Midterm 1 Review Solutions MATH 16B Spring 2016

Exercise 1. Compute

$$
\int_{2}^{5} \int_{0}^{1} 9 x^{2} y^{2} d y d x
$$

Solution. Using the power rule,

$$
\begin{aligned}
\int_{2}^{5} \int_{0}^{1} 9 x^{2} y^{2} d y d x & =\int_{2}^{5}\left[3 x^{2} y^{3}\right]_{y=0}^{1} d x \\
& =\int_{2}^{5} 3 x^{2} d x \\
& =\left[x^{3}\right]_{x=2}^{5} \\
& =117
\end{aligned}
$$

Exercise 2. Let D be the region of the x, y-plane where x and y are greater than or equal to zero and their sum is at most 3 . Find the volume of the solid bounded above by $f(x, y)=e^{x}$ and lying over D.

Solution. The lines bounding D are $x=0, y=0$, and $x+y=3$. Integrating with respect to x first (no reason really to choose x over y), our limits should be $x=0$ below and $x=-y+3$ above; then the y values should range from 0 to 3 . Thus the desired volume is

$$
\begin{aligned}
\int_{0}^{3} \int_{0}^{-y+3} e^{x} d x d y & =\int_{0}^{3}\left[e^{x}\right]_{x=0}^{-y+3} d y \\
& =\int_{0}^{3} e^{-y+3}-1 d y \\
& =\left[-e^{-y+3}-y\right]_{y=0}^{3} \\
& =-4+e^{3}
\end{aligned}
$$

Exercise 3. Find the maximum value of

$$
h(x, y)=x+2 y-x^{2}+x y-y^{2}
$$

(Note that this asks for the maximum value, not the location where the maximum occurs).

Solution. Applying the first derivative test,

$$
\frac{\partial h}{\partial x}=1-2 x+y=0, \quad \frac{\partial h}{\partial y}=2+x-2 y=0 .
$$

The first equation tells us $y=2 x-1$; plugging this into the second equation gives $x=\frac{4}{3}$, so $y=\frac{5}{3}$. Thus the only point to check is $\left(\frac{4}{3}, \frac{5}{3}\right)$.

Now the second derivative test: we compute

$$
\frac{\partial^{2} h}{\partial x^{2}}=-2, \quad \frac{\partial^{2} h}{\partial x \partial y}=1, \quad \frac{\partial^{2} h}{\partial y^{2}}=-2, \quad D=3 .
$$

Since $D>0$ and $\frac{\partial^{2} h}{\partial x^{2}}<0$, this point is indeed a maximum. The value at this point is $h\left(\frac{4}{3}, \frac{5}{2}\right)=\frac{7}{3}$, so $\frac{7}{3}$ is the maximum value of h.
Exercise 4. Compute $\frac{\partial^{2} g}{\partial x \partial y}$ and $\frac{\partial^{2} g}{\partial y \partial x}$ for

$$
g(x, y)=x^{y}
$$

and observe that they are equal.
Solution. If we're differentiating with respect to x (the base) we use the power rule, and if we're differentiating with respect to y (the exponent) we use the exponent rule. If we do x first,

$$
\frac{\partial^{2}}{\partial y \partial x} x^{y}=\frac{\partial}{\partial y} y x^{y-1}=x^{y-1}+y \ln (x) x^{y-1},
$$

and if we do y first,

$$
\frac{\partial^{2}}{\partial x \partial y} x^{y}=\frac{\partial}{\partial x} \ln (x) x^{y}=\frac{1}{x} x^{y}+\ln (x) y x^{y-1},
$$

and after rearranging slightly we are happy to see that these are the same.
Exercise 5. Maximize

$$
f(x, y, z)=3 x-3 y-8 z-2 x^{2}+x y-z^{2}
$$

with respect to the constraint

$$
g(x, y, z)=-x+y+3 z=-1 .
$$

Solution. Using Lagrange multipliers, we define the function

$$
F(x, y, z, \lambda)=3 x-3 y-8 z-2 x^{2}+x y-z^{2}+\lambda(-x+y+3 z+1)
$$

(note we multiply λ by $-x+y+3 z+1$ because our constraint is $-x+y+3 z+1=0$). Now we compute the first derivatives of F and find where they are all zero:

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=3-4 x+y-\lambda=0 \\
& \frac{\partial F}{\partial y}=-3+x+\lambda=0 \\
& \frac{\partial F}{\partial z}=-8-2 z+3 \lambda=0 \\
& \frac{\partial F}{\partial \lambda}=-x+y+3 z+1=0
\end{aligned}
$$

Solving this system of equations we find $x=1, y=3, z=-1$. Thus the maximum occurs at $(1,3,-1)$, and the maximum value is $f(1,3,-1)=2$.

