Quiz 5 Solutions
 MATH 1A Fall 2015

15 October 2015

Exercise 5.1. Consider the equation

$$
e^{x y}=2 x \sin y
$$

Find $\frac{d y}{d x}$.
Solution. By implicit differentiation we find

$$
\begin{aligned}
\frac{d}{d x} e^{x y} & =\frac{d}{d x} 2 x \sin y \\
e^{x y}\left(y+x \frac{d y}{d x}\right) & =2 \sin y+2 x \cos (y) \frac{d y}{d x}
\end{aligned}
$$

where we've used the chain rule and product rule on the left-hand side, and the product rule on the right-hand side. Solving for $\frac{d y}{d x}$ gives

$$
\begin{array}{r}
y e^{x y}+x e^{x y} \frac{d y}{d x}=2 \sin y+2 x \cos (y) \frac{d y}{d x} \\
x e^{x y} \frac{d y}{d x}-2 x \cos (y) \frac{d y}{d x}=2 \sin y-y e^{x y} \\
\frac{d y}{d x}=\frac{2 \sin y-y e^{x y}}{x e^{x y}-2 x \cos y}
\end{array}
$$

An alternative form of the solution can be obtained by substituting $e^{x y}$ with $2 x \sin y$, because by the original equation these are equal. This results in

$$
\frac{d y}{d x}=\frac{2 \sin y-2 x y \sin y}{2 x^{2} \sin y-2 x \cos y}
$$

and dividing top and bottom by $2 x \sin y$, we obtain

$$
\frac{d y}{d x}=\frac{\frac{1}{x}-y}{x-\cot y}
$$

This is the solution that appears if we apply log to both sides of the original equation before taking the implicit derivative; note that the two solutions are in fact the same.

Exercise 5.2. Suppose $x=f(y)$. Find $\frac{d y}{d x}$ in terms of x, y, and f and its derivatives.
Solution. Taking an implicit derivative,

$$
\begin{gathered}
\frac{d}{d x} x=\frac{d}{d x} f(y) \\
1=f^{\prime}(y) \frac{d y}{d x}
\end{gathered}
$$

so we find

$$
\frac{d y}{d x}=\frac{1}{f^{\prime}(y)}
$$

