Problem Set 8 Solutions
 MATH 16B Spring 2016

21 April 2015

Exercise. Decide whether the following sums converge or diverge.
(a)

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}+n+1}
$$

(b)

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2} \ln (n)}
$$

Solution. (a) We compare this series to $\sum \frac{1}{n^{3}}$. Note that

$$
0 \leq \frac{1}{n^{3}+n+1} \leq \frac{1}{n^{3}}
$$

for all $n \geq 1$, and $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges because it is a p-series with $p=3$. By the comparison test, $\sum_{n=1}^{\infty} \frac{1}{n^{3}+n+1}$ converges also.
(b) We compare to $\sum \frac{1}{n^{2}}$. Note that

$$
0 \leq \frac{1}{n^{2} \ln (n)} \leq \frac{1}{n^{2}}
$$

for all $n \geq 1$, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges because it is a p-series with $p=2$. By the comparison test, $\sum_{n=1}^{\infty} \frac{1}{n^{2} \ln (n)}$ converges also.

Exercise. Compute the Taylor series of the following functions at $x=0$. You may use the Taylor series $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ and $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$. (Hint: you may have to take a derivative for one of these).
(a)

$$
x e^{x^{2}}
$$

(b)

$$
\frac{1}{(1+x)^{2}}
$$

Solution. (a) The function $x e^{x^{2}}$ can be made from e^{x} by replacing x by x^{2} and then multiplying by x. Applying these manipulations to the Taylor series $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, we find that the Taylor series of $x e^{x^{2}}$ is

$$
x e^{x^{2}}=\sum_{n=0}^{\infty} x \frac{\left(x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{n!}
$$

(b) The derivative of $\frac{1}{1-x}$ is $\frac{1}{(1-x)^{2}}$. We can get the function $\frac{1}{(1+x)^{2}}$ from this derivative by replacing x with $-x$. Taking the derivative and then replacing x by $-x$ in the Taylor series $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, we find that the Taylor series of $\frac{1}{(1+x)^{2}}$ is

$$
\frac{1}{(1+x)^{2}}=\sum_{n=0}^{\infty} n(-x)^{n-1}=\sum_{n=0}^{\infty} n(-1)^{n-1} x^{n-1}
$$

Exercise. Find the expected value, variance and standard deviation of the following discrete random variable.
$\begin{array}{llll}\text { Outcome } & 1 & 2 & 3 \\ \text { Probability } & \frac{4}{9} & \frac{4}{9} & \frac{1}{9}\end{array}$
Solution. The expected value is the sum of the outcomes weighted by their probability:

$$
\frac{4}{9} \cdot 1+\frac{4}{9} \cdot 2+\frac{1}{9} \cdot 3=\frac{5}{3}
$$

The variance is the sum of squared differences from the expected value, again weighted by probability:

$$
\frac{4}{9}\left(1-\frac{5}{3}\right)^{2}+\frac{4}{9}\left(2-\frac{5}{3}\right)^{2}+\frac{1}{9}\left(3-\frac{5}{3}\right)^{2}=\frac{4}{9}
$$

The standard deviation is simply the square root of the variance:

$$
\sqrt{\frac{4}{9}}=\frac{2}{3}
$$

