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The Lagrange Multiplier Method

The method of Lagrange multipliers is often effective in finding solutions of constrained ex-
tremum problems. In the two-variable version of such a problem, one is given a function f(x, y),
and one wishes to maximize it or minimize it under the constraint that another function g(x, y)
vanishes (i.e., one wishes to find a maximum or minimum of f on the level curve g(x, y) = 0).
As explained in our textbook (where you will also find examples), Lagrange’s method proceeds as
follows. One introduces a third variable λ (traditionally called a Lagrange multiplier), and one
defines a function F (x, y, λ) of three variables by

F (x, y, λ) = f(x, y) + λg(x, y).

The basic theorem underlying the method states that if f(x, y) attains a maximum or a minimum
at the point (a, b) under the constraint g(x, y) = 0, then there is a value c of λ such that (a, b, c) is
a critical point of F :
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Thus, in principle, one can find the candidates for the desired constrained extremum of f by solving
the three simultaneous equations (1) for a, b, c. In the nicest situations there will be only one
solution, which gives immediately the sought-for extremum (a, b) of f .

The aim here is to explain the geometric underpinning of the method. So assume f(x, y) does
have a maximum or a minimum at (a, b) under the constraint g(x, y) = 0. We shall assume further
that (a, b) is a critical point of neither f nor g, the most common case. Note first that the partial
derivatives of F are given by
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The third equality in (1), therefore, just says that g(a, b) = 0, i.e., that (a, b) satisfies the constraint.
The other two equalities in (1) can be written as
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What do these mean?
To shorten the notation, let’s define
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Rewritten in the new notation, (2) becomes

(3) α = −cα̃, β = −cβ̃.

Suppose for definiteness that (a, b) is a maximum of f(x, y) under the constraint g(x, y) = 0,
and let m = f(a, b). Consider the level curve f(x, y) = m (see Figure 3.1). It separates the
region where f is larger than m from the region where f is smaller than m. On the level curve
g(x, y) = 0 the function f takes no value larger than m, so that curve, although it touches the level



curve f(x, y) = m at (a, b), cannot pass through the latter curve; it must stay in the region where
f(x, y) ≤ m. From this it follows that the two curves f(x, y) = m and g(x, y) = 0 share a common
tangent line at the point (a, b) (see the figure).

The tangent lines at (a, b) to the curves f(x, y) = m and g(x, y) = 0 have the respective equations

(4) α(x− a) + β(y − b) = 0, α̃(x− a) + β̃(y − b) = 0

(see Supplementary Notes 1). Now simple algebraic reasoning (left to the reader) shows that the
two equations (4) define the same line if and only if the coefficients α, β are proportional to the
coefficients α̃, β̃, i.e., there is a number γ such that α = γα̃ and β = γβ̃. This gives (3) with c = −γ.

To summarize, the first two equalities in (1) just say that the level curves f(x, y) = f(a, b) and
g(x, y) = 0 have a common tangent line at the point (a, b).


