kind of varieties are usually very singular, which makes it hard to
understand their geometry. Thus, in representation theory, one faces the
problem of resolving singularities of RepG(Γ).

2. In topology, the use of representation varieties is mostly limited to
(compact oriented) surfaces, hyperbolic 3-manifolds and knot complements
in S3, all of which are known to be aspherical spaces. The homotopy type
of such a space is completely determined by the isomorphism type of its
fundamental group, which makes representation varieties of these groups
very strong and efficient invariants. For more general spaces, however, one
needs to take into account a higher homotopy information, and looking at
representation varieties of fundamental groups (or even, higher homotopy
groups) is not enough. This raises the natural question:

What is a ‘representation variety of a space’ ?
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3. Representation homology

Derived moduli spaces of G-local systems

Histrorically, the first answer to the above question was given by M.
Kapranov (2001), and it was refined later by B. Toën and G. Vezzosi (2008)
in their framework of derived (or homotopical) algebraic geometry.

Let G be an affine algebraic group defined over k. Given a pointed
connected CW complex X consider the (framed) moduli space LocG(X, ∗)
of G-local systems on X with trivialization at the basepoint of X.

This classical moduli space can be identified with the representation scheme
RepG[π1(X)], which, in turn, can be identified with the space [X,BG]∗
of homotopy classes of based maps from (a simplicial model of) X to the
(simplicial) classifying space BG.
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Kapranov constructed explicitly a simplicial DG scheme RBG, which plays
the role of ‘injective resolution’ of BG in the category of simplicial DG
schemes. Then, replacing BG by RBG, he defined an affine DG scheme

RLocG(X, ∗) := [X,RBG]∗ ,

which he called the derived moduli space of G-local systems on X

Toën and Vezzosi developed this construction in their HAG framework.
Instead of working with simplicial DG schemes, HAG works in the category
of simplicial presheaves, i.e. functors F : dAffoppk → sSet, over the
category of derived affine schemes, dAffk := sComm

opp
k , equipped with an

appropriate model structure. The fibrant objects in this model category are
called derived stacks. The space RLocG(X, ∗) can be realized as a derived
affine scheme (a special kind of derived stack) in this framework, which
amounts to replacing Kapranov’s explicit resolution RBG by an abstract
fibrant resolution of BG in the category of derived stacks.
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Derived representation functor

In joint work with A. Ramadoss and W.-K. Yeung [BRY], we developed a
different approach to this problem that rests on a classical theorem of D.
Kan in simplicial homotopy theory.

Recall that the affine scheme RepG(Γ) can be defined as the functor

RepG(Γ) : Comm Algk → Sets , A 7→ HomGr(Γ, G(A)) .

This functor is representable, and we denote the corresponding commutative
algebra by ΓG = O[RepG(Γ)].

Varying Γ (while keeping G fixed), we can now regard Γ 7→ ΓG as a functor
on the category of groups: ( – )G : Gr → Comm Algk , which we call the
representation functor in G.
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The representation functor extends naturally to the category sGr of
simplicial groups, taking values in simplicial commutative algebras:

( – )G : sGr → sComm Algk .

Both sGr and sComm Algk carry standard (projective) model structures,
with weak equivalences being the weak homotopy equivalences of underlying
simplicial sets.

The functor ( – )G is not homotopy invariant: in general, it does not
preserve weak equivalences and hence does not descend to a functor between
Ho(sGr) and Ho(sComm Algk). However, ( – )G takes weak equivalences
between cofibrant objects in sGr to weak equivalences in sComm Algk.
Hence, it has the (total) left derived functor

L( – )G : Ho(sGr) → Ho(sComm Algk) .

15



We call L( – )G the derived representation functor in G.

Heuristically, L( – )G may be thought of as the “closest” universal
approximation of the representation functor at the level of homotopy
categories.

