Quiz 3 Solutions
 MATH 1A Fall 2015

24 September 2015

Exercise 3.1. Prove that

$$
\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)+x=0
$$

Proof. Note that

$$
\begin{gathered}
-1 \leq \cos \left(\frac{1}{x}\right) \leq 1 \\
-x^{2} \leq x^{2} \cos \left(\frac{1}{x}\right) \leq x^{2} \\
-x^{2}+x \leq x^{2} \cos \left(\frac{1}{x}\right)+x \leq x^{2}+x
\end{gathered}
$$

for all $x \in \mathbb{R}$. Note also that

$$
\lim _{x \rightarrow 0}-x^{2}+x=\lim _{x \rightarrow 0} x^{2}+x=0
$$

By the squeeze theorem, we conclude

$$
\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)+x=0
$$

Exercise 3.2. State the definitions of the following limits.

$$
\lim _{x \rightarrow a^{-}} f(x)=\infty \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

Solution. We say $\lim _{x \rightarrow a^{-}} f(x)=\infty$ if for every $M \in \mathbb{R}$ there is a $\delta>0$ such that if $a-\delta<x<a$ then $f(x)>M$.

We say $\lim _{x \rightarrow-\infty} f(x)=L$ if for every $\varepsilon>0$ there is an $N \in \mathbb{R}$ such that if $x<N$ then $|f(x)-L|<\varepsilon$.

