HOMEWORK ASSIGNMENT 6

Due in class on Wednesday, October 15.

Exercise L is optional.

K. Prove that every point of the Cantor set is a limit point of the Cantor set.

L. Let the series \(\sum_{k=1}^{\infty} a_k \) converge but not converge absolutely.
 (a) Prove the series has a rearrangement that diverges.
 (b) Let \(c \) be a real number. Prove the series has a rearrangement that converges to \(c \).

M. Prove as follows that if \(\sum_{k=1}^{\infty} a_k \) is a convergent series and \((\beta_k)_{1}^{\infty} \) is a nonincreasing sequence with limit 0, then \(\sum_{k=1}^{\infty} a_k \beta_k \) converges.

 Step 1. Let \(\alpha_n = \sum_{k=1}^{n} a_k \) \((n = 1, 2, \ldots) \) and \(b_k = \beta_k - \beta_{k-1} \) \((k = 2, 3, \ldots) \). Show that, for \(1 < m < n \),
 \[
 \sum_{k=m}^{n} a_k \beta_k = \alpha_n \beta_n - \alpha_{m-1} \beta_m - \sum_{k=m}^{n-1} a_k b_{k+1}.
 \]

 Step 2. Use the preceding identity to show that the partial sums of \(\sum_{k=1}^{\infty} a_k \beta_k \) form a Cauchy sequence.
 (Comment: The preceding technique is called summation by parts. Note the analogy with integration by parts.)

N. Prove the parallelogram equality for vectors \(x \) and \(y \) in \(\mathbb{R}^k \):
 \[
 \| x + y \|^2 + \| x - y \|^2 = 2(\| x \|^2 + \| y \|^2).
 \]

O. Prove that \(\ell^\infty \) is complete.