Quiz 4 Solutions
 MATH 1A Fall 2015

1 October 2015

Exercise 3.1. Find the derivative of $\tan \left(1+x^{2}\right)$.
Solution. We have a composition of two familiar functions, namely $\tan x$ and $1+x^{2}$, so we'll use the chain rule.

First of all, the derivative of $\tan x$ is $\sec ^{2} x$, which we can either remember or find using the quotient rule:

$$
\begin{aligned}
\frac{d}{d x} \tan x & =\frac{d}{d x} \frac{\sin x}{\cos x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x
\end{aligned}
$$

(where we've used the trig identity $\sin ^{2} x+\cos ^{2} x=1$). Now using the chain rule,

$$
\frac{d}{d x} \tan \left(1+x^{2}\right)=\sec ^{2}\left(1+x^{2}\right) \cdot 2 x
$$

Exercise 3.2. Prove that the polynomial $x^{4}-x-4$ has a root in the interval $[-2,2]$.
Proof. Note that $f(x)=x^{4}-x-4$ is continuous. Note also that

$$
f(-2)=14>0 \quad \text { and } \quad f(0)=-4<0
$$

By the intermediate value theorem, there is a $c \in(-2,0)$ such that $f(c)=0$. (In particular, this c is also in $[-2,2]$).

