Final Exam Review
 MATH 16B Spring 2016

Exercise 1. Find both partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions.

1. $f(x, y)=\frac{\sin (x y)}{x^{2}}$
2. $f(x, y)=y e^{x y}$
3. $f(x, y)=x^{y}$

Solution. For the first,

$$
\frac{\partial f}{\partial x}=\frac{x^{2} y \cos (x y)-2 x \sin (x y)}{x^{4}} \quad \text { and } \quad \frac{\partial f}{\partial y}=\frac{x^{3} \cos (x y)}{x^{4}}
$$

For the second,

$$
\frac{\partial f}{\partial x}=y^{2} e^{x y} \quad \text { and } \quad \frac{\partial f}{\partial y}=e^{x y}+x y e^{x y}
$$

For the third,

$$
\frac{\partial f}{\partial x}=y x^{y-1} \quad \text { and } \quad \frac{\partial f}{\partial y}=x^{y} \ln (x)
$$

Exercise 2. Find all critical points of $f(x, y)=2 x^{2}+y^{3}-x-12 y+7$, and label each as a maximum, minimum, or neither.

Solution. We find critical points using the first derivative test. The first derivatives are

$$
\frac{\partial f}{\partial x}=4 x-1, \quad \frac{\partial f}{\partial y}=3 y^{2}-12
$$

The first has solution $x=\frac{1}{4}$, and the second has solutions $y= \pm 2$. Thus our critical points are $\left(\frac{1}{4}, 2\right)$ and $\left(\frac{1}{4},-2\right)$.

Now we use the second derivative test to classify these critical points. The second derivatives are

$$
\frac{\partial^{2} f}{\partial x \partial x}=4, \quad \frac{\partial^{2} f}{\partial x \partial y}=0, \quad \frac{\partial^{2} f}{\partial y \partial y}=6 y
$$

and

$$
D(x, y)=24 y
$$

At $\left(\frac{1}{4}, 2\right)$ we have $D>0$ and $\frac{\partial^{2} f}{\partial x \partial x}>0$, so $\left(\frac{1}{4}, 2\right)$ is a minimum. At $\left(\frac{1}{4},-2\right)$ we have $D<0$, so $\left(\frac{1}{4},-2\right)$ is neither a maximum nor minimum.

Exercise 3. Find the values of x, y, z that maximize $3 x+5 y+z-x^{2}-y^{2}-z^{2}$ subject to the constraint $6-x-y-z=0$.

Solution. For constrained optimization we use Lagrange multipliers. The Lagrange function is

$$
F(x, y, z, \lambda)=3 x+5 y+z-x^{2}-y^{2}-z^{2}+\lambda(6-x-y-z)
$$

The first derivatives of this function are

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=3-2 x-\lambda \\
& \frac{\partial F}{\partial y}=5-2 y-\lambda \\
& \frac{\partial F}{\partial z}=1-2 z-\lambda \\
& \frac{\partial F}{\partial \lambda}=6-x-y-z
\end{aligned}
$$

Solving the first three equations for x, y, z respectively and substituting into the fourth equation, we find $\lambda=-1$. Then substituting this into the first three equations we can solve to find $x=2$, $y=3$, and $z=1$. These are the values that maximize our function subject to the constraint (no need to verify that it is a maximum).

Exercise 4. Let R be the region bounded by the x-axis, the line $x=2$, and the graph of $y=x^{2}$. Compute the following double integral.

$$
\iint_{R} x^{2}+y d y d x
$$

Solution. Since the integral is written $d y d x$, we integrate with respect to y first and then x. The y-bounds should thus be from 0 to x^{2}, and the x-bounds should be from 0 to 2 . The integral is then

$$
\begin{aligned}
\iint_{R} x^{2}+y d y d x & =\int_{0}^{2} \int_{0}^{x^{2}} x^{2}+y d y d x \\
& =\int_{0}^{2}\left[x^{2} y+\frac{y^{2}}{2}\right]_{0}^{x^{2}} d x \\
& =\int_{0}^{2} \frac{3}{2} x^{4} d x \\
& =\left[\frac{3 x^{5}}{10}\right]_{0}^{2} \\
& =\frac{48}{5}
\end{aligned}
$$

Exercise 5. Compute the following indefinite integrals.

1. $\int \sin x \cos x d x$
2. $\int \frac{\ln x}{x^{3}} d x$

Solution. The first is substitution; let's use $u=\sin x$. Then $d u=\cos x d x$, so the integral is

$$
\int \sin x \cos x d x=\int u d u=\frac{u^{2}}{2}+c=\frac{\sin ^{2}(x)}{2}+c
$$

(If you use $u=\cos x$ you'll get a different looking answer, but a trig identity shows they're the same up to a constant).

