Math 16B - F05 - Supplementary Notes 3
 The Lagrange Multiplier Method

The method of Lagrange multipliers is often effective in finding solutions of constrained extremum problems. In the two-variable version of such a problem, one is given a function $f(x, y)$, and one wishes to maximize it or minimize it under the constraint that another function $g(x, y)$ vanishes (i.e., one wishes to find a maximum or minimum of f on the level curve $g(x, y)=0$). As explained in our textbook (where you will also find examples), Lagrange's method proceeds as follows. One introduces a third variable λ (traditionally called a Lagrange multiplier), and one defines a function $F(x, y, \lambda)$ of three variables by

$$
F(x, y, \lambda)=f(x, y)+\lambda g(x, y)
$$

The basic theorem underlying the method states that if $f(x, y)$ attains a maximum or a minimum at the point (a, b) under the constraint $g(x, y)=0$, then there is a value c of λ such that (a, b, c) is a critical point of F :

$$
\begin{equation*}
\frac{\partial F}{\partial x}(a, b, c)=0, \quad \frac{\partial F}{\partial y}(a, b, c)=0, \quad \frac{\partial F}{\partial \lambda}(a, b, c)=0 \tag{1}
\end{equation*}
$$

Thus, in principle, one can find the candidates for the desired constrained extremum of f by solving the three simultaneous equations (1) for a, b, c. In the nicest situations there will be only one solution, which gives immediately the sought-for extremum (a, b) of f.

The aim here is to explain the geometric underpinning of the method. So assume $f(x, y)$ does have a maximum or a minimum at (a, b) under the constraint $g(x, y)=0$. We shall assume further that (a, b) is a critical point of neither f nor g, the most common case. Note first that the partial derivatives of F are given by

$$
\frac{\partial F}{\partial x}=\frac{\partial f}{\partial x}+\lambda \frac{\partial y}{\partial x}, \quad \frac{\partial F}{\partial y}=\frac{\partial f}{\partial y}+\lambda \frac{\partial g}{\partial y}, \quad \frac{\partial F}{\partial \lambda}=g
$$

The third equality in (1), therefore, just says that $g(a, b)=0$, i.e., that (a, b) satisfies the constraint. The other two equalities in (1) can be written as

$$
\begin{equation*}
\frac{\partial f}{\partial x}(a, b)=-c \frac{\partial g}{\partial x}(a, b), \quad \frac{\partial f}{\partial y}(a, b)=-c \frac{\partial g}{\partial y}(a, b) \tag{2}
\end{equation*}
$$

What do these mean?
To shorten the notation, let's define

$$
\alpha=\frac{\partial f}{\partial x}(a, b), \quad \beta=\frac{\partial f}{\partial y}(a, b), \quad \tilde{\alpha}=\frac{\partial g}{\partial x}(a, b), \quad \tilde{\beta}=\frac{\partial g}{\partial y}(a, b) .
$$

Rewritten in the new notation, (2) becomes

$$
\begin{equation*}
\alpha=-c \tilde{\alpha}, \quad \beta=-c \tilde{\beta} \tag{3}
\end{equation*}
$$

Suppose for definiteness that (a, b) is a maximum of $f(x, y)$ under the constraint $g(x, y)=0$, and let $m=f(a, b)$. Consider the level curve $f(x, y)=m$ (see Figure 3.1). It separates the region where f is larger than m from the region where f is smaller than m. On the level curve $g(x, y)=0$ the function f takes no value larger than m, so that curve, although it touches the level
curve $f(x, y)=m$ at (a, b), cannot pass through the latter curve; it must stay in the region where $f(x, y) \leq m$. From this it follows that the two curves $f(x, y)=m$ and $g(x, y)=0$ share a common tangent line at the point (a, b) (see the figure).

The tangent lines at (a, b) to the curves $f(x, y)=m$ and $g(x, y)=0$ have the respective equations

$$
\begin{equation*}
\alpha(x-a)+\beta(y-b)=0, \quad \tilde{\alpha}(x-a)+\tilde{\beta}(y-b)=0 \tag{4}
\end{equation*}
$$

(see Supplementary Notes 1). Now simple algebraic reasoning (left to the reader) shows that the two equations (4) define the same line if and only if the coefficients α, β are proportional to the coefficients $\tilde{\alpha}, \tilde{\beta}$, i.e., there is a number γ such that $\alpha=\gamma \tilde{\alpha}$ and $\beta=\gamma \tilde{\beta}$. This gives (3) with $c=-\gamma$.

To summarize, the first two equalities in (1) just say that the level curves $f(x, y)=f(a, b)$ and $g(x, y)=0$ have a common tangent line at the point (a, b).