Exercise 6. Compute

$$
\int_{0}^{\pi / 4} \int_{x}^{2 x} \cos y d y d x
$$

Solution. Recall that $\int \cos x d x=\sin x$ and $\int \sin x d x=-\cos x$. So

$$
\begin{aligned}
\int_{0}^{\pi / 4} \int_{x}^{2 x} \cos y d y d x & =\int_{0}^{\pi / 4}[\sin y]_{y=x}^{2 x} d x \\
& =\int_{0}^{\pi / 4} \sin (2 x)-\sin (x) d x \\
& =\left[-\frac{1}{2} \cos (2 x)+\cos (x)\right]_{x=0}^{\pi / 4} \\
& =\left(-\frac{1}{2} \cos (\pi / 2)+\cos (\pi / 4)\right)-\left(-\frac{1}{2} \cos (0)+\cos (0)\right) \\
& =\frac{\sqrt{2}}{2}-\frac{1}{2}
\end{aligned}
$$

Exercise 7. State precisely the first and second derivative tests for functions of two variables.
Solution. The first derivative test for a function $f(x, y)$ of two variables says that if (a, b) is a maximum or minimum for f then $\frac{\partial f}{\partial x}(a, b)=0$ and $\frac{\partial f}{\partial y}(a, b)=0$.

The second derivative test for a function $f(x, y)$ of two variables is as follows. Let

$$
D(x, y)=\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}
$$

If (a, b) is a point with $\frac{\partial f}{\partial x}(a, b)=0$ and $\frac{\partial f}{\partial y}(a, b)=0$, then

- if $D(a, b)>0$ and $\frac{\partial^{2} f}{\partial x^{2}}(a, b)>0$ then (a, b) is a minimum;
- if $D(a, b)>0$ and $\frac{\partial^{2} f}{\partial x^{2}}(a, b)<0$ then (a, b) is a maximum;
- if $D(a, b)<0$ then (a, b) is neither a maximum nor minimum; and
- if $D(a, b)=0$ then the test is inconclusive.

Exercise 8. Find all maxima and minima of

$$
f(x, y)=2 x^{2}-x^{4}-y^{2}
$$

Solution. The first derivative test:

$$
\frac{\partial f}{\partial x}=4 x-4 x^{3}=0, \quad \frac{\partial f}{\partial y}=-2 y=0
$$

The first equation factors as $-4 x(x+1)(x-1)$, so it has three solutions $x=0,-1,1$. The second equation has one solution $y=0$. So we need to check the points $(0,0),(-1,0)$, and $(1,0)$.

The second derivative test prep is:

$$
\frac{\partial^{2} f}{\partial x^{2}}=4-12 x^{2}, \quad \frac{\partial^{2} f}{\partial x \partial y}=0, \quad \frac{\partial^{2} f}{\partial y^{2}}=-2, \quad D=-8+24 x^{2}
$$

At $(0,0): D<0$, so neither a max nor min.
At $(-1,0): D>0$ and $\frac{\partial^{2} f}{\partial x^{2}}<0$, so this is a max,
At $(1,0): D>0$ and $\frac{\partial^{2} f}{\partial x^{2}}<0$, so this is a max as well.
Exercise 9. Find all possible points where

$$
g(x, y, z)=3 x+3 y-z-x^{2}+x y-y^{2}-z^{2}
$$

could have a maximum.
Solution. We use the first derivative test.

$$
\frac{\partial g}{\partial x}=3-2 x+y=0, \quad \frac{\partial g}{\partial y}=3+x-2 y, \quad \frac{\partial g}{\partial z}=-1-2 z=0
$$

The first two $\frac{\partial g}{\partial x}$ and $\frac{\partial g}{\partial y}$ give a system of two equations in the two variables x, y, and solving gives $x=3$ and $y=3$. The last equation gives $z=-\frac{1}{2}$. Thus $\left(3,3,-\frac{1}{2}\right)$ is the only point where g could have a maximum.

Exercise 10. Compute all first and second partial derivatives of

$$
f(x, y)=\sin x \sin y+\cos 2 x y
$$

Solution. Remembering the chain rule and the rules $\frac{d}{d x} \sin x=\cos x$ and $\frac{d}{d x} \cos x=-\sin x$, we find

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\cos x \sin y-2 y \sin 2 x y, \quad \frac{\partial f}{\partial y}=\sin x \cos y-2 x \sin 2 x y \\
\frac{\partial^{2} f}{\partial x^{2}}=-\sin x \sin y-4 y^{2} \cos 2 x y, \quad \frac{\partial^{2} f}{\partial x \partial y}=\cos x \cos y-2 \sin 2 x y-4 x y \cos 2 x y \\
\frac{\partial^{2} f}{\partial y^{2}}=-\sin x \sin y-4 x^{2} \cos 2 x y
\end{gathered}
$$

Exercise 11. The function

$$
f(x, y)=4 x+3 y-1
$$

has one maximum and one minimum with respect to the constraint

$$
x^{2}+y^{2}=25
$$

Find the two points where the maximum and minimum occur.

