
Final Exam Review
MATH 16B Spring 2016

Exercise 1. Find both partial derivatives ∂ f
∂x and ∂ f

∂y for the following functions.

1. f (x, y) = sin(xy)
x2

2. f (x, y) = yexy

3. f (x, y) = xy

Solution. For the first,

∂ f
∂x

=
x2y cos(xy)− 2x sin(xy)

x4 and
∂ f
∂y

=
x3 cos(xy)

x4 .

For the second,
∂ f
∂x

= y2exy and
∂ f
∂y

= exy + xyexy.

For the third,
∂ f
∂x

= yxy−1 and
∂ f
∂y

= xy ln(x).

Exercise 2. Find all critical points of f (x, y) = 2x2 + y3− x− 12y+ 7, and label each as a maximum,
minimum, or neither.

Solution. We find critical points using the first derivative test. The first derivatives are

∂ f
∂x

= 4x− 1,
∂ f
∂y

= 3y2 − 12.

The first has solution x = 1
4 , and the second has solutions y = ±2. Thus our critical points are

( 1
4 , 2) and ( 1

4 ,−2).
Now we use the second derivative test to classify these critical points. The second derivatives

are
∂2 f

∂x∂x
= 4,

∂2 f
∂x∂y

= 0,
∂2 f

∂y∂y
= 6y,

and
D(x, y) = 24y.

At ( 1
4 , 2) we have D > 0 and ∂2 f

∂x∂x > 0, so ( 1
4 , 2) is a minimum. At ( 1

4 ,−2) we have D < 0, so
( 1

4 ,−2) is neither a maximum nor minimum.
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Exercise 3. Find the values of x, y, z that maximize 3x + 5y + z− x2 − y2 − z2 subject to the con-
straint 6− x− y− z = 0.

Solution. For constrained optimization we use Lagrange multipliers. The Lagrange function is

F(x, y, z, λ) = 3x + 5y + z− x2 − y2 − z2 + λ(6− x− y− z).

The first derivatives of this function are

∂F
∂x

= 3− 2x− λ,

∂F
∂y

= 5− 2y− λ,

∂F
∂z

= 1− 2z− λ,

∂F
∂λ

= 6− x− y− z.

Solving the first three equations for x, y, z respectively and substituting into the fourth equation,
we find λ = −1. Then substituting this into the first three equations we can solve to find x = 2,
y = 3, and z = 1. These are the values that maximize our function subject to the constraint (no
need to verify that it is a maximum).

Exercise 4. Let R be the region bounded by the x-axis, the line x = 2, and the graph of y = x2.
Compute the following double integral. ∫∫

R
x2 + y dy dx

Solution. Since the integral is written dy dx, we integrate with respect to y first and then x. The
y-bounds should thus be from 0 to x2, and the x-bounds should be from 0 to 2. The integral is
then ∫∫

R
x2 + y dy dx =

∫ 2

0

∫ x2

0
x2 + y dy dx

=
∫ 2

0

[
x2y +

y2

2

]x2

0
dx

=
∫ 2

0

3
2

x4dx

=

[
3x5

10

]2

0

=
48
5

.

Exercise 5. Compute the following indefinite integrals.

1.
∫

sin x cos x dx

2.
∫ ln x

x3 dx
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Solution. The first is substitution; let’s use u = sin x. Then du = cos x dx, so the integral is∫
sin x cos x dx =

∫
u du =

u2

2
+ c =

sin2(x)
2

+ c.

(If you use u = cos x you’ll get a different looking answer, but a trig identity shows they’re the
same up to a constant).

The second is integration by parts; let’s use

u = ln x, du =
1
x

dx, v = − 1
2x2 , dv =

1
x3 dx.

Then the integral is ∫ ln x
x3 dx = − ln x

2x2 −
∫
− 1

2x3 dx

= − ln x
2x2 −

1
4x2 + c.

Exercise 6. Compute the following integral.∫ ∞

0
xe−x2

dx.

Solution. Using the substitution u = −x2 and du = −2x dx, the integral is∫ ∞

0
xe−x2

dx = lim
a→∞

∫ a

0
xe−x2

dx

= lim
a→∞
−1

2

∫ x=a

x=0
eudu

= lim
a→∞
−1

2
[eudu]x=a

x=0

= lim
a→∞
−1

2

[
e−x2

du
]a

0

= lim
a→∞
−1

2
e−a2

+
1
2

=
1
2

.

Exercise 7. Solve the following initial value problems.

1. y′ = y2 sin t, with y(π/2) = 1

2. ty′ + y = ln t, with y(e) = 0

Solution. The first can be solved using separation of variables.

dy
dt

= y2 sin t∫ 1
y2 dy =

∫
sin t dt

−1
y
= − cos(t) + c

y =
1

cos(t) + c
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Plugging in the initial condition y(π/2) = 1 gives 1 = 1
0+c , so we find c = 1, and the solution is

y =
1

cos(t) + 1
.

