
Math 202B Solutions
Assignment 13

D. Sarason

We first prove the following useful result, which will be used in several of the problems.

Proposition 1. Let B be a Banach space.

1. If (xn)∞n=1 ⊆ B is a weakly convergent sequence, then supn‖xn‖ <∞.

2. If (φn)∞n=1 ⊆ B∗ is a weak-* convergent sequence, then supn‖φn‖ <∞.

Proof. We first prove 2. Let φ be the weak-* limit of φn; this means that for each x ∈ B, φn(x) → φ(x) as
n → ∞. Thus, supn |φn(x)| < ∞ for each x ∈ B. The uniform boundedness principle thus applies to give the
desired result.

Now to prove 1, recall that we have a natural map Φ : B → B∗∗ defined by Φx(ψ) = ψ(x) for ψ ∈ B∗. Also
recall that this map is an isometry. Thus if xn → x weakly, then clearly Φxn

→ Φx in the weak-* topology, so by
the previous paragraph this means supn‖xn‖ = supn‖Φxn

‖ <∞.

50. Let S be the subset of `2 consisting of the sequences xmn (m,n = 1, 2, . . ., m 6= n) defined by

xmn(k) =


1, k = m

m, k = n

0, k 6= m,n.

Prove 0 is in the weak closure of S, but no sequence in S converges to 0.

Proof: Consider the sequences ym defined by

ym(k) =

{
1, k = m

0, k 6= m.

Let φ ∈ (`2)∗ be any linear functional, induced by some sequence z ∈ `2. Then φ(ym) = z(m) → 0 as
m→∞, which shows that ym → 0 weakly.

Now xmn = ym + myn, so for any fixed m, xmn = ym + myn → ym weakly as n → ∞. Thus, ym ∈ S
wk

.
Since ym → 0 weakly, this implies 0 ∈ Swk

.

However, any sequence (xmini
)∞i=1 in S which converges weakly to 0 must be bounded in `2-norm by the

above proposition, which implies {mi} is bounded. On the other hand, defining z ∈ `2 by z(n) = 1
n , we

have 〈z, xmini〉 = 1
mi

+ mi

ni
→ 0 as i→∞, which implies mi →∞, a contradiction.

51. Prove that a weakly convergent sequence in `1 is norm convergent.

Proof 1: Suppose some sequence (xn)∞n=1 is weakly convergent but not norm convergent. By translation,
we may assume xn → 0 weakly as n→∞, and by taking a subsequence we may assume ‖xn‖1 is bounded
away from zero. Finally, by scaling, we may assume ‖xn‖1 ≥ 1 for every n.

Since evaluation at any coordinate is a bounded functional on `1, we have xn → 0 coordinatewise. Now
choose K1 such that

∑∞
k=K1+1 |x1(k)| < 1

5 . Then
∑K1

k=1 |xn(k)| → 0 as n → ∞, so we may find n2 such
that

∑K1
k=1 |xn2(k)| < 1

5 . Choose K2 such that
∑∞

k=K2+1 |xn2(k)| < 1
5 .

Continuing in this way, we get a subsequence xn1 = x1, xn2 , . . . and a sequence of integersK0 = 0,K1,K2, . . .

such that
∑Kj−1

k=1 |xnj
| < 1

5 and
∑∞

k=Kj+1 |xnj
| < 1

5 for each j. Now define

y(k) =
|xnj (k)|
xnj

(k)
for Kj−1 < k ≤ Kj .
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(Let y(k) = 1 if xnj (k) = 0.) Then clearly y ∈ `∞ since |y(k)| = 1. Also,∣∣∣∣∣
∞∑

k=1

xnj (k)y(k)

∣∣∣∣∣ ≥
∣∣∣∣∣∣

Kj∑
k=Kj−1+1

xnj (k)y(k)

∣∣∣∣∣∣−
∣∣∣∣∣∣
Kj−1∑
k=1

xnj (k)y(k)

∣∣∣∣∣∣−
∣∣∣∣∣∣

∞∑
k=Kj+1

xnj (k)y(k)

∣∣∣∣∣∣
≥

Kj∑
k=Kj−1+1

|xnj
(k)| −

Kj−1∑
k=1

|xnj
(k)| −

∞∑
k=Kj+1

|xnj
(k)|

=
∞∑

k=1

|xnj (k)| − 2
Kj−1∑
k=1

|xnj (k)| − 2
∞∑

k=Kj+1

|xnj (k)| > ‖xnj‖1 −
4
5
≥ 1

5
.

