Practice Final Exam Solutions MATH 1A Fall 2015

Problem 1. A 13 foot ladder rests against a wall. The base of the ladder is pushed toward the wall at 2 feet per second. How fast is the top of the ladder moving up the wall when the base is 5 feet from the wall?

Solution. The distance x of the base of the ladder from the wall and the height y of the top of the ladder up the wall (both functions of time t) are related by

$$
x^{2}+y^{2}=13
$$

We want to find $\frac{d y}{d t}$ when $x=5$ (and $\frac{d x}{d t}=-2$). Taking an implicit derivative with respect to t, we find

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0
$$

From the first equation, plugging in $x=5$, we find $y=12$; we also know $\frac{d x}{d t}=-2$, so

$$
2(5)(-2)+2(12) \frac{d y}{d t}=0
$$

and we find $\frac{d y}{d t}=\frac{5}{6}$.
Problem 2. Prove that there is a real number x for which $\ln x=\frac{1}{x}$.
Proof. Consider the function $f(x)=\ln x-\frac{1}{x}$. It is continuous on $(0, \infty)$. Furthermore,

$$
f(1)=0-\frac{1}{1}<0
$$

and

$$
f(e)=1-\frac{1}{e}>0
$$

By the intermediate value theorem we conclude that $f(x)=0$ for some $x \in(1, e)$, and this is a solution to $\ln x=\frac{1}{x}$.

Problem 3. Find the derivatives of the following functions.
(a) $x^{2} e^{x}$
(b) $\ln (\sec x+\tan x)$
(c) x^{x}

Solution. (a) By the product rule, $\frac{d}{d x} x^{2} e^{x}=2 x e^{x}+x^{2} e^{x}$.
(b) Using the quotient rule, we find $\frac{d}{d x} \sec x=\frac{d}{d x} \frac{1}{\cos x}=\sec x \tan x$ and $\frac{d}{d x} \tan x=\frac{d}{d x} \frac{\sin x}{\cos x}=$ $\sec ^{2} x$. Using these together with the chain rule, we find

$$
\frac{d}{d x} \ln (\sec x+\tan x)=\frac{\sec ^{2} x+\sec x \tan x}{\sec x+\tan x}=\sec x
$$

(c) Writing $x^{x}=e^{x \ln x}$, we can use the chain rule (and product rule) to find

$$
\frac{d}{d x} x^{x}=\frac{d}{d x} e^{x \ln x}=e^{x \ln x}(1+\ln x)=x^{x}(1+\ln x)
$$

Problem 4. (a) Define what it means to say $\lim _{x \rightarrow a^{+}} f(x)=\infty$.
(b) Prove, using the definition from the previous part, that $\lim _{x \rightarrow 2^{+}} \frac{1}{x-2}=\infty$.

Proof. Suppose for all $M \in \mathbb{R}$ there exists a $\delta>0$ such that if $a<x<a+\delta$ then $f(x)>M$. Then we say $\lim _{x \rightarrow a^{+}} f(x)=\infty$.

Let $M \in \mathbb{R}$, and assume (without loss of generality) that $M>0$. Set $\delta=\frac{1}{M}$. Suppose $2<x<2+\delta$, i.e. $0<x-2<\frac{1}{M}$. Then dividing by $x-2$ and multiplying by M (note both are positive so our inequalities are preserved), we find $M<\frac{1}{x-2}$. Thus $\lim _{x \rightarrow 2^{+}} \frac{1}{x-2}=\infty$.
Problem 5. State the extreme value theorem.
Solution. If f is a continuous function on a closed interval $[a, b]$, then f has an absolute maximum and absolute minimum on $[a, b]$.

Problem 6. (a) State the limit definition of the derivative.
(b) Prove, using the definition from the previous part, that $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$.

Proof. The derivative of a function f at a point x, is the limit

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(if this limit exists).
Using this definition, to show $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$ is to show

$$
\lim _{h \rightarrow 0} \frac{(f+g)(x+h)-(f+g)(x)}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
$$

Starting from the left side, we can simply write

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{(f+g)(x+h)-(f+g)(x)}{h} & =\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-f(x)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
\end{aligned}
$$

where the last euqality is by the sum law for limits.

Problem 7. Let f be a differentiable function. Suppose that $f(0)=0$ and $f^{\prime}(x)>0$ for all x. Prove that $f(x)>0$ for all $x>0$.

