Review Problems

1. Prove that the set of nondecreasing functions of \mathbb{N} onto $\{0, 1, 2\}$ is denumerable.

2. Let \mathcal{A} be a family of nonempty subsets of \mathbb{N} such that the intersection of any two distinct sets in \mathcal{A} is either empty or a singleton. Prove \mathcal{A} is countable.

3. Let S be the set of functions $f : \mathbb{Q} \rightarrow \mathbb{Q}$ that satisfy $f(a+b) = f(a) + f(b)$ for all a and b in \mathbb{Q}. Prove S is denumerable.

4. Prove that the set of functions of \mathbb{N} into \mathbb{N} has the same cardinality as the set of increasing functions of \mathbb{N} into \mathbb{N}.

5. Let $(a_n)_1^\infty$ be a sequence in \mathbb{R} with limit 0. Prove there is a sequence $(b_n)_1^\infty$ in \mathbb{R} such that $\lim_{n \to \infty} |b_n| = \infty$ and $\lim_{n \to \infty} a_nb_n = 0$.

6. Let $(b_n)_1^\infty$ be a bounded increasing sequence in \mathbb{R}. Let the sequence $(a_n)_1^\infty$ satisfy $|a_{n+1} - a_n| \leq b_{n+1} - b_n$ for all n. Prove $(a_n)_1^\infty$ converges.

7. Let $(a_n)_1^\infty$ be a monotone sequence in \mathbb{R} such that the sequence $(b_n)_1^\infty$ defined by $b_n = \frac{1}{n}(a_1 + a_2 + \cdots + a_n)$ converges. Prove $(a_n)_1^\infty$ converges.

8. Let $(a_n)_1^\infty$ be a sequence in \mathbb{R} such that $\lim_{n \to \infty}(a_{n+k} - a_n) = 0$ for each k in \mathbb{N}. Can you conclude that $(a_n)_1^\infty$ is a Cauchy sequence?

9. Let $(a_n)_1^\infty$ be a bounded divergent sequence in \mathbb{R}. Prove there are two convergent subsequences of $(a_n)_1^\infty$ with different limits.

10. Let S be an uncountable subset of \mathbb{R}. Prove there is a real number a such that the set $S \cap (a - \varepsilon, a + \varepsilon)$ is uncountable for every $\varepsilon > 0$.