
Practice Final Exam Solutions
MATH 1A Fall 2015

Problem 1. A 13 foot ladder rests against a wall. The base of the ladder is pushed toward the wall
at 2 feet per second. How fast is the top of the ladder moving up the wall when the base is 5 feet
from the wall?

Solution. The distance x of the base of the ladder from the wall and the height y of the top of the
ladder up the wall (both functions of time t) are related by

x2 + y2 = 13.

We want to find dy
dt when x = 5 (and dx

dt = −2). Taking an implicit derivative with respect to t, we
find

2x
dx
dt

+ 2y
dy
dt

= 0.

From the first equation, plugging in x = 5, we find y = 12; we also know dx
dt = −2, so

2(5)(−2) + 2(12)
dy
dt

= 0,

and we find dy
dt = 5

6 .

Problem 2. Prove that there is a real number x for which ln x = 1
x .

Proof. Consider the function f (x) = ln x− 1
x . It is continuous on (0, ∞). Furthermore,

f (1) = 0− 1
1
< 0

and
f (e) = 1− 1

e
> 0.

By the intermediate value theorem we conclude that f (x) = 0 for some x ∈ (1, e), and this is a
solution to ln x = 1

x .

Problem 3. Find the derivatives of the following functions.

(a) x2ex

(b) ln(sec x + tan x)

(c) xx

Solution. (a) By the product rule, d
dx x2ex = 2xex + x2ex.
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(b) Using the quotient rule, we find d
dx sec x = d

dx
1

cos x = sec x tan x and d
dx tan x = d

dx
sin x
cos x =

sec2 x. Using these together with the chain rule, we find

d
dx

ln(sec x + tan x) =
sec2 x + sec x tan x

sec x + tan x
= sec x.

(c) Writing xx = ex ln x, we can use the chain rule (and product rule) to find

d
dx

xx =
d

dx
ex ln x = ex ln x(1 + ln x) = xx(1 + ln x).

Problem 4. (a) Define what it means to say limx→a+ f (x) = ∞.

(b) Prove, using the definition from the previous part, that limx→2+
1

x−2 = ∞.

Proof. Suppose for all M ∈ R there exists a δ > 0 such that if a < x < a + δ then f (x) > M. Then
we say limx→a+ f (x) = ∞.

Let M ∈ R, and assume (without loss of generality) that M > 0. Set δ = 1
M . Suppose

2 < x < 2 + δ, i.e. 0 < x− 2 < 1
M . Then dividing by x− 2 and multiplying by M (note both are

positive so our inequalities are preserved), we find M < 1
x−2 . Thus limx→2+

1
x−2 = ∞.

Problem 5. State the extreme value theorem.

Solution. If f is a continuous function on a closed interval [a, b], then f has an absolute maximum
and absolute minimum on [a, b].

Problem 6. (a) State the limit definition of the derivative.

(b) Prove, using the definition from the previous part, that d
dx ( f (x) + g(x)) = d

dx f (x) + d
dx g(x).

Proof. The derivative of a function f at a point x, is the limit

lim
h→0

f (x + h)− f (x)
h

(if this limit exists).
Using this definition, to show d

dx ( f (x) + g(x)) = d
dx f (x) + d

dx g(x) is to show

lim
h→0

( f + g)(x + h)− ( f + g)(x)
h

= lim
h→0

f (x + h)− f (x)
h

+ lim
h→0

g(x + h)− g(x)
h

.

Starting from the left side, we can simply write

lim
h→0

( f + g)(x + h)− ( f + g)(x)
h

= lim
h→0

f (x + h) + g(x + h)− f (x)− g(x)
h

= lim
h→0

f (x + h)− f (x)
h

+
g(x + h)− g(x)

h

= lim
h→0

f (x + h)− f (x)
h

+ lim
h→0

g(x + h)− g(x)
h

where the last euqality is by the sum law for limits.
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Problem 7. Let f be a differentiable function. Suppose that f (0) = 0 and f ′(x) > 0 for all x. Prove
that f (x) > 0 for all x > 0.

Proof. Let x > 0. We know f is differentiable, so by the mean value theorem there is a c ∈ (0, x)
such that f ′(c) = f (x)− f (0)

x−0 = f (x)
x . Since x and f ′(c) are both positive, it must be that f (x) is

positive as well.

Problem 8. State and prove the squeeze theorem.

Solution. Let f , g, h be real-valued functions and a ∈ R. Suppose that when x is near a, except
possibly at a, we have f (x) ≤ g(x) ≤ h(x). Suppose also that

lim
x→a

f (x) = L = lim
x→a

h(x).

Then
lim
x→a

g(x) = L.

The proof is as follows. Let ε > 0.
Choose δ1 > 0 such that if 0 < |x− a| < δ1 then f (x) ≤ g(x) ≤ h(x).
Since limx→a f (x) = L, we can choose δ2 > 0 such that if 0 < |x− a| < δ2 then | f (x)− L| < ε.

Similarly, since limx→a h(x) = L, we can choose δ3 > 0 such that if 0 < |x − a| < δ3 then
|h(x)− L| < ε.

Set δ = min(δ1, δ2, δ3), and suppose 0 < |x− a| < δ.
Then 0 < |x− a| < δ1, so f (x) ≤ g(x) ≤ h(x).
Also 0 < |x− a| < δ2, so | f (x)− L| < ε, i.e. L− ε < f (x) < L + ε.
Also 0 < |x− a| < δ3, so |h(x)− L| < ε, i.e. L− ε < h(x) < L + ε.
Combining these, we see

L− ε < f (x) ≤ g(x) ≤ h(x) < L + ε,

so |g(x)− L| < ε.

Problem 9. Find dy
dx if y2x + ln y = sin(2x).

