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Background

All rings are assumed to be commutative with unity.

Definition

The spectrum of a ring R, denoted by Spec R, is the set of prime
ideals of R.

Definition

A local ring is a Noetherian ring with a single maximal ideal; when
we say (R,M) is a local ring we mean that R is a local ring with
maximal ideal M.

Local rings are unusual, but we can make any Noetherian ring into
a local ring using a proccess called localization. A ring R localized
at a prime ideal P is denoted RP .
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Let (R,M) be a local ring.

Definition

The M-adic metric on R is given by

d(x , y) =

{
1
2n n = max{k | x − y ∈ Mk} if it exists

0 otherwise

Definition

The completion of R, denoted by R̂, is the completion of R as a
metric space with respect to the M-adic metric.

R̂ is equipped with a natural ring structure.

Example: Q̂[x ](x) = Q[[x ]].
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Motivation

Theorem (Cohen Structure Theorem)

If T is a complete local ring containing a field, then
T ∼= K [[x1, . . . , xn]]/I for some field K and ideal I of
K [[x1, . . . , xn]].

We understand complete rings very well because of the Cohen
structure theorem. If we understand the relationship between a
ring and its completion, we can learn about an arbitrary local ring
by passing to its completion.
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Let (R,M) be a local ring.

If P ∈ Spec R̂, then P ∩ R ∈ Spec R.

Definition

The generic formal fiber of a local integral domain R is the set of
prime ideals P ∈ Spec R̂ such that P ∩ R = (0).

Note that if P ′ ⊂ P and P ∩ R = (0), then P ′ ∩ R = (0) also.
That is, the generic formal fiber of R is completely described by its
maximal elements.

Most integral domains have generic formal fibers with many
maximal elements.

If the generic formal fiber of R has a single maximal element, then
we say R has a local generic formal fiber.
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Previous Results

Theorem (P. Charters and S. Loepp, 2004)

Let (T ,M) be a complete local ring of characteristic 0 and P a
prime ideal of T . Then T is the completion of a local excellent
domain A posessing a local generic formal fiber with maximal ideal
P if and only if T is a field and P = (0) or the following conditions
hold:

1 P 6= M

2 P contains all zero divisors of T and no nonzero integers of T ,

3 TP is a regular local ring.
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“It has been generally agreed that ‘excellent’ Noetherian rings
should behave similarly to the rings found in algebraic geometry,
specifically, rings of the form

A = K [x1, . . . , xn]/I

where A has finite type over a field K .”
(C. Rotthaus, Excellent Rings, Henselian Rings, and the
Approximation Property, Rocky Mountain J. Math 1997)
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We are trying to extend the Charters and Loepp result to
characteristic p > 0.

As Charters and Loepp noted, “this proof fails if the characteristic
of T is p > 0, as the ring we construct may not have a
geometrically regular generic formal fiber.”

That is, we need to construct A so that T ⊗A L is a regular ring for
every finite extension L of K , where K is the quotient field of A.
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Definition

A local ring (R,M) is a regular local ring if the minimal number of
generators of M is equal to the length of the longest chain of
prime ideals

P0 ( P1 ( · · · ( Pn = M

in R.

Definition

A Noetherian ring R is regular if the localization of R at every
prime ideal is a regular local ring.
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Recall: A is a local integral domain with quotient field K , Â = T ,
P ∈ Spec T , and L is a finite extension of K .

When is T ⊗A L a regular ring?

We only need to check that this is a regular ring in the case that L
is a purely inseparable extension of K .

In characteristic 0, K has no non-trivial purely inseparable
extensions, so we only need to check that T ⊗A K is regular. In
fact, T ⊗A K ∼= TP so this is condition 3 of the Charters and
Loepp theorem.
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Results

Theorem (SMALL 2013 Comm. Alg.)

Let (T ,M) be a complete local ring of characteristic p, P a prime
ideal of T , and A a local domain with completion T and local
generic formal fiber with maximal element P. Let K be the
quotient field of A. Then for any finite purely inseparable field
extension L of K ,

T ⊗A L ∼= TP [x1, . . . , xr ]/〈xpn1
1 − k1, . . . , xpnr

r − kr 〉

for some ni ∈ N and ki ∈ K [x1, . . . , xi−1].
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Theorem (SMALL 2013 Comm. Alg.)

Let (R,M) be a regular local ring of characteristic p, and k ∈ R.
Then R[x ]/〈xpn − k〉 is regular (in fact, regular local) if and only if
k + M2 is not a pth power in R/M2.

This allows us to classify when T ⊗A K is geometrically regular
(i.e. T ⊗A L is regular for every finite purely inseparable extension
L of K ).
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Corollary (SMALL 2013 Comm. Alg.)

Let A be a local domain with completion Â = T and quotient field
K . Then T ⊗A K is geometrically regular if and only if for every
sequence k1 ∈ K , k2 ∈ K [x1], . . . , kn ∈ K [x1, . . . , xn−1] such that ki
is not a pth power in

K [x1, . . . , xi−1]/〈xpn1 − k1, . . . , xpni−1 − ki−1〉,

ki is also not a pth power in

(TP [x1, . . . , xi−1]/〈xpn1 − k1, . . . , xpni−1 − ki−1〉)/M2
i

where Mi is the maximal ideal of
TP [x1, . . . , xi−1]/〈xpn1 − k1, . . . , xpni−1 − ki−1〉.
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Conjecture

Let (T ,M) be a complete local ring of any characteristic and P a
prime ideal of T . Then T is the completion of a local excellent
domain A posessing a local generic formal fiber with maximal ideal
P if and only if T is a field and P = (0) or the following conditions
hold:

1 P 6= M

2 P contains all zero divisors of T and no nonzero integers of T ,

3 TP is a regular local ring.
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