Worksheet 2 Solutions
 MATH 1A Fall 2015

for 15 September 2015

Exercise 2.1. Suppose $\lim _{x \rightarrow a} f(x)=L$, and let $c \in \mathbb{R}$. Prove that

$$
\lim _{x \rightarrow a} c f(x)=c L
$$

Proof. First note that if $c=0$, then $\lim _{x \rightarrow a} c f(x)=\lim _{x \rightarrow a} 0=0=c L$. This proves the claim if $c=0$.

Now suppose $c \neq 0$. Let $\varepsilon>0$. Because $\lim _{x \rightarrow a} f(x)=L$, the definition of a limit tells us that there exists a $\delta>0$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<\frac{\varepsilon}{|c|}$. Choose such a δ.

Now if $0<|x-a|<\delta$, we have

$$
\begin{aligned}
& |f(x)-L|<\frac{\varepsilon}{|c|} \\
\text { so } & |c||f(x)-L|<\varepsilon \\
\text { and } & |c f(x)-c L|<\varepsilon
\end{aligned}
$$

Thus $\lim _{x t o a} c f(x)=c L$.
Exercise 2.2. Evaluate, with proof, the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x-2}
$$

[Hint: remember that the limit doesn't care what happens at $x=2$, just what happens near $x=2$. So we can assume $x \neq 2$, and the expression simplifies. After that it should be more familiar.]

Proof. The definition of a limit does not depend on the behavior at $x=2$, so in the process of evaluating the limit we may assume $x \neq 2$. Supposing $x \neq 2$, we have

$$
\frac{x^{2}+3 x-10}{x-2}=\frac{(x-2)(x+5)}{x-2}=x+5
$$

and since this is true for all $x \neq 2$ we have

$$
\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x-2}=\lim _{x \rightarrow 2} x+5=7
$$

(To prove the second equality, i.e. $\lim _{x \rightarrow 2} x+5=7$, we can use the usual $\varepsilon-\delta$ style proof, or alternatively we can recall that $x+5$ is continuous so that plugging in the value gives the limit).

Exercise 2.3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions. Suppose that f and g are continuous (i.e. continuous at a for every $a \in \mathbb{R}$). Prove that $f+g$ is continuous. In case it's not familiar, $f+g$ is the function that takes a real number x to the value $f(x)+g(x)$. [Hint: I'm not sure how hard this looks, but the proof is very short. Know your definitions and limit laws.]

Proof. By definition, f and g being continuous means that

$$
\lim _{x \rightarrow a} f(x)=f(a) \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=g(a)
$$

for all $a \in \mathbb{R}$. By the sum law for limits, we conclude that

$$
\lim _{x \rightarrow a} f(x)+g(x)=f(a)+g(a)
$$

for all $a \in \mathbb{R}$, and this is simply the statement that $f+g$ is continuous.