Proof. Let $x>0$. We know f is differentiable, so by the mean value theorem there is a $c \in(0, x)$ such that $f^{\prime}(c)=\frac{f(x)-f(0)}{x-0}=\frac{f(x)}{x}$. Since x and $f^{\prime}(c)$ are both positive, it must be that $f(x)$ is positive as well.

Problem 8. State and prove the squeeze theorem.
Solution. Let f, g, h be real-valued functions and $a \in \mathbb{R}$. Suppose that when x is near a, except possibly at a, we have $f(x) \leq g(x) \leq h(x)$. Suppose also that

$$
\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)
$$

Then

$$
\lim _{x \rightarrow a} g(x)=L
$$

The proof is as follows. Let $\varepsilon>0$.
Choose $\delta_{1}>0$ such that if $0<|x-a|<\delta_{1}$ then $f(x) \leq g(x) \leq h(x)$.
Since $\lim _{x \rightarrow a} f(x)=L$, we can choose $\delta_{2}>0$ such that if $0<|x-a|<\delta_{2}$ then $|f(x)-L|<\varepsilon$. Similarly, since $\lim _{x \rightarrow a} h(x)=L$, we can choose $\delta_{3}>0$ such that if $0<|x-a|<\delta_{3}$ then $|h(x)-L|<\varepsilon$.

Set $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$, and suppose $0<|x-a|<\delta$.
Then $0<|x-a|<\delta_{1}$, so $f(x) \leq g(x) \leq h(x)$.
Also $0<|x-a|<\delta_{2}$, so $|f(x)-L|<\varepsilon$, i.e. $L-\varepsilon<f(x)<L+\varepsilon$.
Also $0<|x-a|<\delta_{3}$, so $|h(x)-L|<\varepsilon$, i.e. $L-\varepsilon<h(x)<L+\varepsilon$.
Combining these, we see

$$
L-\varepsilon<f(x) \leq g(x) \leq h(x)<L+\varepsilon
$$

so $|g(x)-L|<\varepsilon$.
Problem 9. Find $\frac{d y}{d x}$ if $y^{2} x+\ln y=\sin (2 x)$.
Solution. Taking an implicit derivative with respect to x,

$$
2 y x \frac{d y}{d x}+y^{2}+\frac{1}{y} \frac{d y}{d x}=2 \cos (2 x)
$$

Now we simply solve for $\frac{d y}{d x}$, and find

$$
\frac{d y}{d x}=\frac{2 \cos (2 x)-y^{2}}{2 x y+1 / y}
$$

Problem 10. Moore's law is the observation that the number of transistors in computer processors has doubled every two years. Suppose a 2011 proccessor has 2.6 billion transistors.
(a) Write a model for the number of transistors in a processor as a function of time.
(b) How many transistors did 1971 processors have?

Proof. (a) Let T be the number of transistors in a processor, and t be time in years since 2011 (i.e. set $t=0$ to be 2011). Since T doubles every two years the growth is exponential, so we're looking for a model of the form $T(t)=C e^{k t}$. By plugging in $t=0$ we find $C=T(0)=2.6 \times 10^{9}$. We can find another data point using the fact that T doubles every two years: since $T(0)=2.6 \times 10^{9}$, it must be that $T(2)=5.2 \times 10^{9}$. Plugging this in to our model, we find

$$
5.2 \times 10^{9}=2.6 \times 10^{9} e^{2 t},
$$

and solving for k gives $k=\frac{\ln 2}{2}$. Thus we arrive at the model

$$
T(t)=2.6 \times 10^{9} e^{t \frac{\ln 2}{2}}=2.6 \times 10^{9} 2^{t / 2}
$$

(b) The year 1971 corresponds to $t=-40$, so the number of transistors in a 1971 processor is

$$
T(-40)=2.6 \times 10^{9} 2^{-20} .
$$

Problem 11. If two numbers add up to 6 , what is the largest their product can be?
Solution. Let's call our two numbers x and y. We're told that $x+y=6$, and we want to maximize $x y$. The first equation can be rearranged as $y=6-x$, and substituting this into the second equation we get $x(6-x)=6 x-x^{2}$.

To maximize this function, we compute the derivative $\frac{d}{d x} 6 x-x^{2}=6-2 x$. This is never undefined, and it is zero when $x=3$, so $x=3$ is our only critical point. The second derivative $\frac{d}{d x} 6-2 x=-2$ is negative at this point, so by the second derivative test it is indeed a maximum. Thus the maximum is achieved at $x=3, y=3$ and the maximum product is 9 .

