Final Exam Review MATH 16B Spring 2016

Exercise 1. Find both partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions.

- 1. $f(x, y) = \frac{\sin(xy)}{x^2}$
- 2. $f(x, y) = ye^{xy}$

3.
$$f(x, y) = x^{y}$$

Solution. For the first,

$$\frac{\partial f}{\partial x} = \frac{x^2 y \cos(xy) - 2x \sin(xy)}{x^4}$$
 and $\frac{\partial f}{\partial y} = \frac{x^3 \cos(xy)}{x^4}$

For the second,

For the third,

$$\frac{\partial f}{\partial x} = y^2 e^{xy} \quad \text{and} \quad \frac{\partial f}{\partial y} = e^{xy} + xy e^{xy}.$$
$$\frac{\partial f}{\partial x} = y x^{y-1} \quad \text{and} \quad \frac{\partial f}{\partial y} = x^y \ln(x).$$

Exercise 2. Find all critical points of $f(x, y) = 2x^2 + y^3 - x - 12y + 7$, and label each as a maximum, minimum, or neither.

Solution. We find critical points using the first derivative test. The first derivatives are

$$\frac{\partial f}{\partial x} = 4x - 1, \qquad \frac{\partial f}{\partial y} = 3y^2 - 12.$$

The first has solution $x = \frac{1}{4}$, and the second has solutions $y = \pm 2$. Thus our critical points are $(\frac{1}{4}, 2)$ and $(\frac{1}{4}, -2)$.

Now we use the second derivative test to classify these critical points. The second derivatives are

$$\frac{\partial^2 f}{\partial x \partial x} = 4, \qquad \frac{\partial^2 f}{\partial x \partial y} = 0, \qquad \frac{\partial^2 f}{\partial y \partial y} = 6y,$$

and

$$D(x,y)=24y.$$

At $(\frac{1}{4}, 2)$ we have D > 0 and $\frac{\partial^2 f}{\partial x \partial x} > 0$, so $(\frac{1}{4}, 2)$ is a minimum. At $(\frac{1}{4}, -2)$ we have D < 0, so $(\frac{1}{4}, -2)$ is neither a maximum nor minimum.

Exercise 3. Find the values of x, y, z that maximize $3x + 5y + z - x^2 - y^2 - z^2$ subject to the constraint 6 - x - y - z = 0.

Solution. For constrained optimization we use Lagrange multipliers. The Lagrange function is

$$F(x, y, z, \lambda) = 3x + 5y + z - x^2 - y^2 - z^2 + \lambda(6 - x - y - z).$$

The first derivatives of this function are

$$\frac{\partial F}{\partial x} = 3 - 2x - \lambda,$$

$$\frac{\partial F}{\partial y} = 5 - 2y - \lambda,$$

$$\frac{\partial F}{\partial z} = 1 - 2z - \lambda,$$

$$\frac{\partial F}{\partial \lambda} = 6 - x - y - z.$$

Solving the first three equations for x, y, z respectively and substituting into the fourth equation, we find $\lambda = -1$. Then substituting this into the first three equations we can solve to find x = 2, y = 3, and z = 1. These are the values that maximize our function subject to the constraint (no need to verify that it is a maximum).

Exercise 4. Let *R* be the region bounded by the *x*-axis, the line x = 2, and the graph of $y = x^2$. Compute the following double integral.

$$\iint_R x^2 + y \, dy \, dx$$

Solution. Since the integral is written dy dx, we integrate with respect to y first and then x. The y-bounds should thus be from 0 to x^2 , and the x-bounds should be from 0 to 2. The integral is then

$$\iint_{R} x^{2} + y \, dy \, dx = \int_{0}^{2} \int_{0}^{x^{2}} x^{2} + y \, dy \, dx$$
$$= \int_{0}^{2} \left[x^{2}y + \frac{y^{2}}{2} \right]_{0}^{x^{2}} dx$$
$$= \int_{0}^{2} \frac{3}{2} x^{4} dx$$
$$= \left[\frac{3x^{5}}{10} \right]_{0}^{2}$$
$$= \frac{48}{5}.$$

Exercise 5. Compute the following indefinite integrals.

