Worksheet 8 Solutions
 MATH 1A Fall 2015

for 24 November 2015

Exercise 8.1. Find the derivatives of the following functions.
1.

$$
f(x)=\int_{0}^{x} e^{t^{2}} d t
$$

2.

$$
g(x)=\int_{0}^{x^{2}} \frac{\sin t}{t} d t
$$

Solution. Recall that the (first part of the) fundamental theorem of calculus states: for a continuous function f,

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

For the first problem we can apply this immediately to find

$$
\frac{d}{d x} f(x)=\frac{d}{d x} \int_{0}^{x} e^{t^{2}} d t=e^{x^{2}}
$$

For the second problem, first define

$$
\tilde{g}(x)=\int_{0}^{x} \frac{\sin t}{t} d t
$$

Note $g(x)=\tilde{g}\left(x^{2}\right)$. The point is that we can apply the fundamental theorem of calculus to find the derivative of \tilde{g} :

$$
\frac{d}{d x} \tilde{g}(x)=\frac{d}{d x} \int_{0}^{x} \frac{\sin t}{t} d t=\frac{\sin x}{x}
$$

and we can use the chain rule to find the derivative of g in terms of the derivative of \tilde{g} :

$$
\frac{d}{d x} g(x)=\frac{d}{d x} \tilde{g}\left(x^{2}\right)=\tilde{g}^{\prime}\left(x^{2}\right) 2 x
$$

Combining these, we find

$$
\frac{d}{d x} g(x)=\frac{\sin \left(x^{2}\right)}{x^{2}} 2 x=\frac{2 \sin \left(x^{2}\right)}{x}
$$

Exercise 8.2. Find antiderivatives of the following functions.

1. $\frac{1}{1-x}$
2. $\cos (2 x)$.

Solution. It's possible to see these antiderivatives immediately from the function, but let's use a u-substitution to make things perfectly clear.

First of all, we know $\ln |x|$ is an antiderivative of $\frac{1}{x}$ (i.e. $\frac{d}{d x} \ln |x|=\frac{1}{x}$). Setting $u=1-x$, we have $\frac{d u}{d x}=-1$, so $-d u=d x$, so

$$
\int \frac{1}{1-x} d x=-\int \frac{1}{u} d u=-\ln |u|+c=-\ln |1-x|+c
$$

We also know $\sin x$ is an antiderivative of $\cos x$ (i.e. $\frac{d}{d x} \sin x=\cos x$). Setting $u=2 x$, we have $\frac{d u}{d x}=2$, so $\frac{1}{2} d u=d x$, so

$$
\int \cos (2 x) d x=\frac{1}{2} \int \cos (u) d u=\frac{1}{2} \sin (u)+c=\frac{1}{2} \sin (2 x)+c
$$