Recall that an affine algebraic group G is defined by its functor of points,
which is a group-valued representable functor on commutative algebras.
This functor extends in the natural way to simplicial commutative algebras:

G : sComm Algk → sGr , A∗ 7→ G(A∗) .

By definition, the classical representation functor ( – )G is left adjoint to
the functor of points of G, hence its simplicial extension is left adjoint to
the above functor G. Thus, for any affine algebraic group, we have the
adjunction

( – )G : sGr ⇄ sComm Algk : G . (5)
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Theorem ([BRY]). The functor G has a total right derived functor RG :
Ho(sComm Algk) → Ho(sGr), which is right adjoint to L( – )G: thus, (5)
induces the derived adjunction

L( – )G : Ho(sGr) ⇄ Ho(sComm Algk) : RG

Both L( – )G and RG are absolute derived functors (in the sense of Kan).

This has one important implication.

Corollary. The derived representation functor L( – )G preserves arbitrary
homotopy colimits.
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Next, recall that the model category sGr is Quillen equivalent to the
category of reduced simplicial sets, sSet0, which is Quillen equivalent to
the category Top0,∗ of pointed connected topological spaces.

These classical equivalences are given by two pairs of adjoint functors

G : sSet0 ⇄ sGr : W , | – | : sSet0 ⇄ Top0,∗ : Sing

The functor G is given by the classical Kan loop group construction that
assigns to a reduced simplicial set X ∈ sSet0 a semi-free simplicial group
GX , which is a simplicial model of the based loop space: |GX| ≃ Ω|X|.

The functor G preserves weak equivalences and hence induces a functor
Ho(sSet0) → Ho(sGr). Combining G with the derived representation
functor, we define the representation homology of a space X ∈ sSet0 by

HR∗(X,G) := π∗[L(GX)G]
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Properties

1. HR∗(X,G) is a graded commutative algebra that depends only on the
homotopy type of X and hence is a homotopy invariant of |X|.

2. HR0(X,G) ∼= (π1(X))G = O[RepG(π1(X))] . (To avoid confusion, we
emphasize that HR∗(X,G) ̸∼= HR∗(π1(X), G) in general; however, if Γ is a
discrete group and X is a K(Γ, 1)-space (e.g., X = BΓ), then we do have
a natural isomorphism HR∗(X,G) ∼= HR∗(Γ, G) .)

3. If G and H are two affine algebraic groups, then

HR∗(X,G×H) ∼= HR∗(X,G)⊗HR∗(X,H) .

4. It is a consequence of Theorem 1 that L( – )G commutes with homotopy
colimits. In particular, for two pointed spaces X and Y , we have

HR∗(X ∨ Y,G) ∼= HR∗(X,G)⊗HR∗(Y,G) .
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Relation to derived algebraic geometry∗

Toën and Vezzosi [HAG II] defined the derived stack Map(X,BG)
classifying flat G-bundles on unpointed space X. This is one of the
basic constructions in HAG. Using this construction, for any pointed space
(simplicial set) X, we can then define

RLocG(X, ∗) := hofib (Map(X,BG) → BG) ,

where the homotopy fibre is taken in the category of derived stacks. This
generalizes Kapranov’s original construction of derived moduli schemes of
G-local systems on (X, ∗) trivialized at ∗.

To compare with our construction, we associate to the derived representation
functor the derived representation scheme

DRepG(X) := RSpec [L(GX)G] .
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Here ‘RSpec ’ stands for the derived Yoneda functor that assigns to a
simplicial commutative algebra A — a derived ring in terminology of [HAG]
— the simplicial presheaf (prestack)

RSpec(A) : dAffopk := sComm Algk → sSet , B 7→ Hom(Q(A), B) ,

where Q(A) is a cofibrant model for A and Hom is the simplicial mapping
space in sComm Algk. For any A ∈ sComm Algk, the prestack RSpec(A)
satisfies the descent condition for étale hypercoverings and hence defines a
derived stack (which is a derived affine scheme in the sense [HAG]).