- 1. $\int \sin x \cos x \, dx$
- 2. $\int \frac{\ln x}{x^3} dx$

Solution. The first is substitution; let's use $u = \sin x$. Then $du = \cos x \, dx$, so the integral is

$$\int \sin x \cos x \, dx = \int u \, du = \frac{u^2}{2} + c = \frac{\sin^2(x)}{2} + c.$$

(If you use $u = \cos x$ you'll get a different looking answer, but a trig identity shows they're the same up to a constant).

The second is integration by parts; let's use

$$u = \ln x, \quad du = \frac{1}{x}dx, \quad v = -\frac{1}{2x^2}, \quad dv = \frac{1}{x^3}dx.$$

Then the integral is

$$\int \frac{\ln x}{x^3} dx = -\frac{\ln x}{2x^2} - \int -\frac{1}{2x^3} dx$$
$$= -\frac{\ln x}{2x^2} - \frac{1}{4x^2} + c.$$

Exercise 6. Compute the following integral.

$$\int_0^\infty x e^{-x^2} dx.$$

Solution. Using the substitution $u = -x^2$ and du = -2x dx, the integral is

$$\int_0^\infty x e^{-x^2} dx = \lim_{a \to \infty} \int_0^a x e^{-x^2} dx$$
$$= \lim_{a \to \infty} -\frac{1}{2} \int_{x=0}^{x=a} e^u du$$
$$= \lim_{a \to \infty} -\frac{1}{2} \left[e^u du \right]_{x=0}^{x=a}$$
$$= \lim_{a \to \infty} -\frac{1}{2} \left[e^{-x^2} du \right]_0^a$$
$$= \lim_{a \to \infty} -\frac{1}{2} e^{-a^2} + \frac{1}{2}$$
$$= \frac{1}{2}.$$

Exercise 7. Solve the following initial value problems.

1. $y' = y^2 \sin t$, with $y(\pi/2) = 1$

2. $ty' + y = \ln t$, with y(e) = 0

Solution. The first can be solved using separation of variables.

$$\frac{dy}{dt} = y^2 \sin t$$
$$\int \frac{1}{y^2} dy = \int \sin t \, dt$$
$$-\frac{1}{y} = -\cos(t) + c$$
$$y = \frac{1}{\cos(t) + c}$$

Plugging in the initial condition $y(\pi/2) = 1$ gives $1 = \frac{1}{0+c}$, so we find c = 1, and the solution is

$$y = \frac{1}{\cos(t) + 1}.$$

The second can be solved by integrating factors. First, we put it into the standard form for first order linear differential equations.

$$y' + \frac{1}{t}y = \frac{\ln t}{t}$$

So $a(t) = \frac{1}{t}$ and $b(t) = \frac{\ln t}{t}$. The integrating factor is

$$e^{\int a(t)dt} = e^{\int \frac{1}{t}dt} = e^{\ln t} = t.$$

Multiplying our differential equation by the integrating factor t, we obtain the new equation

$$ty' + y = \ln t,$$

or

$$\frac{d}{dt}[ty] = \ln t.$$

Now we can integrate to solve the differential equation. Recall that we integrate $\ln t$ by parts, using $u = \ln t$ and dv = dt (so $du = \frac{1}{t}dt$ and v = t).

$$ty = \int \ln t \, dt$$
$$ty = t \ln t - \int dt$$
$$ty = t \ln t - t + c$$
$$y = \ln t - 1 + \frac{c}{t}$$

The condition y(e) = 0 gives $0 = 1 - 1 + \frac{c}{e}$, so we see c = 0, and the solution is

$$y = \ln t - 1.$$

Exercise 8. Compute the third order Taylor polynomial of $\cos x$ at x = 0, and use it to estimate $\cos 1$. Use the remainder formula to give an upper bound on the error of this estimate.

Solution. The first three (and zeroth) derivatives of $\cos x$ and their values at x = 0 are as follows.

$$f(x) = \cos x f(0) = 1 f'(x) = -\sin x f'(0) = 0 f''(x) = -\cos x f''(0) = -1 f'''(x) = -\sin x f'''(0) = 0$$

Thus the third order Taylor polynomial of $\cos x$ at x = 0 is

$$p_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 = 1 - \frac{x^2}{2}$$

Our estimate for $\cos 1$ is $p_3(1) = 1 - \frac{1}{2} = \frac{1}{2}$.