The second is integration by parts; let's use

$$
u=\ln x, \quad d u=\frac{1}{x} d x, \quad v=-\frac{1}{2 x^{2}}, \quad d v=\frac{1}{x^{3}} d x
$$

Then the integral is

$$
\begin{aligned}
\int \frac{\ln x}{x^{3}} d x & =-\frac{\ln x}{2 x^{2}}-\int-\frac{1}{2 x^{3}} d x \\
& =-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}+c
\end{aligned}
$$

Exercise 6. Compute the following integral.

$$
\int_{0}^{\infty} x e^{-x^{2}} d x
$$

Solution. Using the substitution $u=-x^{2}$ and $d u=-2 x d x$, the integral is

$$
\begin{aligned}
\int_{0}^{\infty} x e^{-x^{2}} d x & =\lim _{a \rightarrow \infty} \int_{0}^{a} x e^{-x^{2}} d x \\
& =\lim _{a \rightarrow \infty}-\frac{1}{2} \int_{x=0}^{x=a} e^{u} d u \\
& =\lim _{a \rightarrow \infty}-\frac{1}{2}\left[e^{u} d u\right]_{x=0}^{x=a} \\
& =\lim _{a \rightarrow \infty}-\frac{1}{2}\left[e^{-x^{2}} d u\right]_{0}^{a} \\
& =\lim _{a \rightarrow \infty}-\frac{1}{2} e^{-a^{2}}+\frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

Exercise 7. Solve the following initial value problems.

1. $y^{\prime}=y^{2} \sin t$, with $y(\pi / 2)=1$
2. $t y^{\prime}+y=\ln t$, with $y(e)=0$

Solution. The first can be solved using separation of variables.

$$
\begin{aligned}
\frac{d y}{d t} & =y^{2} \sin t \\
\int \frac{1}{y^{2}} d y & =\int \sin t d t \\
-\frac{1}{y} & =-\cos (t)+c \\
y & =\frac{1}{\cos (t)+c}
\end{aligned}
$$

Plugging in the initial condition $y(\pi / 2)=1$ gives $1=\frac{1}{0+c}$, so we find $c=1$, and the solution is

$$
y=\frac{1}{\cos (t)+1}
$$

The second can be solved by integrating factors. First, we put it into the standard form for first order linear differential equations.

$$
y^{\prime}+\frac{1}{t} y=\frac{\ln t}{t}
$$

So $a(t)=\frac{1}{t}$ and $b(t)=\frac{\ln t}{t}$. The integrating factor is

$$
e^{\int a(t) d t}=e^{\int \frac{1}{t} d t}=e^{\ln t}=t
$$

Multiplying our differential equation by the integrating factor t, we obtain the new equation

$$
t y^{\prime}+y=\ln t
$$

or

$$
\frac{d}{d t}[t y]=\ln t
$$

Now we can integrate to solve the differential equation. Recall that we integrate $\ln t$ by parts, using $u=\ln t$ and $d v=d t$ (so $d u=\frac{1}{t} d t$ and $v=t$).

$$
\begin{aligned}
t y & =\int \ln t d t \\
t y & =t \ln t-\int d t \\
t y & =t \ln t-t+c \\
y & =\ln t-1+\frac{c}{t}
\end{aligned}
$$

The condition $y(e)=0$ gives $0=1-1+\frac{c}{e}$, so we see $c=0$, and the solution is

$$
y=\ln t-1
$$

Exercise 8. Compute the third order Taylor polynomial of $\cos x$ at $x=0$, and use it to estimate $\cos 1$. Use the remainder formula to give an upper bound on the error of this estimate.

Solution. The first three (and zeroth) derivatives of $\cos x$ and their values at $x=0$ are as follows.

$$
\begin{array}{rlrl}
f(x) & =\cos x & f(0) & =1 \\
f^{\prime}(x) & =-\sin x & f^{\prime}(0) & =0 \\
f^{\prime \prime}(x) & =-\cos x & f^{\prime \prime}(0) & =-1 \\
f^{\prime \prime \prime}(x) & =-\sin x & f^{\prime \prime \prime}(0) & =0
\end{array}
$$

Thus the third order Taylor polynomial of $\cos x$ at $x=0$ is

$$
p_{3}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}=1-\frac{x^{2}}{2}
$$

Our estimate for $\cos 1$ is $p_{3}(1)=1-\frac{1}{2}=\frac{1}{2}$.