Theorem ([BRY’19]). For any pointed connected space X, there is an
equivalence of derived stacks

DRepG(X) ≃ RLocG(X, ∗) .
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4. Elementary construction

Classical homology

Recall that ∆ denotes the simplicial category with objects

∆n := {(x0, . . . , xn) ∈ Rn+1
+ : x0 + . . .+ xn = 1} , n ≥ 0

For any space X, we can take a simplicial set model, which is represented
by a functor X∗ : ∆

op → Sets (e.g. X∗ = Sing∗(X) := HomTop(∆
∗, X) ).

Now, given an abelian group A, the ordinary (simplicial) homology of X
with coefficients in A is defined by

H∗(X,A) := π∗[∆
op X∗−−→ Sets

A⊕
−−→ Ab]

where A⊕ denotes the natural (direct sum) functor S 7→ A⊕S := ⊕s∈SA.
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Similarly, for any commutative k-algebra R, one can define the (higher)
Hochschild homology of X with coefficients in R by

HH∗(X,R) := π∗[∆
op X∗−−→ Sets

R⊗
−−→ Vectk]

where R⊗ denotes the natural (tensor) functor S 7→ R⊗S := ⊗s∈SR.

Example. If X = S1 is a (simplicial) circle, then

HH∗(S1, R) ∼= HH∗(R) ,

where HH∗(R) stands for the usual Hochschild homology of the algebra R.

Remark. The above definition of higher Hochschild homology is due to T.
Pirashvili (2002). In topology, the tensor functor (X,R) 7→ R⊗X is usually
referred to as the Loday construction on (X,R).
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Representation homology

Let G ⊂ Gr denote the (small) category whose objects are the f.g. free
groups ⟨n⟩ := Fn, one for each n ≥ 0 and the morphisms are arbitrary
group homomorphisms.

Any commutative Hopf algebra H gives a left G-module (still denoted H)

H : G → Vectk , ⟨n⟩ 7→ H⊗n

Dually, any cocommutative Hopf algebra K gives a right G-module:

K : Gop → Vectk , ⟨n⟩ 7→ K⊗n

Note that any left G-module H naturally extends to a functor on the
category of all discrete groups: H̃ : Gr → Vectk (by taking the left Kan
extension of H along the inclusion G ↪→ Gr).
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Let X ∈ sSet0. Recall the Kan loop group GX of X is given by

(GX)n := ⟨Xn+1 | s0(x) = 1 , ∀x ∈ Xn⟩ = ⟨Xn+1 \ s0(Xn)⟩ .

By construction, GX is functorial in X and (GX)n ∈ Gr is free for all n.

Now, given a commutative Hopf algebra H, we define

HR∗(X,H) := π∗[ ∆
op GX−−→ Gr

H̃−→ Vectk ] .

Our key observation is the following

Proposition ([BRY]). HR∗(X,G) ∼= HR∗(X,O(G)) .

This leads to a natural interpretation of representation homology in terms
of classical (abelian) derived functors: namely, the derived tensor product
functors TorG∗ taken over the small category G.
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Theorem ([BRY]). There is a natural homological spectral sequence

E2
pq = TorGp (Hq(ΩX; k),O(G)) =⇒ HRp+q(X,G) .

relating the representation homology to the Pontryagin algebra of X.

This theorem has many interesting implications.

Corollary. Let Γ be a discrete group. Then

HR∗(BΓ, G) ∼= TorG∗ (k[Γ],O(G))

In particular, O[RepG(Γ)]
∼= k[Γ]⊗G O(G) .

Corollary. Representation homology is a rational homotopy invariant for
simply-connected spaces.
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Relation to Hochschild homology

Theorem ([BRY]). For any (not necessarily pointed) topological space X,

HR∗(ΣX+, G) ∼= HH∗(X,O(G))

Corollary. HR∗(Sn, G) ∼= Λk(g
∗[n− 1]) for n ≥ 2.

