Problem Set 8 Solutions MATH 16B Spring 2016

21 April 2015

Exercise. Decide whether the following sums converge or diverge.

(a)

$$\sum_{n=1}^{\infty} \frac{1}{n^3 + n + 1}$$

(b)

$$\sum_{n=2}^{\infty} \frac{1}{n^2 \ln(n)}$$

Solution. (a) We compare this series to $\sum \frac{1}{n^3}$. Note that

$$0 \leq \frac{1}{n^3 + n + 1} \leq \frac{1}{n^3}$$

for all $n \ge 1$, and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges because it is a *p*-series with p = 3. By the comparison test, $\sum_{n=1}^{\infty} \frac{1}{n^3+n+1}$ converges also.

(b) We compare to $\sum \frac{1}{n^2}$. Note that

$$0 \le \frac{1}{n^2 \ln(n)} \le \frac{1}{n^2}$$

for all $n \ge 1$, and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges because it is a *p*-series with p = 2. By the comparison test, $\sum_{n=1}^{\infty} \frac{1}{n^2 \ln(n)}$ converges also.

Exercise. Compute the Taylor series of the following functions at x = 0. You may use the Taylor series $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ and $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$. (Hint: you may have to take a derivative for one of these). (a)

(b)

$$\frac{1}{(1+x)^2}$$

Solution. (a) The function xe^{x^2} can be made from e^x by replacing x by x^2 and then multiplying by x. Applying these manipulations to the Taylor series $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, we find that the Taylor series of xe^{x^2} is

$$xe^{x^2} = \sum_{n=0}^{\infty} x \frac{(x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}.$$

(b) The derivative of $\frac{1}{1-x}$ is $\frac{1}{(1-x)^2}$. We can get the function $\frac{1}{(1+x)^2}$ from this derivative by replacing *x* with -x. Taking the derivative and then replacing *x* by -x in the Taylor series $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, we find that the Taylor series of $\frac{1}{(1+x)^2}$ is

$$\frac{1}{(1+x)^2} = \sum_{n=0}^{\infty} n(-x)^{n-1} = \sum_{n=0}^{\infty} n(-1)^{n-1} x^{n-1}.$$

Exercise. Find the expected value, variance and standard deviation of the following discrete random variable.

Outcome 1 2 3 Probability $\frac{4}{9}$ $\frac{4}{9}$ $\frac{1}{9}$

Solution. The expected value is the sum of the outcomes weighted by their probability:

$$\frac{4}{9} \cdot 1 + \frac{4}{9} \cdot 2 + \frac{1}{9} \cdot 3 = \frac{5}{3}.$$

The variance is the sum of squared differences from the expected value, again weighted by probability:

$$\frac{4}{9}\left(1-\frac{5}{3}\right)^2 + \frac{4}{9}\left(2-\frac{5}{3}\right)^2 + \frac{1}{9}\left(3-\frac{5}{3}\right)^2 = \frac{4}{9}$$

The standard deviation is simply the square root of the variance:

$$\sqrt{\frac{4}{9}} = \frac{2}{3}.$$