Problem 12. State the fundamental theorem of calculus.
Solution. Part 1: If f is continuous on $[a, b]$, then the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t
$$

is continuous on $[a, b]$ and differentiable on (a, b), and $\frac{d}{d x} g(x)=f(x)$.
Alternatively: If f is continuous, then

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Part 2: If F is differentiable, then

$$
\int_{a}^{b} \frac{d}{d x} F(x) d x=F(b)-F(a) .
$$

Problem 13. Find the antiderivatives of the following functions.
(a) $(x+2)(x+4)$
(b) $\tan x$
(c) $x 3^{x^{2}+3}$

Solution. (a) Using the power rule:

$$
\int(x+2)(x+4) d x=\int x^{2}+6 x+8 d x=\frac{x^{3}}{3}+3 x^{2}+8 x+C .
$$

(b) Using u-substitution with $u=\cos x$:

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x=-\int \frac{1}{u} d u=-\ln |u|+C=-\ln |\cos x|+C .
$$

(c) Using u-substitution with $u=x^{2}+3$ (note $u=3^{x^{2}+3}$ also works):

$$
\int x 3^{x^{2}+3} d x=\frac{1}{2} \int 3^{u} d u=\frac{1}{2} \frac{3^{u}}{\ln 3}+C=\frac{3^{x^{2}+3}}{2 \ln 3}+C .
$$

Problem 14. Evaluate the following limits. Show work, but there is no need to justify each step.
(a) $\lim _{x \rightarrow \infty} \frac{(x-1)(2 x+2)}{x^{2}+4 x+3}$
(b) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$
(c) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$

Solution. (a) By comparing the leading terms of the numerator and denominator,

$$
\lim _{x \rightarrow \infty} \frac{(x-1)(2 x+2)}{x^{2}+4 x+3}=\lim _{x \rightarrow \infty} \frac{2 x^{2}-2}{x^{2}+4 x+3}=2 .
$$

(We could also be more precise and use l'Hôpital's rule).
(b) Note that $-x^{2} \leq x^{2} \sin \left(\frac{1}{x}\right) \leq x^{2}$. Also $-x^{2}$ and x^{2} both have a limit of 0 at $x=0$, so by the squeeze theorem

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0
$$

(c) By l'Hôpital's rule,

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}=\lim _{x \rightarrow 0} \frac{2 \cos 2 x}{1}=2 .
$$

Problem 15. (a) Define what it means to say a function $f(x)$ is continuous at a point a.
(b) Prove, using the definition above, that $f(x)=3 x+2$ is continuous at 1 .

Proof. A function $f(x)$ is continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

We want to show that

$$
\lim _{x \rightarrow 1} 3 x+1=5 .
$$

Let $\varepsilon>0$, and set $\delta=\varepsilon / 3$. Suppose $0<|x-1|<\delta=\varepsilon / 3$. Then

$$
|3 x+2-5|=|3 x-3|=3|x-1|<3 \varepsilon / 3=\varepsilon .
$$

Thus $\lim _{x \rightarrow 1} 3 x+2=5$, so $3 x+2$ is continuous at 1 .

Problem 16. Find the $50^{\text {th }}$ derivative of $f(x)=e^{2 x+1}$.
Solution. Using the chain rule we see the first derivative is $2 e^{2 x+1}$, the second is $2^{2} e^{2 x+1}$, the third is $2^{3} e^{2 x+1}$, and so on. The effect of taking each derivative is to multiply the function by 2 , so the $50^{\text {th }}$ derivative is $2^{50} e^{2 x+1}$.

Problem 17. Let P and Q be logical statements, and suppose P is true and Q is false. Decide whether or not the following statements are true or false.
(a) P and not Q
(b) Q implies P
(c) $(\operatorname{not} P)$ if and only if Q

Solution. (a) An "and" statement is true precisely when both of its inputs are true. In our case P is true, and not Q is true (since Q is false), so " P and not Q " is true.
(b) An "implies" statement is only false when the first input is true and the second input is false. In this case the first input Q is false, so " Q implies P " is true.
(c) An "if and only if" statement is true precisely when its inputs are both true or both false. In this case the are both false, so " $(\operatorname{not} P)$ if and only if Q " is true.

