Math 202B Solutions Assignment 13 D. Sarason

We first prove the following useful result, which will be used in several of the problems.

Proposition 1. Let B be a Banach space.

- 1. If $(x_n)_{n=1}^{\infty} \subseteq B$ is a weakly convergent sequence, then $\sup_n ||x_n|| < \infty$.
- 2. If $(\phi_n)_{n=1}^{\infty} \subseteq B^*$ is a weak-* convergent sequence, then $\sup_n \|\phi_n\| < \infty$.

Proof. We first prove 2. Let ϕ be the weak-* limit of ϕ_n ; this means that for each $x \in B$, $\phi_n(x) \to \phi(x)$ as $n \to \infty$. Thus, $\sup_n |\phi_n(x)| < \infty$ for each $x \in B$. The uniform boundedness principle thus applies to give the desired result.

Now to prove 1, recall that we have a natural map $\Phi: B \to B^{**}$ defined by $\Phi_x(\psi) = \psi(x)$ for $\psi \in B^*$. Also recall that this map is an isometry. Thus if $x_n \to x$ weakly, then clearly $\Phi_{x_n} \to \Phi_x$ in the weak-* topology, so by the previous paragraph this means $\sup_n ||x_n|| = \sup_n ||\Phi_{x_n}|| < \infty$.

50. Let S be the subset of ℓ^2 consisting of the sequences x_{mn} $(m, n = 1, 2, ..., m \neq n)$ defined by

$$x_{mn}(k) = \begin{cases} 1, & k = m \\ m, & k = n \\ 0, & k \neq m, n \end{cases}$$

Prove 0 is in the weak closure of S, but no sequence in S converges to 0.

Proof: Consider the sequences y_m defined by

$$y_m(k) = \begin{cases} 1, & k = m \\ 0, & k \neq m. \end{cases}$$

Let $\phi \in (\ell^2)^*$ be any linear functional, induced by some sequence $z \in \ell^2$. Then $\phi(y_m) = z(m) \to 0$ as $m \to \infty$, which shows that $y_m \to 0$ weakly.

Now $x_{mn} = y_m + my_n$, so for any fixed m, $x_{mn} = y_m + my_n \to y_m$ weakly as $n \to \infty$. Thus, $y_m \in \overline{S}^{wk}$. Since $y_m \to 0$ weakly, this implies $0 \in \overline{S}^{wk}$.

However, any sequence $(x_{m_in_i})_{i=1}^{\infty}$ in S which converges weakly to 0 must be bounded in ℓ^2 -norm by the above proposition, which implies $\{m_i\}$ is bounded. On the other hand, defining $z \in \ell^2$ by $z(n) = \frac{1}{n}$, we have $\langle z, x_{m_in_i} \rangle = \frac{1}{m_i} + \frac{m_i}{n_i} \to 0$ as $i \to \infty$, which implies $m_i \to \infty$, a contradiction.

51. Prove that a weakly convergent sequence in ℓ^1 is norm convergent.

Proof 1: Suppose some sequence $(x_n)_{n=1}^{\infty}$ is weakly convergent but not norm convergent. By translation, we may assume $x_n \to 0$ weakly as $n \to \infty$, and by taking a subsequence we may assume $||x_n||_1$ is bounded away from zero. Finally, by scaling, we may assume $||x_n||_1 \ge 1$ for every n.

Since evaluation at any coordinate is a bounded functional on ℓ^1 , we have $x_n \to 0$ coordinatewise. Now choose K_1 such that $\sum_{k=K_1+1}^{\infty} |x_1(k)| < \frac{1}{5}$. Then $\sum_{k=1}^{K_1} |x_n(k)| \to 0$ as $n \to \infty$, so we may find n_2 such that $\sum_{k=1}^{K_1} |x_{n_2}(k)| < \frac{1}{5}$. Choose K_2 such that $\sum_{k=K_2+1}^{\infty} |x_{n_2}(k)| < \frac{1}{5}$.

Continuing in this way, we get a subsequence $x_{n_1} = x_1, x_{n_2}, \ldots$ and a sequence of integers $K_0 = 0, K_1, K_2, \ldots$ such that $\sum_{k=1}^{K_{j-1}} |x_{n_j}| < \frac{1}{5}$ and $\sum_{k=K_j+1}^{\infty} |x_{n_j}| < \frac{1}{5}$ for each j. Now define

$$y(k) = \frac{|x_{n_j}(k)|}{x_{n_j}(k)}$$
 for $K_{j-1} < k \le K_j$.

(Let y(k) = 1 if $x_{n_i}(k) = 0$.) Then clearly $y \in \ell^{\infty}$ since |y(k)| = 1. Also,

$$\left|\sum_{k=1}^{\infty} x_{n_j}(k)y(k)\right| \ge \left|\sum_{k=K_{j-1}+1}^{K_j} x_{n_j}(k)y(k)\right| - \left|\sum_{k=1}^{K_{j-1}} x_{n_j}(k)y(k)\right| - \left|\sum_{k=K_j+1}^{\infty} x_{n_j}(k)y(k)\right| \\ \ge \sum_{k=K_{j-1}+1}^{K_j} |x_{n_j}(k)| - \sum_{k=1}^{K_{j-1}} |x_{n_j}(k)| - \sum_{k=K_j+1}^{\infty} |x_{n_j}(k)| \\ = \sum_{k=1}^{\infty} |x_{n_j}(k)| - 2\sum_{k=1}^{K_{j-1}} |x_{n_j}(k)| - 2\sum_{k=K_j+1}^{\infty} |x_{n_j}(k)| > ||x_{n_j}||_1 - \frac{4}{5} \ge \frac{1}{5}$$

Therefore, $\langle x_n, y \rangle \neq 0$ as $n \to \infty$, which is a contradiction since $\langle \cdot, y \rangle$ is a bounded linear functional on ℓ^1 . (Comment: The preceding proof is the prototype of the "gliding hump argument," much beloved by Banach spacemen and Banach spacewomen.)

