Worksheet 5 Solutions
 MATH 1A Fall 2015

for 20 October 2015

Exercise 5.1. Find $\frac{d}{d x} \arcsin x$. [Hint: it may be helpful to use implicit differentiation.]
Solution. We can set $y=\arcsin x$, and taking \sin of both sides $\sin y=x$. Now using implicit differentiation,

$$
\begin{aligned}
\frac{d}{d x} \sin y & =\frac{d}{d x} x \\
\cos (y) \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{\cos y} \\
\frac{d y}{d x} & =\frac{1}{\cos (\arcsin x)} \\
\frac{d y}{d x} & =\frac{1}{\sqrt{\cos (\arcsin x)^{2}}} \\
\frac{d y}{d x} & =\frac{1}{\sqrt{1-\sin (\arcsin x)^{2}}} \\
\frac{d y}{d x} & =\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Exercise 5.2. This is a problem that I have actually done with some friends in the past.
Berkeley campus is 178 acres, or about $7,750,000$ square feet, and let's say a sheep occupies about 10 square feet. Suppose today (or at $t=0$ or whatever) we buy two sheep, and suppose the reproductive cycle of these sheep lasts a year (gestation plus reaching maturity should only take about $5+6$ months, but most sheep are seasonal breeders, so we can assume they breed once a year). Most sheep also have litters of 1-2 lambs, so let's say the number of sheep doubles each reproductive cycle (there will be some twins and some single lambs, but also maybe we have less rams than ewes; whatever).

1. Write a model for the number of sheep y we have as a function of time t (and maybe put time in units of years).
2. How long will it take before we can completely cover Berkeley campus with sheep?
3. Suppose I want to cover Berkeley with sheep before I graduate in 5 years. What's the least number of sheep I'd need to start with?

Proof. 1. We want a model of the form $y=c e^{k t}$, or writing $r=e^{k}$, alternatively $y=c r^{t}$. Since anything to the power 0 is 1 , the constant c must be out initial value, i.e. $c=y(0)=2$. Also after 1 year we should have 4 sheep (after one year double our initial value), so $4=2 r^{1}$, and we find $r=2$. Thus $y=2 \cdot 2^{t}$.
2. We'll need $\frac{7750000}{10}=775000$ sheep, so we want to solve $775000=2 \cdot 2^{t}$. Dividing by 2 and then taking \log base 2 , we find

$$
t=\log _{2}(775000 / 2)=\frac{\ln (775000 / 2)}{\ln 2} \approx 18.6 \text { years. }
$$

3. If we want to find the number of starting sheep we need in order to get 775000 after 5 years, that means solving $775000=c 2^{5}$, and we find $c=775000 / 2^{5} \approx 24219$ sheep.
