Problem Set 6 Solutions MATH 16B Spring 2016

7 April 2015

Exercise. Find the $3^{\text {rd }}$ order Taylor poynomial of $f(x)=\sqrt{x}$ at $x=1$. Use it to approximate $\sqrt{2}$, and give a bound for the error in this approximation.

Solution. The first three derivatives of $f(x)=\sqrt{x}$ are

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}, \quad f^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2}, \quad f^{\prime \prime \prime}(x)=\frac{3}{8} x^{-5 / 2}
$$

and evaluating these at $x=1$ where we're setting the Taylor polynomial,

$$
f^{\prime}(1)=\frac{1}{2}, \quad f^{\prime \prime}(1)=-\frac{1}{4}, \quad f^{\prime \prime \prime}(1)=\frac{3}{8} .
$$

So the third order Taylor polynomial is
$p_{3}(x)=f(1)+\frac{f^{\prime}(1)}{1!}(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\frac{f^{\prime \prime \prime}(1)}{3!}(x-1)^{3}=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3}$.
We can use this to estimate $\sqrt{2}$; namely, our estimate is

$$
p_{3}(2)=1+\frac{1}{2}-\frac{1}{8}+\frac{1}{16}=23 / 16 .
$$

To find a bound for the error we use the remainder formula. The main idea is to find a bound for the absolute value of the $4^{\text {th }}$ derivative

$$
f^{(4)}(x)=-\frac{15}{16} x^{-7 / 2}
$$

on the interval from 1 to 2 . Since $-\frac{15}{16} x^{-7 / 2}$ is decreasing in absolute value as x increases from 1 to 2 , the maximum absolute value occurs at 1 , where the value is $-\frac{15}{16}$. Thus

$$
\left|f^{(4)}(x)\right|=\left|-\frac{15}{16} x^{-7 / 2}\right| \leq \frac{15}{16}
$$

for x between 1 and 2 . Now using the remainder formula, with $M=\frac{15}{16}$, we find

$$
\left|\sqrt{2}-\frac{23}{16}\right| \leq \frac{15}{16} \frac{1}{4!}|2-1|^{4}=\frac{5}{128} .
$$

That is, the error in our approximation is at most $\frac{5}{128}$.

Exercise. Find a formula for the $n^{\text {th }}$ order Taylor polynomial of e^{x} at $x=0$.
Solution. The $n^{\text {th }}$ derivative of $f(x)=e^{x}$ is e^{x} for any n, and evaluating at $x=0$ we find $f^{(n)}(0)=$ $e^{0}=1$ for all n. Thus the $n^{\text {th }}$ order Taylor polynomial of e^{x} at $x=0$ is

$$
p_{n}(x)=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(x)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}
$$

Exercise (11.3.5, 11.3.11). Decide whether the sum converges or diverges, and find the value if it converges.

- $2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\frac{2}{81} \cdots$
- $\frac{2}{5^{4}}-\frac{2^{4}}{5^{5}}+\frac{2^{7}}{5^{6}}-\frac{2^{10}}{5^{7}}+\cdots$

Solution. The first is a geometric series with $a=2$ and $r=\frac{1}{3}$. Since $|r|<1$ this series converges, and the sum is

$$
\frac{a}{1-r}=\frac{2}{1-\frac{1}{3}}=3
$$

The second is a geometric series with $a=\frac{2}{5^{4}}$ and $r=-\frac{2^{3}}{5}$. Since $|r| \geq 1$ this series diverges.