Now we use the remainder formula to estimate the error. The fourth derivative of $\cos x$ is $\cos x$ again, and to use the remainder formula we need a bound on $|f^{(4)}(x)| = |\cos x|$ for x between 0 and 1. We have $\langle A \rangle$

$$|f^{(4)}(x)| = |\cos x| \le 1$$

for $0 \le x \le 1$, because $-1 \le \cos x \le 1$ for all *x*. Now applying the remainder formula

$$|\cos 1 - p_3(1)| \le \frac{M}{(n+1)!}|b-a|^{n+1}$$

with a = 0, b = 1, n = 3, and M = 1, we find the error is

$$\left|\cos 1 - \frac{1}{2}\right| \le \frac{1}{4!} |1 - 0|^4 = \frac{1}{24}.$$

Exercise 9. Decide whether each series converges or diverges. If it is a convergent geometric series, find the sum.

- 1. $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2}$ 2. $\sum_{n=0}^{\infty} \frac{3}{5^{n+1}}$
- 3. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$

Solution. For the first we use the comparison test. We know that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, because it is a *p*-series with p > 1 (or by the integral test). Also $\frac{\sin^2 n}{n^2} \leq \frac{1}{n^2}$, and both series are positive, so the

comparison test implies that $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2}$ converges as well. The second is a geometric series with a = 3/5 and r = 1/5. Since |r| < 1 the series converges, and the sum is $\frac{a}{1-r} = \frac{3/5}{1-1/5} = \frac{3}{4}$. For the third we use the integral test (although we could also use the comparison test, comparing with $\frac{1}{n^2}$ again). Note that $f(x) = \frac{1}{x(\ln x)^2}$ is positive, continuous, and decreasing. Also (using the substitution $u = \ln x$ and $du = \frac{1}{r}dx$),

$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} dx = \lim_{a \to \infty} \int_{2}^{a} \frac{1}{x(\ln x)^{2}} dx$$
$$= \lim_{a \to \infty} \int_{x=2}^{x=a} \frac{1}{u^{2}} du$$
$$= \lim_{a \to \infty} \left[-\frac{1}{u} \right]_{x=2}^{x=a}$$
$$= \lim_{a \to \infty} \left[-\frac{1}{\ln x} \right]_{2}^{a}$$
$$= \lim_{a \to \infty} -\frac{1}{\ln a} + \frac{1}{\ln 2}$$
$$= \frac{1}{\ln 2},$$

so the integral is convergent. Thus the sum $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ is convergent as well.

Exercise 10. Compute directly (i.e. by taking derivatives) the Taylor series of $\frac{1}{1-x}$ at x = 0. Then use this to compute the Taylor series of arctan x at x = 0. Put your answer in summation notation $\sum a_i x^i$. (Hint: $\arctan x = \int \frac{1}{1+x^2} dx$).

Solution. The derivatives of $\frac{1}{1-x}$ and their values at x = 0 are as follows.

$$f(x) = \frac{1}{1-x} \qquad f(0) = 1$$

$$f'(x) = \frac{1}{(1-x)^2} \qquad f'(0) = 1$$

$$f''(x) = \frac{2}{(1-x)^3} \qquad f''(0) = 2$$

$$f'''(x) = \frac{3 \cdot 2}{(1-x)^4} \qquad f'''(0) = 3 \cdot 2$$

$$\vdots \qquad \vdots$$

$$f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}} \qquad f^{(n)}(0) = n!$$

Thus the Taylor series of $\frac{1}{1-x}$ at x = 0 is

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} x^n.$$

Now $\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$, so we can get the Taylor series of $\frac{1}{1+x^2}$ at x = 0 by substituting $-x^2$ for x in the above Taylor series.

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

Finally, since $\arctan x = \int \frac{1}{1+x^2} dx$, we can get the Taylor series of $\arctan x$ at x = 0 by integrating term by term the Taylor series of $\frac{1}{1+x^2}$.

$$\arctan x = \sum_{n=0}^{\infty} \int (-1)^n x^{2n} dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$

Exercise 11. Consider a continuous random variable with probability density function $f(x) = 3x^2$, $0 \le x \le 1$.

- 1. Verify that this is a probability density function.
- 2. Compute the probability that the outcome is at most $\frac{1}{2}$, i.e. $P(X \le \frac{1}{2})$.
- 3. What is the expected value of this random variable?
- 4. What is its variance?

Solution. A probability density function must be positive and integrate to 1. Certainly $3x^2 \ge 0$ for all *x*, and

$$\int_0^1 3x^2 dx = x^3 \Big|_0^1 = 1.$$

Thus $f(x) = 3x^2$, $0 \le x \le 1$ is indeed a probability density function.

