HOMEWORK ASSIGNMENT 1

Due in class on Friday, January 30.

- 1. Let \mathcal{R} be a ring on a set X, let \mathcal{R}' be the family of complements of the sets in \mathcal{R} , and let $\mathcal{A} = \mathcal{R} \cup \mathcal{R}'$. Prove that \mathcal{A} is an algebra, and is a σ -algebra if \mathcal{R} is a σ -ring.
- 2. Let \mathcal{L} be a lattice of sets, that is, a family of sets that contains \emptyset and is closed under finite unions and finite intersections. Prove that the family of relative complements of the sets in \mathcal{L} is a semiring.
- 3. Let X be a complete metric space, and let \mathcal{A} be the family of subsets of X that are either meager or residual. For A in \mathcal{A} define

$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ is meager} \\ 1 & \text{if } A \text{ is residual.} \end{cases}$$

Prove that \mathcal{A} is a σ -algebra and that μ is a measure.

- 4. Let $X = \{0, 1\}^{\mathbb{N}}$, the set of all sequences of 0's and 1's (aka the coin-tossing space), regarded as a topological space with the product topology (each coordinate space $\{0, 1\}$ having the discrete topology). For n in \mathbb{N} let P_n denote the n-th coordinate projection on X, the function that maps a sequence in X to its n-th term. Recall that the subbasic open sets in X are the sets $P_n^{-1}(\varepsilon)$ ($n \in \mathbb{N}, \varepsilon \in \{0, 1\}$), and the basic open sets are the finite intersections of subbasic open sets.
 - (a) Prove the Borel σ -algebra on X is the σ -algebra generated by the basic open sets.
 - (b) Prove the basic open sets, together with ϕ , form a semiring. (Suggestion: The following notation may be helpful. For S a finite subset of N and $f: S \to \{0, 1\}$, let

$$U(S, f) = \{ x = (\varepsilon_m)_1^\infty \in X : \varepsilon_n = f(n) \text{ for } n \in S \}.$$

This is a typical basic open set.)