Problem Set 1 Solutions
 MATH 16B Spring 2016

4 February 2015

Exercise (7.1.5). Let $f(x, y)=x y$. Show that $f(2+h, 3)-f(2,3)=3 h$.
Solution. Just by plugging in,

$$
f(2+h, 3)-f(2,3)=(2+h)(3)-(2)(3)=6+3 h-6=3 h
$$

Exercise (7.2.20). Let $f(x, y)=\left(x+y^{2}\right)^{3}$. Evaluate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(x, y)=(1,2)$.
Solution. Using the chain rule,

$$
\frac{\partial f}{\partial x}=3\left(x+y^{2}\right)^{2}
$$

and

$$
\frac{\partial f}{\partial y}=3\left(x+y^{2}\right)^{2} \cdot 2 y .
$$

Plugging in $(x, y)=(1,2)$, we find

$$
\frac{\partial f}{\partial x}=3\left(1+2^{2}\right)^{2}=75 \quad \text { and } \quad \frac{\partial f}{\partial y}=3\left(1+2^{2}\right)^{2} \cdot 2 \cdot 2=300
$$

Exercise (7.2.24). Let $f(x, y)=x e^{y}+x^{4} y+y^{3}$. Find $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}, \frac{\partial^{2} f}{\partial x \partial y}$, and $\frac{\partial^{2} f}{\partial y \partial x}$.
Solution. First we compute

$$
\frac{\partial f}{\partial x}=e^{y}+4 x^{3} y
$$

and

$$
\frac{\partial f}{\partial y}=x e^{y}+x^{4}+3 y^{2}
$$

The second partial derivatives are just appropriate partial derivatives of these, and we find

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x^{2}}=12 x^{2} y, \\
\frac{\partial^{2} f}{\partial y^{2}}=x e^{y}+6 y, \\
\frac{\partial^{2} f}{\partial x \partial y}=e^{y}+4 x^{3}, \\
\frac{\partial^{2} f}{\partial y \partial x}=e^{y}+4 x^{3} .
\end{gathered}
$$

Exercise (7.3.7). Find all points (x, y) where $f(x, y)=\frac{1}{3} x^{3}-2 y^{3}-5 x+6 y-5$ has a possible relative maximum or minimum.

Solution. By the first derivative test, $f(x, y)$ can only have a maximum or minimum where both $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial y}=0$. First we compute the first derivatives:

$$
\frac{\partial f}{\partial x}=x^{2}-5 \quad \text { and } \quad \frac{\partial f}{\partial y}=-6 y+6
$$

Setting these equal to zero we get a system of equations

$$
\begin{array}{r}
x^{2}-5=0 \\
-6 y+6=0
\end{array}
$$

Solving this system gives two points $(\sqrt{5}, 1)$ and $(-\sqrt{5}, 1)$. These two points are the only possible locations for a maximum or minimum of $f(x, y)$.

Exercise (7.3.23). Find all points (x, y) where $f(x, y)=x^{3}-y^{2}-3 x+4 y$ has a possible relative maximum or minimum. Then use the second derivative test at each point to determine, if possible, whether f has a maximum, minimum, or neither.

Solution. The first derivatives are

$$
\frac{\partial f}{\partial x}=3 x^{2}-3 \quad \text { and } \quad \frac{\partial f}{\partial y}=-2 y+4
$$

Setting them equal to zero gives the system of equations

$$
\begin{array}{r}
3 x^{2}-3=0 \\
-2 y+4=0
\end{array}
$$

whose solutions are the points $(1,2)$ and $(-1,2)$. By the first derivative test, these are the points we need to check for maxima and minima.

The second derivatives are

$$
\frac{\partial^{2} f}{\partial x^{2}}=6 x, \quad \frac{\partial^{2} f}{\partial x \partial y}=0, \quad \frac{\partial^{2} f}{\partial y^{2}}=-2
$$

So

$$
D=\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}=-12 x
$$

At $(x, y)=(1,2)$ we find $D=-12<0$, so by the second derivative test $(1,2)$ is neither a max nor a min.

At $(x, y)=(-1,2)$ we find $D=12>0$ and $\frac{\partial^{2} f}{\partial x^{2}}=-6<0$, so by the second derivative test $(-1,2)$ is a max.