Remark. Despite many similarities between Hochschild and representation
homology, there is one important difference: unlike HH∗(X,R), the
HR∗(X,G) carries a natural algebraic G-action induced by the adjoint
action of G. Examples show that this action depends on the space X in
quite a nontrivial way, which makes representation homology a richer and
more geometric theory than Hochschild homology.
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6. Some computations and conjectures

Riemann surfaces.

Let Σg be a closed connected orientable surface of genus g ≥ 1. There are
natural isomorphisms

HR∗(Σg, G) ∼= TorO(G)
∗ (k,O(G2g)) ,

where O(G2g) is viewed as an O(G)-module via the algebra map α :
O(G) → O(G2g): f 7→ α(f)(x1, y1, . . . , xg, yg) = f([x1, y1] . . . [xg, yg]) .

Note that this implies that HRi(Σg, G) = 0 for all i ≥ dimG.

Conjecture 1. If G is a complex reductive group, we have

(a) If g = 1, then HRi(Σg, G) = 0 for all i > rank(G);

(b) If g ≥ 2, then HRi(Σg, G) = 0 for all i > dim Z(G).
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Remark. Part (a) of Conjecture 1 holds for G = GLn for all n ≥ 1.
Part (b) holds for the localized homology HR∗(Σg, G)ϱ for a nonsingular
ϱ ∈ RepG(Σg). In fact, for any such ϱ, we prove that HRi(Σg, G)ϱ = 0 for

i > dimϱRepG(Σg)− (1− χ(Σg)) dim(G) = dim Z(G) ,

where the last equality follows from Goldman’s formula.

Conjecture 2. Assume that G is one of the classical groups GLn(k),
SLn(k), Sp2n(k) , n ≥ 1 , or any simply-connected, reductive affine
algebraic group. Then there is a natural isomorphism

HR∗(T2, G)G ∼= [O(T × T )⊗ Λ∗
k(h

∗)]W .

Remark. Conjecture 2 has been recently proved (or announced to be
proved) for G = GLn by D. Gaitsgory and T. Feng (Oct. 2023) and
Pengui Li, D. Nadler and Zhiwei Yun (Jan. 2023).
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Link complements. Let X := R3\L denote the complement of (a regular
neighborhood) of a (smooth) link L in R3. Recall two classical facts:

Fact (Alexander). Every link L can be obtained as the closure of a (not
necessarily unique) braid β ∈ Bn in R3. (We write L = β̂ in this case).

Fact (Artin). The braid group Bn has a faithful representation in Aut(Fn)
given by

σi :

 xi 7→ xi xi+1 x
−1
i

xi+1 7→ xi

xj 7→ xj (j ̸= i, i+ 1)

Proposition. For any link L = β̂ in R3, we have

HR∗(R3\L,G) ∼= HH∗(O(Gn),O(Gn)β) .

where the bimodule O(Gn)β is twisted via the Artin representation of Bn.
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7. Representation homology of simply-connected spaces

Assume k = Q. Let X be simply-connected of finite rational type. There
is a commutative cochain dg algebra AX (called the Sullivan model of X)
and a chain dg Lie algebra LX (called the Quillen model of X).

Both models encode the rational homotopy of X. H∗(AX) ∼= H∗(X,Q)
while H∗(LX) ∼= π∗(ΩX)Q. The two models are related by a quasi-
isomorphism

C∗(LX,Q)
∼→ AX .

Main Theorem ([BRY]). For any simply-connected space X of finite
rational type, there are natural isomorphisms

HR∗(X,G) ∼= H−∗(g(AX);Q) , HR∗(X,G)G ∼= H−∗(g(AX), g;Q) .