Therefore, 〈xn, y〉 6→ 0 as n→∞, which is a contradiction since 〈·, y〉 is a bounded linear functional on `1.

(Comment: The preceding proof is the prototype of the “gliding hump argument,” much beloved by Banach
spacemen and Banach spacewomen.)

Proof 2: Assume as before that xn → 0 weakly. Fix ε > 0, and for each n define Sn = {y ∈ `∞ : |〈y, xn〉| ≤
ε}. Then since xn → 0 weakly, we have

∞⋃
m=1

∞⋂
n=m

Sn = `∞.

However, each set
⋂∞

n=m Sn is weak-* closed. Also, the weak-* topology on the closed unit ball A of `∞ is
completely metrizable, for example using the norm ‖y‖′ =

∑∞
k=1 2−k|y(k)|. Therefore, by the Baire category

theorem, for some m,
⋂∞

n=m Sn contains a nonempty weak-* open set in A. By standard reasoning from
replacing ε by ε/2, we get that

⋂∞
n=m Sn also contains a weak-* open neighborhood of 0 in A.

In other words, there are a1, . . . , ar ∈ `1 such that V (a1, . . . , ar; 1) ∩ A ⊆
⋂∞

n=m Sn. Now choose N large
enough that

∑∞
j=N+1 |ai(j)| < 1 for each i, and for each n define yn such that yn(j) = 0 for j ≤ N ,

yn(j) = |xn(j)|
xn(j) for j > N . We then have yn ∈ V (a1, . . . , ar; 1) ∩A ⊆ Sn, so

‖xn‖ = 〈yn, xn〉+
N∑

j=1

|xn(j)| ≤ ε+
N∑

n=1

|xn(j)|.

Each term of the finite sum goes to zero as n → ∞, which gives us lim supn→∞‖xn‖ ≤ ε. Since ε was
arbitrary, this shows ‖xn‖ → 0.

52. Let X be a locally compact Hausdorff space. Prove that a sequence in C0(X) converges weakly if and only
if it is norm bounded and converges pointwise to a function in C0(X).

Proof: If fn → f weakly, then {fn} is norm bounded by the above proposition, and fn(x) → f(x) for
each x ∈ X since evaluation at x is a bounded linear functional on C0(X). Conversely, if {fn} is norm
bounded, say ‖fn‖∞ ≤ C for each n. Then if fn → f pointwise, then for any finite Radon measure µ on
X, C ∈ L1(µ). Thus,

∫
fn dµ→

∫
f dµ by the dominated convergence theorem. Since a general functional

in C0(X)∗ is induced by such a measure µ, fn → f weakly.

53. Prove that a sequence in `∞ converges in the weak-star topology of `∞ (as the dual of `1) if and only if it
is norm bounded and converges coordinatewise.

Proof: If xn → x in the weak-* topology, then {xn} is norm bounded by the above proposition, and
xn(j) → x(j) for each j since evaluation at j is induced by a sequence in `1. Conversely, if {xn} is
norm bounded, say ‖xn‖∞ ≤ C for each n. Then for any y ∈ `1, |xn(j)y(j)| ≤ C|y(j)|, where the right
hand side has finite sum. Thus, if xn → x coordinatewise, then by the dominated convergence theorem,∑∞

j=1 xn(j)y(j) →
∑∞

j=1 x(j)y(j). This shows that xn → x in the weak-* topology.
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54. Let B1 and B2 be Banach spaces, and let T : B1 → B2 be a linear transformation.

(a) Prove that, if T is continuous relative to the weak topologies of B1 and B2, then T is bounded.
Proof: We use the closed graph theorem. Thus, suppose xn → x in norm in B1, and Txn → y in
norm in B2. Then xn → x weakly in B1, so by the continuity condition Txn → Tx weakly in B2. On
the other hand, Txn → y weakly in B2. Since the weak topology on B2 is Hausdorff, this implies that
y = Tx.

(b) Prove that, if T is continuous relative to the weak topology of B1 and the norm topology of B2, then
T has finite rank (i.e., TB1 has finite dimension).
Proof: By the continuity condition, we can find functionals φ1, . . . , φn such that whenever |φi(x)| < 1
for 1 ≤ i ≤ n, then ‖Tx‖ < 1. By scaling, this implies that if φi(x) = 0 for 1 ≤ i ≤ n, then Tx = 0. In
other words, the kernel of T contains the subspace

⋂n
i=1 ker(φi) of B1, which has codimension at most

n. This implies that TB1 has dimension at most n.
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