
Math 202B Solutions
Assignment 10

D. Sarason

36. Let B1 and B2 be Banach spaces, with the norm in each denoted by ‖·‖. Let p be a number in [1,∞].

(a) Prove that one gets a norm on B1 ⊕B2, the algebraic direct sum of B1 and B2, if one defines

‖x1 ⊕ x2‖ =

{
(‖x1‖p + ‖x2‖p)1/p, 1 ≤ p < ∞
max{‖x1‖, ‖x2‖}, p = ∞.

Proof: Without loss of generality, assume the scalar field is R. We first prove the special case in which
B1 = B2 = R. To do this, let µ be counting measure on {1, 2}. Thus, for a function f : {1, 2} → R,∫

f dµ = f(1) + f(2). This implies that for p < ∞,

‖f‖p = (|f(1)|p + |f(2)|p)1/p = ‖f(1)⊕ f(2)‖.

This shows that ‖·‖ is indeed a norm in this case. In particular, writing out the triangle inequality
gives

(|a1 + b1|p + |a2 + b2|p)1/p ≤ (|a1|p + |a2|p)1/p + (|b1|p + |b2|p)1/p.

The case p = ∞ is similar.
Now for the general case, the only nontrivial part is the triangle inequality. For p < ∞, we have

‖(x1 ⊕ x2) + (y1 ⊕ y2)‖ = (‖x1 + y1‖p + ‖x2 + y2‖p)1/p ≤ ((‖x1‖+ ‖y1‖)p + (‖x2‖+ ‖y2‖)p)1/p

≤ (‖x1‖p + ‖x2‖p)1/p + (‖y1‖p + ‖y2‖p)1/p = ‖x1 ⊕ x2‖+ ‖y1 ⊕ y2‖,

where the last inequality follows from the previous paragraph. Again, the case p = ∞ is similar.

(b) Let B1 ⊕p B2 denote B1 ⊕B2 equipped with the preceding norm. Prove B1 ⊕p B2 is complete.
Proof: Suppose (x1n⊕x2n)∞n=1 is a Cauchy sequence in B1⊕pB2. Then ‖x1m−x1n‖ ≤ ‖(x1m⊕x2m)−
(x1n ⊕ x2n)‖ → 0 as m,n → ∞, so (x1n)∞n=1 is a Cauchy sequence in B1, and similarly for (x2n)∞n=1.
Therefore, these sequences have limits y1 ∈ B1, y2 ∈ B2. Now for p < ∞, ‖(x1n ⊕ x2n)− (y1 ⊕ y2)‖ =
(‖x1n − y1‖p + ‖x2n − y2‖p)1/p → 0 as n →∞, showing that the original sequence has limit y1 ⊕ y2 in
B1 ⊕p B2. The case p = ∞ is similar.

(c) Prove that the dual of B1 ⊕p B2 equals B∗
1 ⊕p′ B∗

2 .
Proof: Let φ : B1 ⊕p B2 → R be a functional, and define φ1 : B1 → R by φ1(x1) = φ(x1 ⊕ 0), and
φ2 : B2 → R by φ2(x2) = φ(0 ⊕ x2). We then see that φ(x1 ⊕ x2) = φ1(x1) + φ2(x2), and conversely
for any φ1, φ2 we get a functional φ on B1 ⊕p B2 defined by this formula. It is easy to see that φ is
bounded if and only if φ1 and φ2 are. It remains to calculate ‖φ‖.
Note that Hölder’s inequality, applied to the counting measure µ on {1, 2}, gives the inequality

|a1b1|+ |a2b2| ≤ (|a1|p + |a2|p)1/p(|b1|p
′
+ |b2|p

′
)1/p′

for 1 < p < ∞; for p = 1 or p = ∞ we get similar inequalities. Thus, for x1 ∈ B1, x2 ∈ B2, 1 < p < ∞,

|φ(x1 ⊕ x2)| = |φ1(x1) + φ2(x2)| ≤ ‖φ1‖ ‖x1‖+ ‖φ2‖ ‖x2‖

≤ (‖φ1‖p′
+ ‖φ2‖p′

)1/p′
(‖x1‖p + ‖x2‖p)1/p) = ‖φ1 ⊕ φ2‖p′‖x1 ⊕ x2‖p.

