Worksheet 2 Solutions MATH 1A Fall 2015

for 15 September 2015

Exercise 2.1. Suppose $\lim_{x\to a} f(x) = L$, and let $c \in \mathbb{R}$. Prove that

$$\lim_{x \to a} cf(x) = cL$$

Proof. First note that if c = 0, then $\lim_{x\to a} cf(x) = \lim_{x\to a} 0 = 0 = cL$. This proves the claim if c = 0.

Now suppose $c \neq 0$. Let $\varepsilon > 0$. Because $\lim_{x \to a} f(x) = L$, the definition of a limit tells us that there exists a $\delta > 0$ such that if $0 < |x - a| < \delta$ then $|f(x) - L| < \frac{\varepsilon}{|c|}$. Choose such a δ .

Now if $0 < |x - a| < \delta$, we have

$$|f(x) - L| < \frac{\varepsilon}{|c|}$$

so $|c| |f(x) - L| < \varepsilon$
and $|cf(x) - cL| < \varepsilon$.

Thus $\lim_{x \to a} cf(x) = cL$.

Exercise 2.2. Evaluate, with proof, the limit

$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x - 2}.$$

[Hint: remember that the limit doesn't care what happens *at* x = 2, just what happens *near* x = 2. So we can assume $x \neq 2$, and the expression simplifies. After that it should be more familiar.]

Proof. The definition of a limit does not depend on the behavior at x = 2, so in the process of evaluating the limit we may assume $x \neq 2$. Supposing $x \neq 2$, we have

$$\frac{x^2 + 3x - 10}{x - 2} = \frac{(x - 2)(x + 5)}{x - 2} = x + 5,$$

and since this is true for all $x \neq 2$ we have

$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x - 2} = \lim_{x \to 2} x + 5 = 7.$$

(To prove the second equality, i.e. $\lim_{x\to 2} x + 5 = 7$, we can use the usual $\varepsilon - \delta$ style proof, or alternatively we can recall that x + 5 is continuous so that plugging in the value gives the limit).

Exercise 2.3. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be functions. Suppose that f and g are continuous (i.e. continuous at a for every $a \in \mathbb{R}$). Prove that f + g is continuous. In case it's not familiar, f + g is the function that takes a real number x to the value f(x) + g(x). [Hint: I'm not sure how hard this looks, but the proof is *very short*. Know your definitions and limit laws.]

Proof. By definition, f and g being continuous means that

$$\lim_{x \to a} f(x) = f(a) \quad \text{and} \quad \lim_{x \to a} g(x) = g(a)$$

for all $a \in \mathbb{R}$. By the sum law for limits, we conclude that

$$\lim_{x \to a} f(x) + g(x) = f(a) + g(a)$$

for all $a \in \mathbb{R}$, and this is simply the statement that f + g is continuous.