Midterm 2 Review Solutions
 MATH 16B Spring 2016

Exercise 1. Compute

$$
\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x \quad \text { and } \quad \int_{0}^{\pi} x^{2} \sin x d x
$$

Solution. For the first we use substitution, and for the second we use integration by parts.
The substitution in the first is $u=x^{2}$, so $d u=2 x d x$. When $x=0$ we have $u=0$, and when $x=\sqrt{\pi}$ we have $u=\pi$. Thus

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x & =\frac{1}{2} \int_{0}^{\pi} \sin u d u \\
& =\left[-\frac{1}{2} \cos u\right]_{0}^{\pi} \\
& =-\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1 \\
& =1
\end{aligned}
$$

For the second we must integrate by parts twice. Both times we set u to be the x term outside the trig function, and set $d v$ to be the rest. So the first will be

$$
u=x^{2}, \quad d u=2 x d x, \quad v=-\cos x, \quad d v=\sin x d x
$$

(the second I won't spell out). Using this, we find

$$
\begin{aligned}
\int_{0}^{\pi} x^{2} \sin x d x & =\left[-x^{2} \cos x\right]_{0}^{\pi}+\int_{0}^{\pi} 2 x \cos x d x \\
& =\left[-x^{2} \cos x\right]_{0}^{\pi}+[2 x \sin x]_{0}^{\pi}-\int_{0}^{\pi} 2 \sin x d x \\
& =\left[-x^{2} \cos x\right]_{0}^{\pi}+[2 x \sin x]_{0}^{\pi}-[-2 \cos x]_{0}^{\pi} \\
& =\pi^{2}-4
\end{aligned}
$$

Exercise 2. Find all solutions to the differential equation

$$
y^{\prime}=-(y+1)^{2}(t+1)
$$

(including possibly constant solutions).

Solution. For this differential equation we can use separation of variables.

$$
\begin{aligned}
y^{\prime} & =-(y+1)^{2}(t+1) \\
\frac{1}{(y+1)^{2}} \frac{d y}{d t} & =-t-1 \\
\int \frac{1}{(y+1)^{2}} d y & =\int-t-1 d t \\
-\frac{1}{y+1} & =-\frac{1}{2} t^{2}-t+c \\
y+1 & =\frac{1}{\frac{1}{2} t^{2}+t+c} \\
y & =\frac{1}{\frac{1}{2} t^{2}+t+c}-1
\end{aligned}
$$

This general solution doesn't produce any constant solutions, so we should check for those as well. If we have a constant solution then the left hand side (i.e. y^{\prime}) of our differential equation will be 0 , so the right hand side must be 0 as well, and to get this we can set $y=-1$. So $y=-1$ is a constant solution.

Exercise 3. Compute

$$
\int(\ln x)^{2} d x
$$

Solution. We should use integration by parts (twice) to get rid of the log by differentiating it. For the first integration by parts, set

$$
u=(\ln x)^{2}, \quad d u=\frac{2}{x} \ln x, \quad v=x, \quad d v=d x
$$

(I won't spell out the second one). Now using integration by parts we find

$$
\begin{aligned}
\int(\ln x)^{2} d x & =x(\ln x)^{2}-\int 2 \ln x d x \\
& =x(\ln x)^{2}-2 x \ln x+\int 2 d x \\
& =x(\ln x)^{2}-2 x \ln x+2 x
\end{aligned}
$$

Exercise 4. Compute

$$
\int x\left(3 x^{2}+1\right)^{5} d x
$$

Solution. This is just a polynomial, so we can integrate it straight up, but it'd be easier to use substitution (to avoid expanding out the fifth power). Set $u=3 x^{2}+1$, so $d u=6 x d x$. We find

$$
\begin{aligned}
\int x\left(3 x^{2}+1\right)^{5} d x & =\frac{1}{6} \int u^{5} d u \\
& =\frac{1}{36} u^{6}+c \\
& =\frac{1}{36}\left(3 x^{2}+1\right)^{6}+c .
\end{aligned}
$$

Exercise 5. Solve the following initial value problem.

$$
y^{\prime}+2 y \cos (2 t)=2 \cos 2 t, \quad y(\pi / 2)=0
$$

Solution. We can use either separation of variables or integrating factors for this differential equation, but let's use integrating factors.

This is a first-order linear differential equation (i.e. $\left.y^{\prime}+a(t) y=b(t)\right)$ with

$$
a(t)=2 \cos 2 t, \quad b(t)=2 \cos 2 t
$$

An antiderivative of $a(t)$ is $A(t)=\sin 2 t$. The integrating factors method tells us a general solution is given by

$$
y=e^{-A(t)}\left[\int e^{A(t)} b(t) d t+c\right]
$$

so in this case,

$$
\begin{aligned}
y & =e^{-\sin 2 t}\left[\int e^{\sin 2 t} 2 \cos 2 t d t+c\right] \\
& =e^{-\sin 2 t}\left[\int e^{u} d u+c\right] \\
& =e^{-\sin 2 t}\left[e^{u}+c\right] \\
& =e^{-\sin 2 t}\left[e^{\sin 2 t}+c\right] \\
& =1+c e^{-\sin 2 t}
\end{aligned}
$$