Note that g(AX) := g⊗AX is a cochain dg Lie algebra.
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8. Spaces with polynomial representation homology

Assume X is simply connected (thus, HR0(X,G) = k) and G is reductive.
In this case, it is natural to treat HR∗(X,G) as an object of representation
theory — or even classical invariant theory — and ask basic questions about
the structure of the algebra HR∗(X,G) as a G-module and its subalgebra
HR∗(X,G)G of G-invariants.

Perhaps, the first basic question is:

Question 1.When is the invariant algebra HR∗(X,G)G free and finitely
generated (i.e. isomorphic to the graded symmetric algebra of a (locally)
finite-dimensional graded vector space over k)?

This question turns out to be closely related to Macdonald conjectures!
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Topological character maps

Let LX := Map(S1, X) denote the free loop space of X. The natural
S1-action on LX allows one to define the Frobenius (Adams) operations

Ψn : HS1
∗ (LX; k) → HS1

∗ (LX; k) .

which are induced by the n-fold coverings S1 → S1, eiφ 7→ einφ.

Let H
S1,(p)
∗ (LX; k) denote the common eigenspace of the Ψn’s with

eigenvalues np for all n ≥ 0. A theorem of Burghelea, Fiedorowicz
and Gajda asserts that, if all (rational) Betti numbers of X are finite, then

each Hodge component of HS1
∗ (LX, k) is locally finite: i.e.,

dimk H
S1, (p)
i (LX, k) < ∞ for all i ≥ 0 and all p ≥ 0 .

33



Then, for P ∈ Symd(g∗)G, there are natural maps of graded vector spaces

TrPg : HS1, (d−1)
∗ (LX; k) → HR∗(X,G)G .

We call these maps Drinfeld traces.

Now, let G be complex reductive. Recall that Sym(g∗)G ∼= C[P1, . . . , Pl],
where P1, . . . , Pl are homogeneous polynomials of degrees d1, . . . , dl (the
fundamental degrees of g).

The maps TrPi
g , i = 1, . . . , l assemble into a homomorphism of graded

commutative algebras

Trg(X) : Λk[⊕l
i=1H

S1,(mi)
∗ (LX;C)] → HR∗(X,G)G ,

where mi := di − 1 are the exponents of G. We call this map the Drinfeld
homomorphism.
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Example 1. Let X = S2n, n ≥ 1. The Drinfeld homomorphism for X in
this case (as a homomorphism of Z2-graded algebras) coincides with the
classical Hopf-Koszul-Samelson Isomorphism

Λ[Prim(g)] ∼= Λ(g∗)G

Example 2. Let X = S2n+1, n ≥ 1. The Drinfeld homomorphism in this
case (as a homomorphism of Z2-graded algebras) coincides with the inverse
of the Chevalley Restriction Isomorphism:

Sym(g∗)G ∼= Sym(h∗)W .

Example 3. Let G = (C∗)l be an algebraic torus, then mi = 0 for all
i = 1, 2, . . . , l, and HR∗(X,G)G = HR∗(X,G) , becauseG is commutative.

On the other hand, for any X, we have H
S1, (0)
∗ (LX, C) ∼= H∗+1(X, C) ,
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where the isomorphism is induced by the classical Gysin map HS1

∗ (LX, C) →
H∗+1(LX, C). Thus, for an algebraic torus, the Drinfeld homomorphism
becomes

Λ
[
H∗+1(X; k)⊕l

]
→ HR∗(X,G) .

A simple calculation shows that the above map is an isomorphism for
any simply connected space X and, in fact, for any commutative — not
necessarily diagonalizable — algebraic group G.

The above examples motivate the following

Question 2. For which spaces X, is the map Trg(X) an isomorphism?
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The following theorem gives a simple answer in terms of the rational
cohomology algebra of X.

Theorem ([BRY]). Assume that the algebra H∗(X;Q) is either generated
by one element (in any dimension) or freely generated by two elements:
one in even and one in odd dimensions. Then, the map Trg(X) is an
isomorphism for any complex reductive algebraic group G.

