Problem Set 7 Solutions
 MATH 16B Spring 2016

14 April 2015

Decide whether the sum converges or diverges. If it is a convergent geometric series, find the sum.

Exercise.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

Solution. We'll use the integral test. Note that $f(x)=\frac{1}{x^{3}}$ is positive, decreasing, and continuous for $x \geq 1$. Also

$$
\int_{1}^{\infty} \frac{1}{x^{3}} d x=-\left.\frac{1}{2 x^{2}}\right|_{1} ^{\infty}=\lim _{a \rightarrow \infty}-\frac{1}{2 a^{2}}+\frac{1}{2}=\frac{1}{2}
$$

Since the integral is convergent, the integral test tells us that the sum is convergent as well.

Exercise.

$$
\sum_{n=1}^{\infty} \frac{5 \cdot 3^{n / 2}}{2^{n}}
$$

Solution. This is a geometric series with $a=\frac{5 \sqrt{3}}{2}$ and $r=\frac{\sqrt{3}}{2}$. Since $|r|<1$ this series is convergent, and its sum is

$$
\frac{5 \sqrt{3}}{2} \frac{1}{1-\frac{\sqrt{3}}{2}}=\frac{5 \sqrt{3}}{2-\sqrt{3}} .
$$

Exercise.

$$
\sum_{n=2}^{\infty} \frac{1}{n \ln (n)^{2}}
$$

Solution. We'll use the integral test. Note that $f(x)=\frac{1}{x \ln (x)^{2}}$ is positive, decreasing, and continuous for $x \geq 2$. Also (using the substitution $u=\ln (x)$ and $d u=\frac{1}{x} d x$),

$$
\int_{2}^{\infty} \frac{1}{x \ln (x)^{2}} d x=\int_{x=2}^{x=\infty} \frac{1}{u^{2}} d u=-\left.\frac{1}{u}\right|_{x=2} ^{x=\infty}=-\left.\frac{1}{\ln (x)}\right|_{2} ^{\infty}=\lim _{a \rightarrow \infty}-\frac{1}{\ln (a)}+\frac{1}{\ln (2)}=\frac{1}{\ln (2)} .
$$

Thus the integral converges, and by the integral test the sum converges as well.

Exercise.

$$
\sum_{n=1}^{\infty} e^{-n}
$$

Solution. This is a geometric series with $a=\frac{1}{e}$ and $r=\frac{1}{e}$. Since $|r|<1$ this series converges, and the sum is

$$
\frac{1 / e}{1-1 / e}=\frac{1}{e-1} .
$$

Exercise.

$$
\sum_{n=1}^{\infty} \frac{n}{2^{n}}
$$

Solution. We'll use the integral test. Let $f(x)=\frac{x}{2^{x}}=x 2^{-x}$. Then

$$
f^{\prime}(x)=2^{-x}-x \ln (2) 2^{-x}=(1-x \ln (2)) 2^{-x},
$$

so $f(x)$ is decreasing (and also positive and continuous) for $x \geq 2$. Also, using integration by parts with

$$
u=x, \quad d u=d x, \quad v=-\frac{2^{-x}}{\ln (2)}, \quad d v=2^{-x} d x
$$

we find

$$
\begin{aligned}
\int_{2}^{\infty} x 2^{-x} d x & =-\left.\frac{x 2^{-x}}{\ln (2)}\right|_{2} ^{\infty}+\int_{2}^{\infty} \frac{2^{-x}}{\ln (2)} d x \\
& =\left[-\frac{x 2^{-x}}{\ln (2)}-\frac{2^{-x}}{\ln (2)^{2}}\right]_{2}^{\infty} \\
& =\lim _{a \rightarrow \infty}\left(-\frac{a}{2^{a} \ln (2)}-\frac{1}{2^{a} \ln (2)^{2}}\right)-\left(-\frac{1}{2 \ln (2)}-\frac{1}{4 \ln (2)^{2}}\right) \\
& =\frac{1}{2 \ln (2)}+\frac{1}{4 \ln (2)^{2}} .
\end{aligned}
$$

Thus the integral converges, and by the integral test the sum converges as well.

