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The squeeze theorem is a useful tool for evaluating limits, and to use it properly it probably
helps to understand what it is. It’s also useful to be able to translate back and forth between
intuitive ways of saying things and precise ways of saying things (and this example in particular
will be necessary when we’re proving the squeeze theorem or applying it to prove limits).

Exercise 3.1. State the squeeze theorem. Next, if your statement includes (anything like) the
phrase “when x is near a, except possibly at a, we have f (x) ≤ g(x) ≤ h(x)”, replace this intuitive
phrase with a precise mathematical statement.

Solution. The squeeze theorem states: Let f , g, h be real-valued functions, and let a, L ∈ R. Sup-
pose that when x is near a, except possibly at a, we have f (x) ≤ g(x) ≤ h(x). Suppose also
that

lim
x→a

f (x) = L = lim
x→a

h(x).

Then limx→a g(x) = L.

To be more precise we can replace “when x is near a, except possibly at a, we have f (x) ≤
g(x) ≤ h(x)” with “there exists a δ > 0 such that if 0 < |x− a| < δ then f (x) ≤ g(x) ≤ h(x)”.

Exercise 3.2. Prove that
lim
x→0

x2esin x = 0.

(Recall e is just some real number, about 2.7ish).

Proof. Note that

−1 ≤ sin x ≤ 1, so

e−1 ≤esin x ≤ e1 and

x2e−1 ≤ x2esin x ≤ x2e.

Note also that limx→0 x2e−1 = 0 = limx→0 x2e. By the squeeze theorem, we conclude that
limx→0 x2esin x = 0.

We’ll probably also need to be able to use all sorts of different limits, so here is one to exercise
a different definition of limit than the usual one.



Exercise 3.3. For a function f (x), define what it means to say

lim
x→a+

f (x) = ∞.

Then prove that

lim
x→0+

1
x
= ∞.

Proof. We say that limx→a+ f (x) = ∞ if for every N ∈ R there exists a δ > 0 such that if a < x <
a + δ then f (x) > N.

Proof 1: Let N ∈ R, and set δ = 1
|N|+1 . Suppose 0 < x < δ = 1

|N|+1 . Then

x <
1

|N|+ 1

∴ x(|N|+ 1) < 1

∴ |N|+ 1 <
1
x

∴ |N| < 1
x

∴ N <
1
x

.

Thus for every N ∈ R there exists a δ > 0, namely δ = 1
|N|+1 , such that if 0 < x < δ then 1

x > N.

This proves lim0+
1
x = ∞.

Proof 2: Note that if 0 < x < δ implies 1
x > N, then for any N′ < N, we also have 0 < x < δ

implies 1
x > N′. Thus if we prove there exists such a δ for all N > 0, then it follows that there

exists such a δ for all N ∈ R.
Let N > 0, and set δ = 1

N . If 0 < x < δ = 1
N , then xN < 1 and N < 1

x . This proves
limx→0+

1
x = ∞.


