Midterm 1 Review
 MATH 16B Spring 2016

Exercise 1. Compute

$$
\int_{2}^{5} \int_{0}^{1} 9 x^{2} y^{2} d y d x
$$

Exercise 2. Let D be the region of the x, y-plane where x and y are greater than or equal to zero and their sum is at most 3 . Find the volume of the solid bounded above by $f(x, y)=e^{x}$ and lying over D.

Exercise 3. Find the maximum value of

$$
h(x, y)=x+2 y-x^{2}+x y-y^{2}
$$

(Note that this asks for the maximum value, not the location where the maximum occurs).
Exercise 4. Compute $\frac{\partial^{2} g}{\partial x \partial y}$ and $\frac{\partial^{2} g}{\partial y \partial x}$ for

$$
g(x, y)=x^{y}
$$

and observe that they are equal.
Exercise 5. Maximize

$$
f(x, y, z)=3 x-3 y-8 z-2 x^{2}+x y-z^{2}
$$

with respect to the constraint

$$
g(x, y, z)=-x+y+3 z=-1
$$

Exercise 6. Compute

$$
\int_{0}^{\pi / 4} \int_{x}^{2 x} \cos y d y d x
$$

Exercise 7. State precisely the first and second derivative tests for functions of two variables.
Exercise 8. Find all maxima and minima of

$$
f(x, y)=2 x^{2}-x^{4}-y^{2}
$$

Exercise 9. Find all possible points where

$$
g(x, y, z)=3 x+3 y-z-x^{2}+x y-y^{2}-z^{2}
$$

could have a maximum.

Exercise 10. Compute all first and second partial derivatives of

$$
f(x, y)=\sin x \sin y+\cos 2 x y
$$

Exercise 11. The function

$$
f(x, y)=4 x+3 y-1
$$

has one maximum and one minimum with respect to the constraint

$$
x^{2}+y^{2}=25
$$

Find the two points where the maximum and minimum occur.
Exercise 12. Let R be the region bounded by the curves

$$
y=x, \quad x=\sqrt{y}
$$

Compute

$$
\iint_{R} x y d y d x
$$

Exercise 13. Compute $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$ for

$$
f(x, y, z)=x^{2} y+3 z+x e^{y^{2} z}
$$

Exercise 14. If three positive numbers sum to 9 , what is the largest their product can be?