This shows that ‖φ‖ ≤ ‖φ1 ⊕ φ2‖p′ . Similar proofs hold for p = 1 and for p = ∞.
Now for the opposite inequality, assume without loss of generality that φ1, φ2 are not both zero. For
1 < p < ∞ set m1 = ‖φ1‖p′/p and m2 = ‖φ2‖p′/p; and similarly, for p = ∞ set m1 = m2 = 1. If
‖xi‖ = mi for i = 1, 2, we get equality in the application of Hölder’s inequality above. Also, for any
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ε > 0 we can find x1 ∈ B1 and x2 ∈ B2 with ‖xi‖ = mi and φi(xi) > ‖φi‖mi − ε for i = 1, 2. Thus,
letting m = (mp

1 + mp
2)

1/p, or m = max{|m1|, |m2|} for p = ∞,

φ(x1 ⊕ x2) = φ1(x1) + φ2(x2) > ‖φ1‖ ‖x1‖+ ‖φ2‖ ‖x2‖ − 2ε = ‖φ1 ⊕ φ2‖p′ ·m− 2ε.

Since ‖x1 ⊕ x2‖p = m, this shows that ‖φ‖ > ‖φ1 ⊕ φ2‖p′ − 2
mε. Since ε was arbitrary, this completes

the proof in the case 1 < p ≤ ∞. On the other hand, for p = 1 it is obvious that ‖φi‖ ≤ ‖φ‖ for
i = 1, 2. In other words, ‖φ‖ ≥ max{‖φ1‖, ‖φ2‖}, thus proving the desired inequality in this case also.

37. Prove that all norms on a finite-dimensional vector space B are equivalent: if ‖·‖ and ‖·‖′ are norms on B,
then there are positive constants c1 and c2 such that

c1‖x‖ ≤ ‖x‖′ ≤ c2‖x‖

for all x in B.

Proof: Since a complex vector space is also a real vector space, it suffices to consider the case of real scalars.
It is straightforward to show that equivalence of norms, in the sense defined above, is an equivalence relation.
Thus, it is sufficient to show that every norm on B ' RN is equivalent to the Euclidean norm ‖·‖2 on RN .

To show this, let {e1, . . . , en} be the standard basis of RN . Then for x = x1e1 + · · ·+ xnen,

‖x‖ ≤ |x1| ‖e1‖+ · · ·+ |xn| ‖en‖ ≤ ‖x‖2
√
‖e1‖2 + · · ·+ ‖en‖2.

(The last inequality is just the Cauchy-Schwarz inequality.) Therefore, for C =
√
‖e1‖2 + · · ·+ ‖en‖2,

‖x‖ ≤ C‖x‖2.
To get the other inequality, we observe that since | ‖x‖ − ‖y‖ | ≤ ‖x− y‖ ≤ C‖x− y‖2, ‖·‖ is a continuous
function with respect to the usual topology. Therefore, since SN−1 = {x : ‖x‖2 = 1} is compact, ‖x‖
achieves a minimum value c > 0 on SN−1. Thus, if x 6= 0, we have x

‖x‖2 ∈ SN−1, and

‖x‖ = ‖x‖2
∥∥∥∥ x

‖x‖2

∥∥∥∥ ≥ c‖x‖2.

We are now done since the inequality is obvious for x = 0.

38. Prove that a finite dimensional subspace of a Banach space is closed.

Proof: It is sufficient to show a finite dimensional subspace A is complete with respect to the norm inherited
from the Banach space. However, from the previous problem any norm on A is complete since it’s equivalent
to the usual norm on RN or CN . (In particular, it’s easy to see that equivalent norms give the same Cauchy
sequences and convergent sequences.)