Solution. Taking an implicit derivative with respect to x,

2yx
dy
dx

+ y2 +
1
y

dy
dx

= 2 cos(2x).

Now we simply solve for dy
dx , and find

dy
dx

=
2 cos(2x)− y2

2xy + 1/y
.

Problem 10. Moore’s law is the observation that the number of transistors in computer processors
has doubled every two years. Suppose a 2011 proccessor has 2.6 billion transistors.

(a) Write a model for the number of transistors in a processor as a function of time.

(b) How many transistors did 1971 processors have?
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Proof. (a) Let T be the number of transistors in a processor, and t be time in years since 2011
(i.e. set t = 0 to be 2011). Since T doubles every two years the growth is exponential,
so we’re looking for a model of the form T(t) = Cekt. By plugging in t = 0 we find
C = T(0) = 2.6× 109. We can find another data point using the fact that T doubles every
two years: since T(0) = 2.6× 109, it must be that T(2) = 5.2× 109. Plugging this in to our
model, we find

5.2× 109 = 2.6× 109 e2t,

and solving for k gives k = ln 2
2 . Thus we arrive at the model

T(t) = 2.6× 109 et ln 2
2 = 2.6× 109 2t/2.

(b) The year 1971 corresponds to t = −40, so the number of transistors in a 1971 processor is

T(−40) = 2.6× 109 2−20.

Problem 11. If two numbers add up to 6, what is the largest their product can be?

Solution. Let’s call our two numbers x and y. We’re told that x + y = 6, and we want to maximize
xy. The first equation can be rearranged as y = 6 − x, and substituting this into the second
equation we get x(6− x) = 6x− x2.

To maximize this function, we compute the derivative d
dx 6x − x2 = 6 − 2x. This is never

undefined, and it is zero when x = 3, so x = 3 is our only critical point. The second derivative
d

dx 6− 2x = −2 is negative at this point, so by the second derivative test it is indeed a maximum.
Thus the maximum is achieved at x = 3, y = 3 and the maximum product is 9.

Problem 12. State the fundamental theorem of calculus.

Solution. Part 1: If f is continuous on [a, b], then the function g defined by

g(x) =
∫ x

a
f (t)dt

is continuous on [a, b] and differentiable on (a, b), and d
dx g(x) = f (x).

Alternatively: If f is continuous, then

d
dx

∫ x

a
f (t)dt = f (x).

Part 2: If F is differentiable, then∫ b

a

d
dx

F(x)dx = F(b)− F(a).

Problem 13. Find the antiderivatives of the following functions.

(a) (x + 2)(x + 4)

(b) tan x

(c) x3x2+3
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Solution. (a) Using the power rule:∫
(x + 2)(x + 4)dx =

∫
x2 + 6x + 8dx =

x3

3
+ 3x2 + 8x + C.

(b) Using u-substitution with u = cos x:∫
tan xdx =

∫ sin x
cos x

dx = −
∫ 1

u
du = − ln|u|+ C = − ln|cos x|+ C.

(c) Using u-substitution with u = x2 + 3 (note u = 3x2+3 also works):∫
x3x2+3dx =

1
2

∫
3udu =

1
2

3u

ln 3
+ C =

3x2+3

2 ln 3
+ C.

Problem 14. Evaluate the following limits. Show work, but there is no need to justify each step.

(a) limx→∞
(x−1)(2x+2)

x2+4x+3

(b) limx→0 x2 sin( 1
x )

(c) limx→0
sin 2x

x

Solution. (a) By comparing the leading terms of the numerator and denominator,

lim
x→∞

(x− 1)(2x + 2)
x2 + 4x + 3

= lim
x→∞

2x2 − 2
x2 + 4x + 3

= 2.

(We could also be more precise and use l’Hôpital’s rule).

(b) Note that −x2 ≤ x2 sin( 1
x ) ≤ x2. Also −x2 and x2 both have a limit of 0 at x = 0, so by the

squeeze theorem

lim
x→0

x2 sin( 1
x ) = 0.

(c) By l’Hôpital’s rule,

lim
x→0

sin 2x
x

= lim
x→0

2 cos 2x
1

= 2.

Problem 15. (a) Define what it means to say a function f (x) is continuous at a point a.

(b) Prove, using the definition above, that f (x) = 3x + 2 is continuous at 1.

Proof. A function f (x) is continuous at a if

lim
x→a

f (x) = f (a).

We want to show that
lim
x→1

3x + 1 = 5.

Let ε > 0, and set δ = ε/3. Suppose 0 < |x− 1| < δ = ε/3. Then

|3x + 2− 5| = |3x− 3| = 3|x− 1| < 3ε/3 = ε.

Thus limx→1 3x + 2 = 5, so 3x + 2 is continuous at 1.
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Problem 16. Find the 50th derivative of f (x) = e2x+1.

Solution. Using the chain rule we see the first derivative is 2e2x+1, the second is 22e2x+1, the third
is 23e2x+1, and so on. The effect of taking each derivative is to multiply the function by 2, so the
50th derivative is 250e2x+1.

Problem 17. Let P and Q be logical statements, and suppose P is true and Q is false. Decide
whether or not the following statements are true or false.

(a) P and not Q

(b) Q implies P

(c) (not P) if and only if Q

Solution. (a) An “and” statement is true precisely when both of its inputs are true. In our case
P is true, and not Q is true (since Q is false), so “P and not Q” is true.

(b) An “implies” statement is only false when the first input is true and the second input is
false. In this case the first input Q is false, so “Q implies P” is true.

(c) An “if and only if” statement is true precisely when its inputs are both true or both false. In
this case the are both false, so “(not P) if and only if Q” is true.
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