
Math 16B – F05 – Supplementary Notes 2
Second-Derivative Test

To understand what is behind the second-derivative test for functions of two variables, we shall
start by looking at the simplest nontrivial example, that of a polynomial of degree 2. First the test
will be stated.

Let the function f(x, y) have a critical point at (a, b). The second-derivative test involves the
function
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and it applies when Df (a, b) 6= 0. Note that if Df (a, b) > 0 then ∂2f
∂x2 (a, b) and ∂2f

∂y2 (a, b) must have
the same sign. The test distinguishes three cases:

(I) If Df (a, b) > 0 and ∂2f
∂x2 (a, b) > 0 (equivalently ∂2f

∂y2 (a, b) > 0), then (a, b) is a relative minimum
of f .

(II) If Df (a, b) > 0 and ∂2f
∂x2 (a, b) < 0 (equivalently ∂2f

∂y2 (a, b) < 0), then (a, b) is a relative maximum
of f .

(III) If Df (a, b) < 0 then (a, b) is a saddle point of f (neither a relative maximum nor a relative
minimum).

Now we look at the simple example f(x, y) = αx2 +2βxy +γy2, where α, β, γ are constants, not
all 0. This quadratic polynomial has a critical point at (0, 0), where it takes the value 0. We have

∂2f

∂x2
= 2α,

∂2f

∂y2
= 2γ,

∂2f

∂x∂y
= 2β,

Df (x, y) = 4(αγ − β2).

The second-derivative test can be derived for this function f by means of elementary algebra.
To illustrate, the case α > 0 will be discussed; the other cases are similar (except for the case
α = γ = 0 6= β, which is simpler, in fact trivial). Assuming α > 0, we use the method of completing
the square. Namely, we look at αx2+2βxy, the first two terms in the expression for f , and determine
what expression of the form δy2 we can add to it to produce a perfect square. After a little thought
one discovers that δ = β2/α works:
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We can thus rewrite f as

(1) f(x, y) =

(√
αx +

β√
α

y

)2

+
αγ − β2

α
y2.

Now let’s examine what happens in case Df (0, 0) = 4(αγ − β2) is positive, negative, or zero.

(i) If Df (0, 0) > 0 then the coefficient multiplying y2 in (1) is positive, and f is everywhere
positive except at (0, 0), which is thus a relative minimum (in agreement with the test).



(ii) If Df (0, 0) < 0 then the coefficient multiplying y2 in (1) is negative. On the y axis the function
f is positive except at (0, 0), but on the line

√
αx + β√

α
y = 0 it is negative except at (0, 0).

The critical point (0, 0) is a saddle point (again, in agreement with the test).

(iii) If Df (0, 0) = 0 then the y2-term in (1) drops out. The function f is nonnegative and vanishes
everywhere on the line

√
αx + β√

α
y = 0, every point of which is thus a relative minimum.

(This case is not covered by the test.)

The preceding discussion illustrates the fact that for the function f(x, y) = αx2 + 2βxy + γy2

one can derive the second-derivative test by purely algebraic means. It will now be indicated how
the general case can be deduced from this special one by an approximation argument.

We return to the general function f(x, y). The local linear approximation of f near a point (a, b)
was discussed in Supplementary Notes 1. The approximation is expressed by

(2) f(x, y) ≈ f(a, b) +
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b).

The expression (2) is shorthand for a more precise statement that indicates how the error in the
approximation behaves as (x, y) approaches (a, b).

The approximation (2) is called a first-order approximation because it is an approximation of
f by a first-degree polynomial. There are analogous, more accurate, higher-order approximations.
The second-order approximation, which approximates f near (a, b) by a second-degree polynomial,
reads

f(x, y) ≈ f(a, b) +
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b)(3)

+
1

2

∂2f

∂x2
(a, b)(x− a)2 +

∂2f

∂x∂y
(a, b)(x− a)(y − b) +

1

2

∂2f

∂y2
(a, b)(y − b)2,

and there is an associated error estimate.
Now suppose (a, b) is a critical point of f , and let
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Then (3) reduces to

(4) f(x, y) ≈ f(a, b) + α(x− a)2 + 2β(x− a)(y − b) + γ(y − b)2.

The second-degree polynomial on the right side here is a trivially modified version of the one
discussed earlier; it has a critical point at (a, b) instead of at (0, 0), and it may not vanish at the
critical point, but those changes are merely superficial. One can verify the second-derivative test
for the polynomial on the right side of (4) by purely algebraic means.

Finally, using the error estimate that accompanies (4), one can show that, as long as Df (a, b)
(= 4(αγ − β2)) is not zero, the nature of (a, b) as a critical point of f is controlled by the nature of
(a, b) as a critical point of the polynomial on the right side of (4). This is how the second-derivative
test is established.


