Math 16B - F05 - Supplementary Notes 6
 Error Estimate for Approximation by Taylor Polynomials

Recall that the $n^{t h}$ Taylor polynomial for the function $f(x)$ at the point $x=a$ is the polynomial

$$
f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

It is the unique polynomial of degree at most n that agrees with f at the point a and whose first n derivatives agree with those of f at the point a. With the summation notation it can be rewritten as

$$
\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k},
$$

with the conventions $f^{(0)}=f$ and $0!=1$.
The $n^{\text {th }}$ Taylor polynomial for f at a not only agrees with f at a, also its rate of change at a agrees with that of f, and the same is true for the rates of change of the first $n-1$ derivatives. It is thus reasonable to expect that the Taylor polynomial will approximate f closely for x near a. To quantify this expectation one needs an estimate for the error in the approximation.

The difference between f and its $n^{\text {th }}$ Taylor polynomial at a is given by

$$
R_{n}(x, a)=f(x)-f(a)-f^{\prime}(a)(x-a)-\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}-\frac{f^{(3)}(a)}{3!}(x-a)^{3}-\cdots-\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

This is the error in the approximation. Often it is referred to as the remainder in the $n^{t h}$ Taylor approximation. How can we obtain a useful estimate of the size of $R_{n}(x, a)$?

The simplest case is the case $n=0,0^{t h}$-order Taylor approximation. In this case we are approximating f by the constant function $f(a)$, ridiculous perhaps, but nevertheless indicative of the general case. We have

$$
R_{0}(x, a)=f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) d t
$$

If M as an upper bound of $\left|f^{\prime}(t)\right|$ for t between a and x, then the preceding integral has absolute value at most $M|x-a|$, i.e., $\left|R_{0}(x, a)\right| \leq M|x-a|$. As we shall see, a similar estimate holds in the general case.

Let's look at the next simplest case, the case $n=1,1^{s t}$-order (i.e., linear) approximation. We have

$$
R_{1}(x, a)=f(x)-f(a)-f^{\prime}(a)(x-a) .
$$

We now do something clever: instead of keeping the center of approximation a fixed, we let it be variable. We introduce the function

$$
R_{1}(x, t)=f(x)-f(t)-f^{\prime}(t)(x-t)
$$

of the two variables x and t. We differentiate $R(x, t)$ with respect to t :

$$
\begin{aligned}
\frac{\partial R_{1}(x, t)}{\partial t} & =-f^{\prime}(t)-\frac{\partial}{\partial t}\left(f^{\prime}(t)(x-t)\right) \\
& =-f^{\prime}(t)-f^{\prime \prime}(t)(x-t)+f^{\prime}(t)=-f^{\prime \prime}(t)(x-t)
\end{aligned}
$$

Now we integrate with respect to t from a to x to get

$$
R_{1}(x, x)-R_{1}(x, a)=-\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t
$$

But $R(x, x)=0$, so

$$
R_{1}(x, a)=\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t
$$

If now M is an upper bound of $\left|f^{\prime \prime}(t)\right|$ between a and x, then the absolute value of the preceding integral is at most

$$
M\left|\int_{a}^{x}\right| x-t|d t|=\frac{M|x-a|^{2}}{2}
$$

giving us the error estimate

$$
\left|R_{1}(x, a)\right| \leq \frac{M|x-a|^{2}}{2}
$$

The preceding method works in the general case to give the following result.
Theorem. $R_{n}(x, a)=\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t$.
The preceding expression is called the integral form of the remainder in Taylor's formula. Before deriving it, let's note the following consequence.

Corollary. If $\left|f^{(n+1)}(t)\right|$ is bounded by M for t between a and x, then

$$
R_{n}(x, a) \leq \frac{M|x-a|^{n+1}}{(n+1)!}
$$

In fact, if M is an upper bound for $\left|f^{(n+1)}(t)\right|$ for t in the interval with endpoints a and x, then the integral in the expression for $R_{n}(x, t)$ is in absolute value no larger than

$$
M\left|\int_{a}^{x}\right| x-\left.t\right|^{n} d t \left\lvert\,=\frac{M|x-a|^{n+1}}{n+1}\right.
$$

To derive the integral formula for the remainder, we look at the function
(1) $\quad R_{n}(x, t)=f(x)-f(t)-f^{\prime}(t)(x-t)-\frac{f^{\prime \prime}(t)}{2}(x-t)^{2}-\frac{f^{(3)}(t)}{3!}(x-t)^{3}-\cdots-\frac{f^{(n)}(t)}{n!}(x-t)^{n}$
of the two variables x and t. We take the partial derivative with respect to t. There are $n+2$ summands on the right side of (1). The first of those is $f(x)$, which is independent of t, so its derivative with respect to t is 0 . The second is $-f(t)$, whose derivative with respect to t is $-f^{\prime}(t)$. The third is $-f^{\prime}(t)(x-t)$, whose derivative with respect to t is $-f^{\prime \prime}(t)(x-t)+f^{\prime}(t)$. Note that the sum of the derivatives with respect to t of the first three summands is just $-f^{\prime \prime}(t)(x-t)$ (as we found when treating the case $n=1$). The fourth summand is $-\frac{f^{\prime \prime}(t)}{2}(x-t)^{2}$, whose derivative with respect to t is $-\frac{f^{(3)}(t)}{2}(x-t)^{2}+f^{\prime \prime}(t)(x-t)$. The sum of the derivatives with respect to t of the first four summands is thus $-\frac{f^{(3)}(t)}{2}(x-t)^{2}$. This pattern repeats as we go along. The $(k+2)^{n d}$ summand is $-\frac{f^{(k)}(t)}{k!}(x-t)^{k}$, whose derivative with respect to t is

