HOMEWORK ASSIGNMENT 1

Due in class on Friday, January 30.

1. Let \mathcal{R} be a ring on a set X, let \mathcal{R}' be the family of complements of the sets in \mathcal{R}, and let $A = \mathcal{R} \cup \mathcal{R}'$. Prove that A is an algebra, and is a σ-algebra if \mathcal{R} is a σ-ring.

2. Let \mathcal{L} be a lattice of sets, that is, a family of sets that contains \emptyset and is closed under finite unions and finite intersections. Prove that the family of relative complements of the sets in \mathcal{L} is a semiring.

3. Let X be a complete metric space, and let \mathcal{A} be the family of subsets of X that are either meager or residual. For A in \mathcal{A} define

$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ is meager} \\ 1 & \text{if } A \text{ is residual.} \end{cases}$$

Prove that \mathcal{A} is a σ-algebra and that μ is a measure.

4. Let $X = \{0, 1\}^\mathbb{N}$, the set of all sequences of 0’s and 1’s (aka the coin-tossing space), regarded as a topological space with the product topology (each coordinate space $\{0, 1\}$ having the discrete topology). For n in \mathbb{N} let P_n denote the n-th coordinate projection on X, the function that maps a sequence in X to its n-th term. Recall that the subbasic open sets in X are the sets $P_n^{-1}(\varepsilon)$ ($n \in \mathbb{N}, \varepsilon \in \{0, 1\}$), and the basic open sets are the finite intersections of subbasic open sets.

(a) Prove the Borel σ-algebra on X is the σ-algebra generated by the basic open sets.

(b) Prove the basic open sets, together with \emptyset, form a semiring.

(Suggestion: The following notation may be helpful. For S a finite subset of \mathbb{N} and $f : S \to \{0, 1\}$, let

$$U(S, f) = \{x = (\varepsilon_m)_{m=1}^\infty \in X : \varepsilon_n = f(n) \text{ for } n \in S\}.$$

This is a typical basic open set.)