Final Exam Review
 MATH 16B Spring 2016

Exercise 1. Find both partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions.

1. $f(x, y)=\frac{\sin (x y)}{x^{2}}$
2. $f(x, y)=y e^{x y}$
3. $f(x, y)=x^{y}$

Exercise 2. Find all critical points of $f(x, y)=2 x^{2}+y^{3}-x-12 y+7$, and label each as a maximum, minimum, or neither.

Exercise 3. Find the values of x, y, z that maximize $3 x+5 y+z-x^{2}-y^{2}-z^{2}$ subject to the constraint $6-x-y-z=0$.

Exercise 4. Let R be the region bounded by the x-axis, the line $x=2$, and the graph of $y=x^{2}$. Compute the following double integral.

$$
\iint_{R} x^{2}+y d y d x
$$

Exercise 5. Compute the following indefinite integrals.

1. $\int \sin x \cos x d x$
2. $\int \frac{\ln x}{x^{3}} d x$

Exercise 6. Compute the following integral.

$$
\int_{0}^{\infty} x e^{-x^{2}} d x
$$

Exercise 7. Solve the following initial value problems.

1. $y^{\prime}=y^{2} \sin t$, with $y(\pi / 2)=1$
2. $t y^{\prime}+y=\ln t$, with $y(e)=0$

Exercise 8. Compute the third order Taylor polynomial of $\cos x$ at $x=0$, and use it to estimate $\cos 1$. Use the remainder formula to give an upper bound on the error of this estimate.

Exercise 9. Decide whether each series converges or diverges. If it is a convergent geometric series, find the sum.

1. $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{2}}$
2. $\sum_{n=0}^{\infty} \frac{3}{5^{n+1}}$
3. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$

Exercise 10. Compute directly (i.e. by taking derivatives) the Taylor series of $\frac{1}{1-x}$ at $x=0$. Then use this to compute the Taylor series of $\arctan x$ at $x=0$. Put your answer in summation notation $\sum a_{i} x^{i}$. (Hint: $\arctan x=\int \frac{1}{1+x^{2}} d x$).

Exercise 11. Consider a continuous random variable with probability density function $f(x)=3 x^{2}$, $0 \leq x \leq 1$.

1. Verify that this is a probability density function.
2. Compute the probability that the outcome is at most $\frac{1}{2}$, i.e. $P\left(X \leq \frac{1}{2}\right)$.
3. What is the expected value of this random variable?
4. What is its variance?

Exercise 12. Let X be a normal random variable with mean 1 and standard deviation 3. Find $P(|X|<1)$.

Exercise 13. Consider the process of rolling a (fair six-sided) die repeatedly until the result is a 6. Let X be a random variable representing the total number of rolls preceeding the first 6 (not including the 6).

1. What is the probability that the total number of rolls is n, i.e. $P(X=n)$?
2. What is the expected total number of rolls?

Exercise 14. Consider the process of rolling a (fair six-sided) die 100 times. Let X be the number of 6 s among the 100 rolls.

1. What is the expected value of X ?
2. We may assume X to be a Poisson random variable. Under this assumption, what is the probability of no 6 s whatsoever in the 100 rolls?
3. Give the probability of the number of 6 s being n, i.e. $P(X=n)$.