The probability of an outcome at most $\frac{1}{2}$ is

$$P(X \le \frac{1}{2}) = \int_0^{1/2} 3x^2 dx = x^3 \Big|_0^{1/2} = \frac{1}{8}.$$

The expected value is

$$E(X) = \int_0^1 x f(x) dx = \int_0^1 3x^3 dx = \frac{3}{4}x^4 \Big|_0^1 = \frac{3}{4}$$

The variance is

$$\operatorname{Var}(X) = \int_0^1 x^2 f(x) dx - \operatorname{E}(X)^2 = \int_0^1 3x^4 dx - \frac{9}{16} = \frac{3}{5}x^5 \Big|_0^1 - \frac{9}{16} = \frac{3}{5} - \frac{9}{16} = \frac{3}{80}.$$

Exercise 12. Let *X* be a normal random variable with mean 1 and standard deviation 3. Find P(|X| < 1).

Solution. First of all note |X| < 1 is equivalent to -1 < X < 1. Now we transform to the standard normal distribution $Z = \frac{X-1}{3}$.

$$P(|X|) = P(-1 < X < 1) = P\left(\frac{-1-1}{3} < \frac{X-1}{3} < \frac{1-1}{3}\right) = P\left(-\frac{2}{3} < Z < 0\right)$$

Now we use the symmetry about 0 of the normal distribution.

$$P\left(-\frac{2}{3} < Z < 0\right) = P\left(0 < Z < \frac{2}{3}\right)$$

This we can finally look up in our table: corresponding to $\frac{2}{3} \approx 0.67$ is the value 0.2486, indicating that

$$P(|X| < 1) = P\left(0 < Z < \frac{2}{3}\right) = 0.2486.$$

Exercise 13. Consider the process of rolling a (fair six-sided) die repeatedly until the result is a 6. Let *X* be a random variable representing the total number of rolls preceeding the first 6 (not including the 6).

- 1. What is the probability that the total number of rolls is *n*, i.e. P(X = n)?
- 2. What is the expected total number of rolls?

Solution. This is a geometric random variable, with probability $p = \frac{5}{6}$ of failure and probability $1 - p = \frac{1}{6}$ of success.

Precisely *n* rolls total means *n* failures (each with probability *p*) followed by a single success (with probability 1 - p), and the probability of this is

$$P(X = n) = p^{n}(1-p) = \left(\frac{5}{6}\right)^{n} \frac{1}{6}.$$

The expected value of a geometric random variable is $\frac{p}{1-p}$, which in this case is

$$\mathcal{E}(X) = \frac{5/6}{1 - 5/6} = \frac{5/6}{1/6} = 5$$

[Pro tip: if you forget this formula, or just for general cultural enlightenment, you can derive it thus. The expected value is

$$E(X) = \sum_{n=0}^{\infty} nP(X=n) = \sum_{n=0}^{\infty} np^n (1-p) = p(1-p) \sum_{n=0}^{\infty} np^{n-1}.$$

Now recognize $\sum_{n=0}^{\infty} nx^{n-1}$ as the power series of $\frac{1}{(1-x)^2}$ (the derivative of $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$), so substitute in $\frac{1}{(1-p)^2}$ for the infinite series to find the expected value is $\frac{p}{1-p}$.]

Exercise 14. Consider the process of rolling a (fair six-sided) die 100 times. Let *X* be the number of 6s among the 100 rolls.

- 1. What is the expected value of *X*?
- 2. We may assume *X* to be a Poisson random variable. Under this assumption, what is the probability of no 6s whatsoever in the 100 rolls?
- 3. Give the probability of the number of 6s being *n*, i.e. P(X = n).

Solution. The probability of a 6 on any individual roll is $\frac{1}{6}$, so the expected number of 6s in 100 rolls is $\frac{100}{6}$.

If X is Poisson then it has parameter $\lambda = \frac{100}{6}$, because λ is the expected value. Now the probability of no 6s is $P(X = 0) = e^{-\lambda} = e^{-100/6}$. (You do not need to simplify this, but just for the record it comes out to about 6×10^{-8} . The chances are not good.)

For a Poisson random variable, $P(X = n) = \frac{\lambda^n}{n!}e^{-\lambda}$.