Now we use the remainder formula to estimate the error. The fourth derivative of $\cos x$ is $\cos x$ again, and to use the remainder formula we need a bound on $\left|f^{(4)}(x)\right|=|\cos x|$ for x between 0 and 1 . We have

$$
\left|f^{(4)}(x)\right|=|\cos x| \leq 1
$$

for $0 \leq x \leq 1$, because $-1 \leq \cos x \leq 1$ for all x. Now applying the remainder formula

$$
\left|\cos 1-p_{3}(1)\right| \leq \frac{M}{(n+1)!}|b-a|^{n+1}
$$

with $a=0, b=1, n=3$, and $M=1$, we find the error is

$$
\left|\cos 1-\frac{1}{2}\right| \leq \frac{1}{4!}|1-0|^{4}=\frac{1}{24}
$$

Exercise 9. Decide whether each series converges or diverges. If it is a convergent geometric series, find the sum.

1. $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{2}}$
2. $\sum_{n=0}^{\infty} \frac{3}{5^{n+1}}$
3. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$

Solution. For the first we use the comparison test. We know that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, because it is a p-series with $p>1$ (or by the integral test). Also $\frac{\sin ^{2} n}{n^{2}} \leq \frac{1}{n^{2}}$, and both series are positive, so the comparison test implies that $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{2}}$ converges as well.

The second is a geometric series with $a=3 / 5$ and $r=1 / 5$. Since $|r|<1$ the series converges, and the sum is $\frac{a}{1-r}=\frac{3 / 5}{1-1 / 5}=\frac{3}{4}$.

For the third we use the integral test (although we could also use the comparison test, comparing with $\frac{1}{n^{2}}$ again). Note that $f(x)=\frac{1}{x(\ln x)^{2}}$ is positive, continuous, and decreasing. Also (using the substitution $u=\ln x$ and $\left.d u=\frac{1}{x} d x\right)$,

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x & =\lim _{a \rightarrow \infty} \int_{2}^{a} \frac{1}{x(\ln x)^{2}} d x \\
& =\lim _{a \rightarrow \infty} \int_{x=2}^{x=a} \frac{1}{u^{2}} d u \\
& =\lim _{a \rightarrow \infty}\left[-\frac{1}{u}\right]_{x=2}^{x=a} \\
& =\lim _{a \rightarrow \infty}\left[-\frac{1}{\ln x}\right]_{2}^{a} \\
& =\lim _{a \rightarrow \infty}-\frac{1}{\ln a}+\frac{1}{\ln 2} \\
& =\frac{1}{\ln 2}
\end{aligned}
$$

so the integral is convergent. Thus the sum $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ is convergent as well.

Exercise 10. Compute directly (i.e. by taking derivatives) the Taylor series of $\frac{1}{1-x}$ at $x=0$. Then use this to compute the Taylor series of $\arctan x$ at $x=0$. Put your answer in summation notation $\sum a_{i} x^{i}$. (Hint: $\arctan x=\int \frac{1}{1+x^{2}} d x$).
Solution. The derivatives of $\frac{1}{1-x}$ and their values at $x=0$ are as follows.

$$
\begin{array}{rlrl}
f(x) & =\frac{1}{1-x} & f(0) & =1 \\
f^{\prime}(x) & =\frac{1}{(1-x)^{2}} & f^{\prime}(0) & =1 \\
f^{\prime \prime}(x) & =\frac{2}{(1-x)^{3}} & f^{\prime \prime}(0) & =2 \\
f^{\prime \prime \prime}(x) & =\frac{3 \cdot 2}{(1-x)^{4}} & f^{\prime \prime \prime}(0) & =3 \cdot 2 \\
& & \vdots \\
f^{(n)}(x) & =\frac{n!}{(1-x)^{n+1}} & f^{(n)}(0) & =n!
\end{array}
$$

Thus the Taylor series of $\frac{1}{1-x}$ at $x=0$ is

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} x^{n}
$$

Now $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}$, so we can get the Taylor series of $\frac{1}{1+x^{2}}$ at $x=0$ by substituting $-x^{2}$ for x in the above Taylor series.

$$
\frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

Finally, since $\arctan x=\int \frac{1}{1+x^{2}} d x$, we can get the Taylor series of $\arctan x$ at $x=0$ by integrating term by term the Taylor series of $\frac{1}{1+x^{2}}$.

$$
\arctan x=\sum_{n=0}^{\infty} \int(-1)^{n} x^{2 n} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} x^{2 n+1}
$$

Exercise 11. Consider a continuous random variable with probability density function $f(x)=3 x^{2}$, $0 \leq x \leq 1$.

1. Verify that this is a probability density function.
2. Compute the probability that the outcome is at most $\frac{1}{2}$, i.e. $P\left(X \leq \frac{1}{2}\right)$.
3. What is the expected value of this random variable?
4. What is its variance?