The second can be solved by integrating factors. First, we put it into the standard form for first
order linear differential equations.

y′ +
1
t

y =
ln t

t

So a(t) = 1
t and b(t) = ln t

t . The integrating factor is

e
∫

a(t)dt = e
∫ 1

t dt = eln t = t.

Multiplying our differential equation by the integrating factor t, we obtain the new equation

ty′ + y = ln t,

or
d
dt
[ty] = ln t.

Now we can integrate to solve the differential equation. Recall that we integrate ln t by parts,
using u = ln t and dv = dt (so du = 1

t dt and v = t).

ty =
∫

ln t dt

ty = t ln t−
∫

dt

ty = t ln t− t + c

y = ln t− 1 +
c
t

The condition y(e) = 0 gives 0 = 1− 1 + c
e , so we see c = 0, and the solution is

y = ln t− 1.

Exercise 8. Compute the third order Taylor polynomial of cos x at x = 0, and use it to estimate
cos 1. Use the remainder formula to give an upper bound on the error of this estimate.

Solution. The first three (and zeroth) derivatives of cos x and their values at x = 0 are as follows.

f (x) = cos x f (0) = 1

f ′(x) = − sin x f ′(0) = 0

f ′′(x) = − cos x f ′′(0) = −1

f ′′′(x) = − sin x f ′′′(0) = 0

Thus the third order Taylor polynomial of cos x at x = 0 is

p3(x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3 = 1− x2

2
.

Our estimate for cos 1 is p3(1) = 1− 1
2 = 1

2 .
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Now we use the remainder formula to estimate the error. The fourth derivative of cos x is cos x
again, and to use the remainder formula we need a bound on | f (4)(x)| = |cos x| for x between 0
and 1. We have

| f (4)(x)| = |cos x| ≤ 1

for 0 ≤ x ≤ 1, because −1 ≤ cos x ≤ 1 for all x. Now applying the remainder formula

|cos 1− p3(1)| ≤
M

(n + 1)!
|b− a|n+1

with a = 0, b = 1, n = 3, and M = 1, we find the error is∣∣∣∣cos 1− 1
2

∣∣∣∣ ≤ 1
4!
|1− 0|4 =

1
24

.

Exercise 9. Decide whether each series converges or diverges. If it is a convergent geometric
series, find the sum.

1. ∑∞
n=1

sin2 n
n2

2. ∑∞
n=0

3
5n+1

3. ∑∞
n=2

1
n(ln n)2

Solution. For the first we use the comparison test. We know that ∑∞
n=1

1
n2 converges, because it is

a p-series with p > 1 (or by the integral test). Also sin2 n
n2 ≤ 1

n2 , and both series are positive, so the

comparison test implies that ∑∞
n=1

sin2 n
n2 converges as well.

The second is a geometric series with a = 3/5 and r = 1/5. Since |r| < 1 the series converges,
and the sum is a

1−r = 3/5
1−1/5 = 3

4 .
For the third we use the integral test (although we could also use the comparison test, compar-

ing with 1
n2 again). Note that f (x) = 1

x(ln x)2 is positive, continuous, and decreasing. Also (using

the substitution u = ln x and du = 1
x dx),∫ ∞

2

1
x(ln x)2 dx = lim

a→∞

∫ a

2

1
x(ln x)2 dx

= lim
a→∞

∫ x=a

x=2

1
u2 du

= lim
a→∞

[
− 1

u

]x=a

x=2

= lim
a→∞

[
− 1

ln x

]a

2

= lim
a→∞
− 1

ln a
+

1
ln 2

=
1

ln 2
,

so the integral is convergent. Thus the sum ∑∞
n=2

1
n(ln n)2 is convergent as well.
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Exercise 10. Compute directly (i.e. by taking derivatives) the Taylor series of 1
1−x at x = 0. Then

use this to compute the Taylor series of arctan x at x = 0. Put your answer in summation notation
∑ aixi. (Hint: arctan x =

∫ 1
1+x2 dx).

Solution. The derivatives of 1
1−x and their values at x = 0 are as follows.

f (x) =
1

1− x
f (0) = 1

f ′(x) =
1

(1− x)2 f ′(0) = 1

f ′′(x) =
2

(1− x)3 f ′′(0) = 2

f ′′′(x) =
3 · 2

(1− x)4 f ′′′(0) = 3 · 2

...
...

f (n)(x) =
n!

(1− x)n+1 f (n)(0) = n!

Thus the Taylor series of 1
1−x at x = 0 is

1
1− x

=
∞

∑
n=0

f (n)(0)
n!

xn =
∞

∑
n=0

xn.