(where we've computed the integral using the substitution $u=\sin 2 t$).
We also want $y(\pi / 2)=0$, so plugging $t=\pi / 2$ and $y=0$ into our general solution we find

$$
0=1+c e^{0}
$$

and so $c=-1$. Thus the solution to the initial value problem is

$$
y=1-e^{-\sin 2 t}
$$

Exercise 6. Compute

$$
\int \tan 2 x d x
$$

Solution. To compute this integral we first rewrite it as

$$
\int \frac{\sin 2 x}{\cos 2 x} d x
$$

Now we can use substitution with $u=\cos 2 x$ and $d u=-2 \sin 2 x d x$ to get

$$
\begin{aligned}
\int \frac{\sin 2 x}{\cos 2 x} d x & =-\frac{1}{2} \int \frac{1}{u} d u \\
& =-\frac{1}{2} \ln u+c \\
& =-\frac{1}{2} \ln (\cos 2 x)+c
\end{aligned}
$$

Exercise 7. Compute

$$
\int_{-\infty}^{0} e^{4 x} d x
$$

Solution. First we write the improper integral as a limit, and then evaluate the integral with proper bounds, and finally evaluate the limit.

$$
\begin{aligned}
\int_{-\infty}^{0} e^{4 x} d x & =\lim _{a \rightarrow \infty} \int_{-a}^{0} e^{4 x} d x \\
& =\lim _{a \rightarrow \infty}\left[\frac{1}{4} e^{4 x}\right]_{-a}^{0} \\
& =\lim _{a \rightarrow \infty} \frac{1}{4}-\frac{1}{4} e^{-4 a} \\
& =\frac{1}{4}
\end{aligned}
$$

Exercise 8. Solve the following initial value problem.

$$
y^{\prime}+2 y=1, \quad y(0)=1
$$

Solution. We could use separation of variables or integrating factors, but let's use integrating factors. This is a first-order linear differential equation (i.e. $y^{\prime}+a(t) y=b(t)$) with

$$
a(t)=2, \quad b(t)=1
$$

An antiderivative of $a(t)$ is $A(t)=2 t$. The integrating factors method tells us a general solution is given by

$$
y=e^{-A(t)}\left[\int e^{A(t)} b(t) d t+c\right]
$$

so in this case,

$$
\begin{aligned}
y & =e^{-2 t}\left[\int e^{2 t} d t+c\right] \\
& =e^{-2 t}\left[\frac{1}{2} e^{2 t}+c\right] \\
& =\frac{1}{2}+c e^{-2 t}
\end{aligned}
$$

We also want $y(0)=1$, so plugging $t=0$ and $y=1$ into this equation we find

$$
1=\frac{1}{2}+c e^{0}
$$

so $c=\frac{1}{2}$. Thus the solution to the initial value problem is

$$
y=\frac{1}{2}+\frac{1}{2} e^{-2 t}
$$

Exercise 9. Compute

$$
\int_{0}^{\infty} x e^{-x^{2}} d x
$$

Solution. First we write the improper integral as a limit, and then evaluate the integral with proper bounds, and finally evaluate the limit.

$$
\begin{aligned}
\int_{0}^{\infty} x e^{-x^{2}} d x & =\lim _{a \rightarrow \infty} \int_{0}^{a} x e^{-x^{2}} d x \\
& =\lim _{a \rightarrow \infty} \int_{x=0}^{x=a}-\frac{1}{2} e^{u} d u \\
& =\lim _{a \rightarrow \infty}-\left.\frac{1}{2} e^{u}\right|_{x=0} ^{x=a} \\
& =\lim _{a \rightarrow \infty}-\left.\frac{1}{2} e^{-x^{2}}\right|_{x=0} ^{x=a} \\
& =\lim _{a \rightarrow \infty}-\frac{1}{2} e^{-a^{2}}+\frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

(where we evaluated the integral using the substitution $u=-x^{2}$).
Exercise 10. Solve the following initial value problem.

$$
y^{\prime}=\frac{\ln x}{\sqrt{x y}}, \quad y(1)=4
$$

Solution. We use separation of variables.

$$
\begin{aligned}
y^{\prime} & =\frac{\ln x}{\sqrt{x y}} \\
\sqrt{y} \frac{d y}{d t} & =\frac{\ln x}{\sqrt{x}} \\
\int \sqrt{y} d y & =\int \frac{\ln x}{\sqrt{x}} d t \\
\frac{2}{3} y^{3 / 2} & =2 \sqrt{x} \ln x-\int \frac{2}{\sqrt{x}} d x \\
\frac{2}{3} y^{3 / 2} & =2 \sqrt{x} \ln x+4 \sqrt{x}+c \\
y^{3 / 2} & =3 \sqrt{x} \ln x+6 \sqrt{x}+c \\
y & =(3 \sqrt{x} \ln x+6 \sqrt{x}+c)^{2 / 3}
\end{aligned}
$$

(where we evaluated the integral using integration by parts with $u=\ln x$ and $d v=\frac{1}{\sqrt{x}} d x$).
We also want $y(1)=4$, so plugging in $x=1$ and $y=4$

$$
4=(3 \ln 1+6+c)^{2 / 3}
$$

we find $c=2$. Thus the solution to the initial value problem is

$$
y=(3 \sqrt{x} \ln x+6 \sqrt{x}+2)^{2 / 3}
$$

