HOMEWORK ASSIGNMENT 1

Due in class on Wednesday, September 8.

1. Prove that the number of subsets of the set \(\mathbb{N}_n = \{1, 2, \ldots, n\} \) is \(2^n \).

2. Prove that, for \(m \) and \(n \) natural numbers, the number of ordered \(m \)-tuples whose coordinates belong to \(\mathbb{N}_n \) equals \(n^m \). (Suggestion: Use induction on \(m \).)

3. For \(n = 0, 1, 2, \ldots \) and \(k = 0, 1, \ldots, n \), the binomial coefficient \(\binom{n}{k} \) is defined by \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \). (Recall the convention \(0! = 1 \).)

 (a) Establish the identity \(\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \).

 (b) Prove the binomial theorem:

 \[
 (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k, \quad n = 1, 2, \ldots .
 \]