Worksheet 2
 MATH 1A Fall 2015

for 15 September 2015

Exercise 2.1. Suppose $\lim _{x \rightarrow a} f(x)=L$, and let $c \in \mathbb{R}$. Prove that

$$
\lim _{x \rightarrow a} c f(x)=c L
$$

Exercise 2.2. Evaluate, with proof, the limit

$$
\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x-2}
$$

[Hint: remember that the limit doesn't care what happens at $x=2$, just what happens near $x=2$. So we can assume $x \neq 2$, and the expression simplifies. After that it should be more familiar.]

Exercise 2.3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be functions. Suppose that f and g are continuous (i.e. continuous at a for every $a \in \mathbb{R}$). Prove that $f+g$ is continuous. In case it's not familiar, $f+g$ is the function that takes a real number x to the value $f(x)+g(x)$. [Hint: I'm not sure how hard this looks, but the proof is very short. Know your definitions and limit laws.]