$$
-\frac{f^{(k+1)}(t)}{k!}(x-t)^{k}+\frac{f^{(k)}(t)}{(k-1)!}(x-t)^{k-1}
$$

In the derivative of the $(k+1)^{\text {st }}$ summand, the second of these two terms occurs with a minus sign, producing a cancellation. And the first of the two terms appears in the derivative of the $(k+3)^{r d}$ summand, but with the opposite sign, producing another cancellation - except for $k=n$, because the $(n+2)^{n d}$ summand is the last. Adding everything together, we get

$$
\frac{\partial R_{n}(x, t)}{\partial t}=-\frac{f^{(n+1)}(t)(x-t)^{n}}{n!}
$$

Integration now gives

$$
R_{n}(x, x)-R_{n}(x, a)=-\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t
$$

which yields the expression in the theorem since $R(x, x)=0$.
The following examples illustrate use of the corollary in estimating errors.
Example 1. $f(x)=\cos x, a=0$.
The first six Taylor polynomials of $\cos x$ at the origin are

$$
\begin{aligned}
p_{0}(x) & =p_{1}(x)=1 \\
p_{2}(x) & =p_{3}(x)=1-\frac{x^{2}}{2} \\
p_{4}(x)-p_{5}(x) & =1-\frac{x^{2}}{2}+\frac{x^{4}}{24} .
\end{aligned}
$$

All derivatives of $\cos x$ are bounded in absolute value by 1 , so in the corollary we can take $M=1$ to get, for example

$$
\left|R_{5}(x, 0)\right|=\left|\cos x-\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}\right)\right| \leq \frac{|x|^{6}}{6!}=\frac{|x|^{6}}{720}
$$

When x is small the error is quite small. For instance,

$$
\left|R_{5}\left(\frac{1}{2}, 0\right)\right| \leq \frac{1}{46080} \leq .000022
$$

from which we get

$$
\cos \frac{1}{2} \approx 1-\frac{(1 / 2)^{2}}{2}+\frac{(1 / 2)^{4}}{24} \approx .87760
$$

with an error of at most .000022 .
Example 2. $f(x)=e^{x}, a=0$.
For $x<0$ the derivative of e^{x} (which is e^{x}) is positive and bounded by 1 , so, by the corollary,

$$
R_{n}(x, 0) \leq \frac{|x|^{n+1}}{(n+1)!}, x<0
$$

How large must we take n to guarantee that $R_{n}(-1,0)$ is at most .0001 in absolute value? We must have $\frac{1}{(n+1)!}<.0001$, i.e., $(n+1)!>10,000$. The smallest such n is $7(7!=5,760,8!=40320)$. The $7^{\text {th }}$ Taylor polynomial of e^{x} is

$$
1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\frac{x^{7}}{7!} .
$$

Setting $x=-1$, then, we see that the number

$$
1-1+\frac{1}{2}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+\frac{1}{6!}-\frac{1}{7!} \approx .367857
$$

is within $1 / 40320 \approx .000025$ of $1 / e$.
Example 3. $f(x)=\sqrt{1+x}, a=0$.
Let's use the fourth Taylor polynomial at the origin to get an estimate for $\sqrt{3 / 2}$. We have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2}(1+x)^{-1 / 2}, f^{\prime}(0)=\frac{1}{2} \\
f^{\prime \prime}(x) & =-\frac{1}{4}(1+x)^{-3 / 2}, f^{\prime \prime}(0)=-\frac{1}{4} \\
f^{(3)}(x) & =\frac{3}{8}(x+1)^{-5 / 2}, f^{(3)}(0)=\frac{3}{8} \\
f^{(4)}(x) & =-\frac{15}{16}(1+x)^{-7 / 2}, f^{(4)}(0)=-\frac{15}{16} .
\end{aligned}
$$

From this one finds that the fourth Taylor polynomial at the origin is given by

$$
p_{4}(x)=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{3}{48} x^{3}-\frac{15}{384} x^{4} .
$$

Our approximation to $\sqrt{3 / 2}$ is thus

$$
p_{4}\left(\frac{1}{2}\right)=1+\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)-\frac{1}{8}\left(\frac{1}{4}\right)+\frac{3}{48}\left(\frac{1}{8}\right)-\frac{15}{384}\left(\frac{1}{16}\right) \approx 1.22412 .
$$

To obtain an error estimate we note that

$$
f^{(5)}(x)=\frac{105}{32}(1+x)^{-9 / 2}
$$

which is bounded by $105 / 32$ for $x>0$. By the corollary,

$$
\left|R_{4}\left(\frac{1}{2}, 0\right)\right| \leq \frac{105}{32}\left(\frac{2^{-5}}{5!}\right)<.00086
$$

Our approximate value for $\sqrt{3 / 2}$ is accurate to within .00086 .

