Practice Final Exam
 MATH 1A Fall 2015

Problem 1. A 13 foot ladder rests against a wall. The base of the ladder is pushed toward the wall at 2 feet per second. How fast is the top of the ladder moving up the wall when the base is 5 feet from the wall?

Problem 2. Prove that there is a real number x for which $\ln x=\frac{1}{x}$.
Problem 3. Find the derivatives of the following functions.
(a) $x^{2} e^{x}$
(b) $\ln (\sec x+\tan x)$
(c) x^{x}

Problem 4. (a) Define what it means to say $\lim _{x \rightarrow a^{+}} f(x)=\infty$.
(b) Prove, using the definition from the previous part, that $\lim _{x \rightarrow 2^{+}} \frac{1}{x-2}=\infty$.

Problem 5. State the extreme value theorem.
Problem 6. (a) State the limit definition of the derivative.
(b) Prove, using the definition from the previous part, that $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$.

Problem 7. Let f be a differentiable function. Suppose that $f(0)=0$ and $f^{\prime}(x)>0$ for all x. Prove that $f(x)>0$ for all $x>0$.

Problem 8. State and prove the squeeze theorem.
Problem 9. Find $\frac{d y}{d x}$ if $y^{2} x+\ln y=\sin (2 x)$.
Problem 10. Moore's law is the observation that the number of transistors in computer processors has doubled every two years. Suppose a 2011 proccessor has 2.6 billion transistors.
(a) Write a model for the number of transistors in a processor as a function of time.
(b) How many transistors did 1971 processors have?

Problem 11. If two numbers add up to 6 , what is the largest their product can be?
Problem 12. State the fundamental theorem of calculus.
Problem 13. Find the antiderivatives of the following functions.
(a) $(x+2)(x+4)$
(b) $\tan x$
(c) $x 3^{x^{2}+3}$

Problem 14. Evaluate the following limits. Show work, but there is no need to justify each step.
(a) $\lim _{x \rightarrow \infty} \frac{(x-1)(2 x+2)}{x^{2}+4 x+3}$
(b) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$
(c) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{x}$

Problem 15. (a) Define what it means to say a function $f(x)$ is continuous at a point a.
(b) Prove, using the definition above, that $f(x)=3 x+2$ is continuous at 1 .

Problem 16. Find the $50^{\text {th }}$ derivative of $f(x)=e^{2 x+1}$.
Problem 17. Let P and Q be logical statements, and suppose P is true and Q is false. Decide whether or not the following statements are true or false.
(a) P and not Q
(b) Q implies P
(c) $(\operatorname{not} P)$ if and only if Q