As a consequence, we get an answer to our Question 1:

Corollary. If X satisfies the conditions of the above theorem, then for any
complex reductive group G, HR∗(X,G)G is a free graded commutative
algebra of locally finite type over C.
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The proof relies on Main Theorem and a certain (minor) refinement of the
main results of S. Fishel, I. Grojnowski and C. Teleman in

[FGT] The Strong Macdonald Conjecture and Hodge theory on the loop
Grassmannian, Ann. Math. 168 (2008), 175–220.

The above paper settles the so-called Strong Macdonald Conjecture (SMC)
describing the structure of cohomology of nilpotent truncations of the
current Lie algebra g[z] for any complex reductive Lie algebra g — a deep
and celebrated result in representation theory proposed as a conjecture by
I. Macdonald, B. Feigin, and P. Hanlon in the early 1990’s and proved (in
full generality) in [FGT].

The proof of SMC in [FGT] is an algebraic tour de force. Our theorem gives
a topological meaning to this conjecture. It also suggests a natural ”odd”
analogue — the ‘super’ Strong Macdonald Conjecture (sSMC), see below.
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Macdonald Identities

Example 1. Let us consider the spaces X with rational cohomology algebra
H∗(X,Q) ∼= Q[z]/(zr+1) , where the generator z is in even dimension d ≥ 2.
The most familiar examples of such spaces are the even-dimensional spheres
S2n (r = 1, d = 2n) and the complex projective spaces CPr (r ≥ 1, d = 2),
the quaternionic projective spaces HPr (r ≥ 1, d = 4) and the Cayley plane
OP2 (r = 2, d = 8). For these spaces, we have

HR∗(X,G)G ∼= Λ [ξ
(i)
1 , ξ

(i)
2 , . . . , ξ(i)r : i = 1, 2, . . . , l] ,

where the generators ξ
(i)
j have homological degree

deg ξ
(i)
j = (d(r + 1)− 2)mi + dj − 1 .
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Notice that, in this case, the algebra HR∗(X,G)G is generated by finitely
many elements of odd degrees: hence, it is finite-dimensional (as a vector
space) and concentrated in finitely many homological degrees.

In fact, knowing the exact degrees of generators, it is easy to calculate the
exact upper bound for the vanishing of HRn(X,G)G:

l∑
i=1

r∑
j=1

deg ξ
(i)
j =

1

2
r (d(r + 1)− 2) dimG .

Somewhat miraculously, this allows one to determine the exact upper bound
for the full representation homology of X:

HRn(X,G) = 0 for all n >
1

2
r (d(r + 1)− 2) dimG .
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Now, the weighted Euler-Poincaré series of HR∗(X,G)G is given by

PX,G(q, z) =

l∏
i=1

r∏
j=1

(1 + qj+mi(r+1) z
deg ξ

(i)
j ) ,

which specializes (at z = −1) to the (weighted) Euler characteristic

χX,G(q) =

l∏
i=1

r∏
j=1

(1 − qj+mi(r+1)) .

The latter can be also computed using our Main Theorem: as an Euler
characteristic of the Chevalley-Eilenberg complex C−∗(g(AX), g;C), where
AX is the (minimal) Sullivan model of the corresponding space X. The
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resulting equality of Euler characteristics gives the combinatorial identity

CT


r∏

j=0

∏
α∈R

(1 − qjeα)

 =

l∏
i=1

r∏
j=1

1 − qj+mi(r+1)

1 − qj
,

which is precisely the Macdonald’s CT q-identity (1).