39. (a) Let x1, . . . , xn be linearly independent vectors in a Banach space B. Prove that there are functionals
φ1, . . . , φn in B∗ such that φj(xj) = 1 for all j and φj(xk) = 0 for j 6= k.
Proof: For each j let Aj be the linear span of {xk : k 6= j}. By the preceding problem Aj is closed.
Since xj /∈ Aj , we have d(xj , Aj) > 0. By the extension theorem, then, there is a φj ∈ B∗ such that
φj(xj) = 1 and φj |Aj = 0. The functionals φ1, . . . , φn have the required properties.

(b) Let A be a finite-dimensional subspace of a Banach space B. Prove that there is a closed subspace A′

of B such that A ∩A′ = {0} and A + A′ = B.
Proof: Let {x1, . . . , xn} be a basis for A, let φj ∈ B∗ be as in the previous part, and define A′ =⋂n

j=1 ker(φj). Then if x ∈ A ∩ A′, there are scalars a1, . . . , an such that x = a1x1 + · · · + anxn since
x ∈ A. Applying φj , we get aj = φj(x) = 0 for each j since x ∈ A′. Thus, x = 0, showing that
A ∩A′ = {0}.
Now let x ∈ B, and let y =

∑n
j=1 φj(x)xj ∈ A. Then φj(x− y) = 0 for all j, so that x− y ∈ A′. Hence

A + A′ = B.

40. Consider the Banach space `∞ (real scalars). Let T : `∞ → `∞ be the shift operator on `∞, the map that
sends x = (x1, x2, . . .) in `∞ to Tx = (0, x1, x2, . . .). Let Y = {x− Tx : x ∈ `∞} and let e be the sequence
(1, 1, . . .).
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(a) Prove dist(e, Y ) = 1.
Proof: Let x = (x1, x2, . . .) ∈ `∞. Then since x is bounded, for each ε > 0 there is some n such that
xn−xn−1 < ε. This implies that (e− (x−Tx))n = 1− (xn−xn−1) > 1− ε, so ‖e− (x−Tx)‖∞ > 1− ε.
Since ε was arbitrary, this shows dist(e, x−Tx) ≥ 1 for each x ∈ `∞, so dist(e, Y ) ≥ 1. However, since
dist(e, 0) = 1, we get dist(e, Y ) ≤ 1 also.

(b) Prove there is a φ in (`∞)∗ such that φ(e) = 1, ‖φ‖ = 1, and φ = 0 on Y .
Proof: This follows from the previous part by a corollary to the Hahn-Banach extension theorem.

(c) Prove φ is translation invariant: φ(Tx) = φ(x) for all x.
Proof: This is a corollary of the fact that φ = 0 on Y , so φ(x− Tx) = 0 for each x ∈ `∞.

(d) Prove that lim infn→∞ xn ≤ φ(x) ≤ lim supn→∞ xn for all x. (In particular, φ(x) = limn→∞ xn if x
converges.) (Banach. Such a functional φ is called a Banach limit.)
Proof: We first show that inf{xn} ≤ φ(x) ≤ sup{xn}. To do this, let m = inf{xn}, M = sup{xn}.
Since ‖φ‖ = 1, we get∣∣∣∣φ(x)− M + m

2

∣∣∣∣ =
∣∣∣∣φ(

x− M + m

2
e

)∣∣∣∣ ≤ ∥∥∥∥x− M + m

2
e

∥∥∥∥
∞

=
M −m

2
.

Thus, m ≤ φ(x) ≤ M .
Now let S : `∞ → `∞ be the reverse shift operator defined by S(x) = (x2, x3, . . .). Then since
TS(x) = x − x1(e − Te), the translation invariance of φ gives that φ(Sx) = φ(x). Now applying the
previous paragraph to Smx gives

inf{xn : n > m} ≤ φ(x) ≤ sup{xn : n > m}

for every m. Taking the limit as m →∞ gives the desired result.
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