Quiz 2 Solutions MATH 1A Fall 2015

17 September 2015

Exercise 2.1. State the definition of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ being continuous at a point $a \in \mathbb{R}$.
Proof. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $a \in \mathbb{R}$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Exercise 2.2. Prove that

$$
\lim _{x \rightarrow 1} \frac{x^{5}+3 x^{2}+2}{x+1}=3
$$

You may assume that polynomials are continuous.
Proof. If you are content to assume that our rational function is continuous, then you can just plug in $x=1$ to find the limit. If you want to only assume that polynomials are continuous, here is a proof:

Since polynomials are continuous, we have

$$
\lim _{x \rightarrow 1} x^{5}+3 x^{2}+2=6 \quad \text { and } \quad \lim _{x \rightarrow 1} x+1=2
$$

Since the denominator is not zero, we can use the limit law for quotients to see

$$
\lim _{x \rightarrow 1} \frac{x^{5}+3 x^{2}+2}{x+1}=\frac{6}{2}=3
$$

