32. Let \mathcal{A} be a σ-algebra on a set X.

(a) Prove that if μ is a positive σ-finite measure on \mathcal{A}, then there is a finite measure on \mathcal{A} that is mutually absolutely continuous with respect to μ.

(b) Let μ_1, μ_2, \ldots be positive σ-finite measures on \mathcal{A}. Prove that there is a finite measure ν on \mathcal{A} such that $\mu_n \ll \nu$ for all n.

33. Let \mathcal{A} be a σ-algebra on a set X. Let μ and ν be positive measures in $M(\mathcal{A})$ such that $\|\mu - \nu\| = \|\mu\| + \|\nu\|$. Prove that $\mu \perp \nu$.

34. Let μ and ν be measures in $M(\mathbb{R}^N)$ such that $\mu \ll \lambda_N$. Prove that $\mu * \nu \ll \lambda_N$.

35. The Fourier transform of a function f in complex $L^1(\lambda)$ is the function \hat{f} on \mathbb{R} defined by

$$\hat{f}(t) = \int_{\mathbb{R}} f(x)e^{-itx}dx.$$

(a) Prove that if f is in $L^1(\lambda)$ then \hat{f} is continuous.

(b) For f in $L^1(\lambda)$ and y in \mathbb{R}, let T_yf be the y-translate of f : $(T_yf)(x) = f(x - y)$. Find the relation between \hat{f} and $(T_yf)^\wedge$.

(c) Prove that if f is in $L^1(\lambda)$ then $\lim_{|t| \to \infty} \hat{f}(t) = 0$. (Riemann–Lebesgue lemma) (Suggestion: Along with f consider $T_{\pi/t}f$.)

(d) Prove that if f and g are in $L^1(\lambda)$ then $(f * g)^\wedge = \hat{f} \hat{g}$.

(e) Prove that if f is in $L^1(\lambda) \cap C^1(\mathbb{R})$ and f' is in $L^1(\lambda)$, then $(f')^\wedge(t) = it\hat{f}(t)$. (Suggestion: Consider $\psi_\epsilon * f'$, where $\psi_\epsilon(x) = \frac{1}{\epsilon}\psi\left(\frac{x}{\epsilon}\right)$, $\psi = \frac{1}{2}\chi_{(-1,1)}$.)