Problem Set 3 Solutions
 MATH 16B Spring 2016

18 February 2015

Exercise (7.6.4). Calculate

$$
\int_{0}^{1} \int_{-1}^{2} \frac{y^{3}}{3} d y d x
$$

Solution. Using the power rule a couple times, we find

$$
\begin{aligned}
\int_{0}^{1} \int_{-1}^{2} \frac{y^{3}}{3} d y d x & =\int_{0}^{1}\left[\frac{y^{4}}{12}\right]_{y=-1}^{2} d x \\
& =\int_{0}^{1} \frac{5}{4} d x \\
& =\left[\frac{5}{4} x\right]_{x=0}^{1} \\
& =\frac{5}{4}
\end{aligned}
$$

Exercise (7.6.8). Calculate

$$
\int_{0}^{1} \int_{0}^{x} e^{x+y} d y d x
$$

Solution. Recall the rule $\int e^{a x+b} d x=\frac{1}{a} e^{a x+b}$. Using this rule,

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{x} e^{x+y} d y d x & =\int_{0}^{1}\left[e^{x+y}\right]_{y=0}^{x} d x \\
& =\int_{0}^{1} e^{2 x}-e^{x} d x \\
& =\left[\frac{1}{2} e^{2 x}-e^{x}\right]_{x=0}^{1} \\
& =\frac{1}{2} e^{2}-e+\frac{1}{2}
\end{aligned}
$$

Exercise (7.6.14). Find the volume of the region bounded above by $f(x, y)=x^{2}+y^{2}$ and lying over the region R bounded by the curves

$$
x=0, \quad x=1, \quad y=0, \quad y=\sqrt[3]{x}
$$

Solution. Since one of the boundary curves gives y as a function of x let's integrate y first. From thinking or drawing a picture we see that $y=0$ is the lower bound and $y=\sqrt[3]{x}$ is the upper bound. Then range of x-values over which we want to integrate is $x=0$ to $x=1$. The result is

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{\sqrt[3]{x}} x^{2}+y^{2} d y d x & =\int_{0}^{1}\left[x^{2} y+\frac{y^{3}}{3}\right]_{y=0}^{\sqrt[3]{x}} d x \\
& =\int_{0}^{1} x^{7 / 3}+\frac{x}{3} d x \\
& =\left[\frac{3}{10} x^{10 / 3}+\frac{x^{2}}{6}\right]_{x=0}^{1} \\
& =\frac{7}{15}
\end{aligned}
$$

Exercise. Let R be the region bounded by the curves

$$
y=1, \quad y=4, \quad y=x^{2}
$$

Calculate

$$
\iint_{R} x^{2}+y d x d y
$$

Solution. Let's integrate with respect to x first, because there's sort of "three lower bounds" in the y-direction (first $y=x^{2}$, then $y=1$, then $y=x^{2}$ again) and we don't want to deal with that. The left bound for x is $-\sqrt{y}$ and the right bound is \sqrt{y}; the y-bounds are then just 1 and 4 . So we get

$$
\begin{aligned}
\int_{1}^{4} \int_{-\sqrt{y}}^{\sqrt{y}} x^{2}+y d x d y & =\int_{1}^{4}\left[\frac{x^{3}}{3}+x y\right]_{x=-\sqrt{y}}^{\sqrt{y}} d y \\
& =\int_{1}^{4} \frac{8}{3} y^{3 / 2} d y \\
& =\left[\frac{16}{15} y^{5 / 2}\right]_{y=1}^{4} \\
& =\frac{16}{15} 2^{5}-\frac{16}{15} \\
& =\frac{496}{15} \text { (if you want to simplify it). }
\end{aligned}
$$

