Worksheet 2 MATH 1A Fall 2015

for 15 September 2015

Exercise 2.1. Suppose $\lim_{x\to a} f(x) = L$, and let $c \in \mathbb{R}$. Prove that

$$\lim_{x \to a} cf(x) = cL$$

Exercise 2.2. Evaluate, with proof, the limit

$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x - 2}.$$

[Hint: remember that the limit doesn't care what happens at x = 2, just what happens near x = 2. So we can assume $x \neq 2$, and the expression simplifies. After that it should be more familiar.]

Exercise 2.3. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be functions. Suppose that f and g are continuous (i.e. continuous at a for every $a \in \mathbb{R}$). Prove that f + g is continuous. In case it's not familiar, f + g is the function that takes a real number x to the value f(x) + g(x). [Hint: I'm not sure how hard this looks, but the proof is *very short*. Know your definitions and limit laws.]