Example 2. Let X be a simply connected space such that H∗(X;Q) ∼=
Q[z, s], where d = |z| is even and p = |s| is odd. Examples include:

• K(Z, d)× Sp, where d ⩾ 2 is even and p ⩾ 3 is odd (|z| = d , |s| = p)

• CP∞ × S2r+1 (rationally equivalent to K(Z, 2)× S2r+1)

• HP∞ × S4r+3 (rationally equivalent to K(Z, 4)× S4r+3)
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In this case, the algebra HR∗(X,G)G can be also described explicitly. The
combinatorial identity arising from Euler characteristics is two-variable:

1

|W |
CT


∞∏
j=1

∏
α∈R

1 − qj−1 eα

1 − qj−1 t eα

 =

l∏
i=1

∞∏
j=1

(1 − qj−1 t) (1 − qj tmi)

(1− qj) (1 − qj−1 tmi+1)
.

This is precisely Macdonald’s CT (q, t)-identity (2).

We now turn to our last question:

What is a topological meaning of the ‘even’ analogues of Macdonald
identities?
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8. The derived Chevalley homomorphism

Note that the “even” identities cannot be induced by the Drinfeld
homomorphism for any space X: its RHS is not an Euler characteristic of
a free graded commutative algebra. We need to construct a different map.

Let G be a connected reductive group with maximal torus T ⊂ G and an
associated Weyl agroup W . Then, for any space X, there is a natural
restriction map

ΦG(X) : HR∗(X,G)G → HR∗(X,T )W

which we call the derived Chevalley homomorphism.
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Example. Let X = S2p+1 be any odd-dimensional sphere. In this case,
the homomorphism ΦG(X) can be identified with the classical Chevalley
restriction map, and hence is an algebra isomorphism. At the level Euler
characteristics, it gives the classical identity (4).

In general, we propose the following the ‘super’ (analog of) Strong
Macdonald Conjecture (sSMC).

Conjecture. Assume that H∗(X;Q) is either generated by one element
in odd dimension or freely generated by two elements in odd dimensions.
Then the derived Chevalley homomorphism ΦG(X) is an isomorphism, at
least for G of classical type (GLn ,SLn or Sp2n).

The spaces that satisfy the above conditions are (1) the odd-dimensional
spheres S2p+1 and (2) the products of two odd-dimensional spheres S2p+1×
S2q+1 (p, q ≥ 0) .
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In the first case, the above Conjecture follows from the classical Chevalley
Restriction Theorem (see Example), while in the second (for p, q > 0), it
reduces to the main conjecture [BFPRW] that still remains wide open.

In the special case p = q = 0, Conjecture yields an isomorphism:

HR∗(S1 × S1, G)G ∼= [O(T × T )⊗ Λ∗(t∗)]W

where t is the Lie algebra of T . In a recent preprint, P. Li, D. Nadler and Z.
Yun established this last isomorphism (though under a technical assumption
which has yet to be proven), using the newly developed representation-
theoretic techniques (the so-called Betti Geometric Langlands).
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For p, q ≥ 1, the above Conjecture implies

HR∗(S2p+1 × S2q+1, G)G ∼= [ Symk(h
∗ ⊕ h∗)⊗ Λ(h∗) ]W ,

where the copies of h∗ in Sym have homological degree 2p and 2q and the
copy of h∗ in Λ has homological degree 2(p+ q) + 1.

For example, for G = GLn, the RHS is isomorphic to the ring of three-
diagonal symmetric polynomials:

k[x1, . . . , xn; y1, . . . , yn; θ1, . . . , θn]
Sn

where

deg(xi) = 2p , deg(yi) = 2q and deg(θi) = 2(p+ q) + 1

for all i = 1, . . . , n.
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Theorem ([BRY]). For X = S2p+1 × S2q+1, the derived Chevalley
homomorphism ΦG(X) induces the identity

(1− qt)l

(1− q)l(1− t)l
CT

{∏
α∈R

(1− qteα)(1− eα)

(1− qeα)(1− teα)

}
=

∑
w∈W

det(1− qtw)

det(1− q w) det(1− t w)

This is precisely the ‘even’ analogue of the original CT (q, t)-Macdonald
Identity discovered in [BFPRW] (see Section 1).
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