Solution. To do Lagrange Multipliers, we define

$$
F(x, y, \lambda)=4 x+3 y-1+\lambda\left(x^{2}+y^{2}-25\right)
$$

and check where all its first derivatives are zero. We get the equations

$$
\frac{\partial F}{\partial x}=4+2 \lambda x=0, \quad \frac{\partial F}{\partial y}=3+2 \lambda y=0, \quad \frac{\partial F}{\partial \lambda}=x^{2}+y^{2}-25=0
$$

Note that there is no solution if $\lambda=0$, so we can assume this is not the case (i.e. we can divide by λ). From the first two equations we get $x=-\frac{2}{\lambda}$ and $y=-\frac{3}{2 \lambda}$. Substituting into the third equation,

$$
\frac{4}{\lambda^{2}}+\frac{9}{4 \lambda^{2}}-25=0
$$

Multiplying by λ^{2},

$$
4+\frac{9}{4}-25 \lambda^{2}=0
$$

This simplifies to $\lambda^{2}=\frac{1}{4}$, or $\lambda= \pm \frac{1}{2}$. This gives us two possible locations for the max and min: $(-4,-3)$ (corresponding to $\lambda=\frac{1}{2}$) and $(4,3)$ (corresponding to $\lambda=-\frac{1}{2}$).

We're guaranteed that one of these is a max and one a min, so to see which is which we just need to compare the values. We find $f(-4,-3)=-26$ and $f(4,3)=24$, so we conclude that $(-4,-3)$ is the minimum and $(4,3)$ is the maximum.

Exercise 12. Let R be the region bounded by the curves

$$
y=x, \quad x=\sqrt{y}
$$

Compute

$$
\iint_{R} x y d y d x
$$

Solution. We could switch the order of integration (i.e. integrate y first) and get the same result, but let's do it in the order given in the problem. Since we're integrating y first we should put our boundary curves in the form of y as a function of $x: y=x$ and $y=x^{2}$. Drawing a picture we see that x^{2} lies below x in the relevant region, and that the curves intersect at $x=0$ and $x=1$, so our integral is

$$
\begin{aligned}
\int_{0}^{1} \int_{x^{2}}^{x} x y d y d x & =\int_{0}^{1}\left[\frac{x y^{2}}{2}\right]_{y=x^{2}}^{x} d x \\
& =\int_{0}^{1} \frac{x^{3}}{2}-\frac{x^{5}}{2} d x \\
& =\left[\frac{x^{4}}{8}-\frac{x^{6}}{12}\right]_{x=0}^{1} \\
& =\frac{1}{24}
\end{aligned}
$$

Exercise 13. Compute $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$ for

$$
f(x, y, z)=x^{2} y+3 z+x e^{y^{2} z}
$$

Solution. Using the power rule and rules for exponential functions, we find

$$
\frac{\partial f}{\partial x}=2 x y+e^{y^{2} z}, \quad \frac{\partial f}{\partial y}=x^{2}+2 x y z e^{y^{2} z}, \quad \frac{\partial f}{\partial z}=3+x y^{2} e^{y^{2} z}
$$

Exercise 14. If three positive numbers sum to 9 , what is the largest their product can be?
Solution. Translating this into equations, we're told that $x+y+z=9$ and we want to maximize $x y z$. This is constrained optimization, so we'll use Lagrange Multipliers. Define

$$
F(x, y, z, \lambda)=x y z+\lambda(x+y+z-9)
$$

Then

$$
\frac{\partial F}{\partial x}=y z+\lambda=0, \quad \frac{\partial F}{\partial y}=x z+\lambda=0, \quad \frac{\partial F}{\partial z}=x y+\lambda=0, \quad \frac{\partial F}{\partial \lambda}=x+y+z-9=0
$$

We're also told that x, y, z are positive, in particular not zero, so we can divide by them. The first three equations tell us

$$
-\lambda=y z, \quad-\lambda=x z, \quad-\lambda=x y
$$

Thus $y z=x z$, so dividing by z we see $x=y$. Similarly we find $y=z$, so in fact all three of x, y, z are equal. Now the last equation $x+y+z-9=0$ tells us that $x=y=z=3$, so the maximum is achieved at the point $(3,3,3)$, and the maximum value is $3 \cdot 3 \cdot 3=27$.

