HOMEWORK ASSIGNMENT 9

Due in class on Wednesday, November 17.

37. Let the function \(f : (0, 1) \rightarrow \mathbb{R} \) be continuously differentiable. Let the function \(g : (0, 1) \times (0, 1) \rightarrow \mathbb{R} \) be defined by

\[
g(x, y) = \begin{cases}
\frac{f(x) - f(y)}{x - y}, & x \neq y \\
f'(x), & x = y.
\end{cases}
\]

Prove \(g \) is continuous.

38. Let \(I \) be an open interval and \(f : I \rightarrow \mathbb{R} \) a differentiable function such that \(f' \) is nondecreasing.

(a) Prove \(f' \) is continuous.

(b) Prove \(f \) is convex, i.e., for \(a \) and \(b \) in \(I \) with \(a < b \) and \(0 < t < 1 \),

\[
f((1 - t)a + tb) \leq (1 - t)f(a) + tf(b).
\]

39. Let \(I \) be an open interval and \(f : I \rightarrow \mathbb{R} \) a twice differentiable function, with \(f'' \) continuous. Prove that, for \(x_0 \) in \(I \),

\[
f''(x_0) = \lim_{\delta \to 0} \frac{f(x_0 + \delta) + f(x_0 - \delta) - 2f(x_0)}{\delta^2}.
\]

40. Let the sequence \((f_n)_{n=1}^{\infty}\) of Riemann integrable functions on the interval \([a, b]\) converge uniformly to the function \(f \). Prove \(f \) is Riemann integrable, and

\[
\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_n.
\]

(Remark: This is proved in Pugh, pp. 207–208, but the proof there uses a deep result of Lebesgue characterizing Riemann integrability which we have not taken up. The result can be proved without resort to Lebesgue’s theorem. You are asked to find such a proof.)