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Decide whether the sum converges or diverges. If it is a convergent geometric series, find the
sum.

Exercise.
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Solution. We'll use the integral test. Note that f(x) = % is positive, decreasing, and continuous
for x > 1. Also
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Since the integral is convergent, the integral test tells us that the sum is convergent as well. O

Exercise.
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Solution. This is a geometric series with a = 52ﬁ andr = @ Since |r| < 1 this series is convergent,

and its sum is
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Exercise.
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Solution. We’ll use the integral test. Note that f(x) = W is positive, decreasing, and continu-
ous for x > 2. Also (using the substitution 1 = In(x) and du = 1dx),
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Thus the integral converges, and by the integral test the sum converges as well. O

Exercise.



Solution. This is a geometric series with a = 1 and r = % Since |r| < 1 this series converges, and

e
the sum is
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Exercise.
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Solution. We'll use the integral test. Let f(x) = 5x = x27*. Then
fl(x) =27 —xIn(2)27* = (1—xIn(2))277,

so f(x) is decreasing (and also positive and continuous) for x > 2. Also, using integration by
parts with

u=x, du = dx, V= — dv =2""dx

we find
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Thus the integral converges, and by the integral test the sum converges as well. O