Proof 2: Assume as before that $x_n \to 0$ weakly. Fix $\epsilon > 0$, and for each *n* define $S_n = \{y \in \ell^{\infty} : |\langle y, x_n \rangle| \le \epsilon\}$. Then since $x_n \to 0$ weakly, we have

$$\bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} S_n = \ell^{\infty}.$$

However, each set $\bigcap_{n=m}^{\infty} S_n$ is weak-* closed. Also, the weak-* topology on the closed unit ball A of ℓ^{∞} is completely metrizable, for example using the norm $\|y\|' = \sum_{k=1}^{\infty} 2^{-k} |y(k)|$. Therefore, by the Baire category theorem, for some m, $\bigcap_{n=m}^{\infty} S_n$ contains a nonempty weak-* open set in A. By standard reasoning from replacing ϵ by $\epsilon/2$, we get that $\bigcap_{n=m}^{\infty} S_n$ also contains a weak-* open neighborhood of 0 in A.

In other words, there are $a_1, \ldots, a_r \in \ell^1$ such that $V(a_1, \ldots, a_r; 1) \cap A \subseteq \bigcap_{n=m}^{\infty} S_n$. Now choose N large enough that $\sum_{j=N+1}^{\infty} |a_i(j)| < 1$ for each i, and for each n define y_n such that $y_n(j) = 0$ for $j \leq N$, $y_n(j) = \frac{|x_n(j)|}{x_n(j)}$ for j > N. We then have $y_n \in V(a_1, \ldots, a_r; 1) \cap A \subseteq S_n$, so

$$||x_n|| = \langle y_n, x_n \rangle + \sum_{j=1}^N |x_n(j)| \le \epsilon + \sum_{n=1}^N |x_n(j)|.$$

Each term of the finite sum goes to zero as $n \to \infty$, which gives us $\limsup_{n\to\infty} ||x_n|| \le \epsilon$. Since ϵ was arbitrary, this shows $||x_n|| \to 0$.

52. Let X be a locally compact Hausdorff space. Prove that a sequence in $C_0(X)$ converges weakly if and only if it is norm bounded and converges pointwise to a function in $C_0(X)$.

Proof: If $f_n \to f$ weakly, then $\{f_n\}$ is norm bounded by the above proposition, and $f_n(x) \to f(x)$ for each $x \in X$ since evaluation at x is a bounded linear functional on $C_0(X)$. Conversely, if $\{f_n\}$ is norm bounded, say $||f_n||_{\infty} \leq C$ for each n. Then if $f_n \to f$ pointwise, then for any finite Radon measure μ on $X, C \in L^1(\mu)$. Thus, $\int f_n d\mu \to \int f d\mu$ by the dominated convergence theorem. Since a general functional in $C_0(X)^*$ is induced by such a measure $\mu, f_n \to f$ weakly.

53. Prove that a sequence in ℓ^{∞} converges in the weak-star topology of ℓ^{∞} (as the dual of ℓ^{1}) if and only if it is norm bounded and converges coordinatewise.

Proof: If $x_n \to x$ in the weak-* topology, then $\{x_n\}$ is norm bounded by the above proposition, and $x_n(j) \to x(j)$ for each j since evaluation at j is induced by a sequence in ℓ^1 . Conversely, if $\{x_n\}$ is norm bounded, say $||x_n||_{\infty} \leq C$ for each n. Then for any $y \in \ell^1$, $|x_n(j)y(j)| \leq C|y(j)|$, where the right hand side has finite sum. Thus, if $x_n \to x$ coordinatewise, then by the dominated convergence theorem, $\sum_{j=1}^{\infty} x_n(j)y(j) \to \sum_{j=1}^{\infty} x(j)y(j)$. This shows that $x_n \to x$ in the weak-* topology.

- 54. Let B_1 and B_2 be Banach spaces, and let $T: B_1 \to B_2$ be a linear transformation.
 - (a) Prove that, if T is continuous relative to the weak topologies of B_1 and B_2 , then T is bounded. **Proof:** We use the closed graph theorem. Thus, suppose $x_n \to x$ in norm in B_1 , and $Tx_n \to y$ in norm in B_2 . Then $x_n \to x$ weakly in B_1 , so by the continuity condition $Tx_n \to Tx$ weakly in B_2 . On the other hand, $Tx_n \to y$ weakly in B_2 . Since the weak topology on B_2 is Hausdorff, this implies that y = Tx.
 - (b) Prove that, if T is continuous relative to the weak topology of B₁ and the norm topology of B₂, then T has finite rank (i.e., TB₁ has finite dimension). **Proof:** By the continuity condition, we can find functionals φ₁,..., φ_n such that whenever |φ_i(x)| < 1 for 1 ≤ i ≤ n, then ||Tx|| < 1. By scaling, this implies that if φ_i(x) = 0 for 1 ≤ i ≤ n, then Tx = 0. In other words, the kernel of T contains the subspace ∩_{i=1}ⁿ ker(φ_i) of B₁, which has codimension at most n. This implies that TB₁ has dimension at most n.