Now 1
1+x2 = 1

1−(−x2)
, so we can get the Taylor series of 1

1+x2 at x = 0 by substituting −x2 for
x in the above Taylor series.

1
1 + x2 =

∞

∑
n=0

(−x2)n =
∞

∑
n=0

(−1)nx2n

Finally, since arctan x =
∫ 1

1+x2 dx, we can get the Taylor series of arctan x at x = 0 by integrating
term by term the Taylor series of 1

1+x2 .

arctan x =
∞

∑
n=0

∫
(−1)nx2ndx =

∞

∑
n=0

(−1)n

2n + 1
x2n+1

Exercise 11. Consider a continuous random variable with probability density function f (x) = 3x2,
0 ≤ x ≤ 1.

1. Verify that this is a probability density function.

2. Compute the probability that the outcome is at most 1
2 , i.e. P(X ≤ 1

2 ).

3. What is the expected value of this random variable?

4. What is its variance?

Solution. A probability density function must be positive and integrate to 1. Certainly 3x2 ≥ 0 for
all x, and ∫ 1

0
3x2dx = x3

∣∣∣1
0
= 1.
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Thus f (x) = 3x2, 0 ≤ x ≤ 1 is indeed a probability density function.
The probability of an outcome at most 1

2 is

P(X ≤ 1
2
) =

∫ 1/2

0
3x2dx = x3

∣∣∣1/2

0
=

1
8

.

The expected value is

E(X) =
∫ 1

0
x f (x)dx =

∫ 1

0
3x3dx =

3
4

x4
∣∣∣1
0
=

3
4

.

The variance is

Var(X) =
∫ 1

0
x2 f (x)dx− E(X)2 =

∫ 1

0
3x4dx− 9

16
=

3
5

x5
∣∣∣1
0
− 9

16
=

3
5
− 9

16
=

3
80

.

Exercise 12. Let X be a normal random variable with mean 1 and standard deviation 3. Find
P(|X| < 1).

Solution. First of all note |X| < 1 is equivalent to −1 < X < 1. Now we transform to the standard
normal distribution Z = X−1

3 .

P(|X|) = P(−1 < X < 1) = P
(
−1− 1

3
<

X− 1
3

<
1− 1

3

)
= P

(
−2

3
< Z < 0

)
Now we use the symmetry about 0 of the normal distribution.

P
(
−2

3
< Z < 0

)
= P

(
0 < Z <

2
3

)
This we can finally look up in our table: corresponding to 2

3 ≈ 0.67 is the value 0.2486, indicating
that

P(|X| < 1) = P
(

0 < Z <
2
3

)
= 0.2486.

Exercise 13. Consider the process of rolling a (fair six-sided) die repeatedly until the result is a
6. Let X be a random variable representing the total number of rolls preceeding the first 6 (not
including the 6).

1. What is the probability that the total number of rolls is n, i.e. P(X = n)?

2. What is the expected total number of rolls?

Solution. This is a geometric random variable, with probability p = 5
6 of failure and probability

1− p = 1
6 of success.

Precisely n rolls total means n failures (each with probability p) followed by a single success
(with probability 1− p), and the probability of this is

P(X = n) = pn(1− p) =
(

5
6

)n 1
6

.
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The expected value of a geometric random variable is p
1−p , which in this case is

E(X) =
5/6

1− 5/6
=

5/6
1/6

= 5.

[Pro tip: if you forget this formula, or just for general cultural enlightenment, you can derive it
thus. The expected value is

E(X) =
∞

∑
n=0

nP(X = n) =
∞

∑
n=0

npn(1− p) = p(1− p)
∞

∑
n=0

npn−1.

Now recognize ∑∞
n=0 nxn−1 as the power series of 1

(1−x)2 (the derivative of ∑∞
n=0 xn = 1

1−x ), so

substitute in 1
(1−p)2 for the infinite series to find the expected value is p

1−p .]

Exercise 14. Consider the process of rolling a (fair six-sided) die 100 times. Let X be the number
of 6s among the 100 rolls.

1. What is the expected value of X?

2. We may assume X to be a Poisson random variable. Under this assumption, what is the
probability of no 6s whatsoever in the 100 rolls?

3. Give the probability of the number of 6s being n, i.e. P(X = n).

Solution. The probability of a 6 on any individual roll is 1
6 , so the expected number of 6s in 100

rolls is 100
6 .

If X is Poisson then it has parameter λ = 100
6 , because λ is the expected value. Now the

probability of no 6s is P(X = 0) = e−λ = e−100/6. (You do not need to simplify this, but just for
the record it comes out to about 6× 10−8. The chances are not good.)

For a Poisson random variable, P(X = n) = λn

n! e−λ.
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