Solution. A probability density function must be positive and integrate to 1 . Certainly $3 x^{2} \geq 0$ for all x, and

$$
\int_{0}^{1} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{1}=1
$$

Thus $f(x)=3 x^{2}, 0 \leq x \leq 1$ is indeed a probability density function.
The probability of an outcome at most $\frac{1}{2}$ is

$$
P\left(X \leq \frac{1}{2}\right)=\int_{0}^{1 / 2} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{1 / 2}=\frac{1}{8}
$$

The expected value is

$$
\mathrm{E}(X)=\int_{0}^{1} x f(x) d x=\int_{0}^{1} 3 x^{3} d x=\left.\frac{3}{4} x^{4}\right|_{0} ^{1}=\frac{3}{4}
$$

The variance is

$$
\operatorname{Var}(X)=\int_{0}^{1} x^{2} f(x) d x-\mathrm{E}(X)^{2}=\int_{0}^{1} 3 x^{4} d x-\frac{9}{16}=\left.\frac{3}{5} x^{5}\right|_{0} ^{1}-\frac{9}{16}=\frac{3}{5}-\frac{9}{16}=\frac{3}{80}
$$

Exercise 12. Let X be a normal random variable with mean 1 and standard deviation 3 . Find $P(|X|<1)$.

Solution. First of all note $|X|<1$ is equivalent to $-1<X<1$. Now we transform to the standard normal distribution $Z=\frac{X-1}{3}$.

$$
P(|X|)=P(-1<X<1)=P\left(\frac{-1-1}{3}<\frac{X-1}{3}<\frac{1-1}{3}\right)=P\left(-\frac{2}{3}<Z<0\right)
$$

Now we use the symmetry about 0 of the normal distribution.

$$
P\left(-\frac{2}{3}<\mathrm{Z}<0\right)=P\left(0<\mathrm{Z}<\frac{2}{3}\right)
$$

This we can finally look up in our table: corresponding to $\frac{2}{3} \approx 0.67$ is the value 0.2486 , indicating that

$$
P(|X|<1)=P\left(0<Z<\frac{2}{3}\right)=0.2486
$$

Exercise 13. Consider the process of rolling a (fair six-sided) die repeatedly until the result is a 6. Let X be a random variable representing the total number of rolls preceeding the first 6 (not including the 6).

1. What is the probability that the total number of rolls is n, i.e. $P(X=n)$?
2. What is the expected total number of rolls?

Solution. This is a geometric random variable, with probability $p=\frac{5}{6}$ of failure and probability $1-p=\frac{1}{6}$ of success.

Precisely n rolls total means n failures (each with probability p) followed by a single success (with probability $1-p$), and the probability of this is

$$
P(X=n)=p^{n}(1-p)=\left(\frac{5}{6}\right)^{n} \frac{1}{6}
$$

The expected value of a geometric random variable is $\frac{p}{1-p}$, which in this case is

$$
E(X)=\frac{5 / 6}{1-5 / 6}=\frac{5 / 6}{1 / 6}=5 .
$$

[Pro tip: if you forget this formula, or just for general cultural enlightenment, you can derive it thus. The expected value is

$$
\mathrm{E}(X)=\sum_{n=0}^{\infty} n P(X=n)=\sum_{n=0}^{\infty} n p^{n}(1-p)=p(1-p) \sum_{n=0}^{\infty} n p^{n-1} .
$$

Now recognize $\sum_{n=0}^{\infty} n x^{n-1}$ as the power series of $\frac{1}{(1-x)^{2}}$ (the derivative of $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$), so substitute in $\frac{1}{(1-p)^{2}}$ for the infinite series to find the expected value is $\frac{p}{1-p}$.]
Exercise 14. Consider the process of rolling a (fair six-sided) die 100 times. Let X be the number of 6 s among the 100 rolls.

1. What is the expected value of X ?
2. We may assume X to be a Poisson random variable. Under this assumption, what is the probability of no 6 s whatsoever in the 100 rolls?
3. Give the probability of the number of 6 s being n, i.e. $P(X=n)$.

Solution. The probability of a 6 on any individual roll is $\frac{1}{6}$, so the expected number of 6 s in 100 rolls is $\frac{100}{6}$.

If X is Poisson then it has parameter $\lambda=\frac{100}{6}$, because λ is the expected value. Now the probability of no 6 s is $P(X=0)=e^{-\lambda}=e^{-100 / 6}$. (You do not need to simplify this, but just for the record it comes out to about 6×10^{-8}. The chances are not good.)

For a Poisson random variable, $P(X=n)=\frac{\lambda^{n}}{n!} e^{-\lambda}$.

