# Problem Set 4 Solutions <br> MATH 16B Spring 2016 

## 3 March 2015

Exercise (9.2.16). Evaluate

$$
\int x^{5} \ln (x) d x
$$

Solution. This would be easier to integrate if we could change $\ln (x)$ to $\frac{1}{x}$ by differentiating it. In fact we can do this using integration by parts. Choose

$$
u=\ln x, \quad d u=\frac{1}{x} d x, \quad v=\frac{x^{6}}{6}, \quad d v=x^{5} d x
$$

Then integration by parts tells us

$$
\begin{aligned}
\int x^{5} \ln (x) d x & =\frac{x^{6}}{6} \ln x-\int \frac{x^{6}}{6} \cdot \frac{1}{x} d x \\
& =\frac{x^{6}}{6} \ln x-\int \frac{x^{5}}{6} d x \\
& =\frac{x^{6}}{6} \ln x-\frac{x^{6}}{36}+c .
\end{aligned}
$$

Exercise (9.1.12). Evaluate

$$
\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x
$$

Solution. Observe that $\sqrt{x}$ and its (nearly) derivative $\frac{1}{\sqrt{x}}$ both appear, so we use the substitution $u=\sqrt{x}$. Then $2 d u=\frac{1}{\sqrt{x}} d x$, so

$$
\begin{aligned}
\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x & =\int 2 e^{u} d u \\
& =2 e^{u}+c \\
& =2 e^{\sqrt{x}}+c
\end{aligned}
$$

Exercise (9.1.25). Evaluate

$$
\int \frac{1}{x \ln \left(x^{2}\right)} d x
$$

Solution. The derivative of $\ln \left(x^{2}\right)$ is $\frac{1}{x^{2}} \cdot 2 x=\frac{2}{x}$, so we can use the substitution $u=\ln \left(x^{2}\right)$. Then $\frac{1}{2} d u=\frac{1}{x} d x$, so

$$
\begin{aligned}
\int \frac{1}{x \ln \left(x^{2}\right)} d x & =\int \frac{1}{2} \cdot \frac{1}{u} d u \\
& =\frac{1}{2} \ln (u)+c \\
& =\frac{1}{2} \ln \left(\ln \left(x^{2}\right)\right)+c .
\end{aligned}
$$

Exercise (9.2.6). Evaluate

$$
\int x^{2} e^{x} d x
$$

Solution. We could integrate this if only the $x^{2}$ were gone, and we can disappear it by integrating by parts twice. Set

$$
u=x^{2}, \quad d u=2 x d x, \quad v=e^{x}, \quad d v=e^{x} d x
$$

Then integration by parts tells us

$$
\int x^{2} e^{x} d x=x^{2} e^{x}-\int 2 x e^{x} d x
$$

Now set

$$
u=2 x, \quad d u=2 d x, \quad v=e^{x}, \quad d v=e^{x} d x
$$

and integrating by parts again gives

$$
\begin{aligned}
x^{2} e^{x}-\int 2 x e^{x} d x & =x^{2} e^{x}-2 x e^{x}+\int 2 e^{x} d x \\
& =x^{2} e^{x}-2 x e^{x}+2 e^{x}+c
\end{aligned}
$$

Exercise (9.1.42). Evaluate

$$
\int(1+\ln x) \sin (x \ln x) d x
$$

(There is a hint for this exercise in the book).
Solution. The derivative of $x \ln x$ is $x \cdot \frac{1}{x}+\ln x=1+\ln x$, so we can use the substitution $u=x \ln x$. Then $d u=(1+\ln x) d x$, so

$$
\begin{aligned}
\int(1+\ln x) \sin (x \ln x) d x & =\int \sin u d x \\
& =-\cos u+c \\
& =-\cos (x \ln x)+c
\end{aligned}
$$

Exercise (9.2.39). Evaluate

$$
\int \frac{x e^{x}}{(x+1)^{2}} d x
$$

(There is a hint for this exercise in the book).
Solution. We'll use integration by parts. Set

$$
u=x e^{x}, \quad d u=x e^{x}+e^{x}=(x+1) e^{x}, \quad v=\frac{-1}{x+1}, \quad d v=\frac{1}{(x+1)^{2}} d x
$$

Then integration by parts tells us

$$
\begin{aligned}
\int \frac{x e^{x}}{(x+1)^{2}} d x & =-\frac{x e^{x}}{x+1}-\int(x+1) e^{x} \cdot \frac{-1}{x+1} d x \\
& =-\frac{x e^{x}}{x+1}+\int e^{x} d x \\
& =-\frac{x e^{x}}{x+1}+e^{x}+c \\
& \left(=\frac{e^{x}}{x+1}+c\right)
\end{aligned}
$$

