Past Midterm 2 Solutions

6 November 2015

Exercise 0.1. 1. State Rolle's Theorem.
2. State the Mean Value Theorem.
3. Prove the Mean Value Theorem. You may assume Rolle's Theorem.

Solution. 1. Rolle's Theorem states: If a function f is continuous on $[a, b]$ and differentiable on (a, b) and $f(a)=f(b)$ then there is a $c \in(a, b)$ such that $f^{\prime}(c)=0$.
2. The Mean Value Theorem states: If a function f is continuous on $[a, b]$ and differentiable on (a, b) then there is a $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
3. Let f be continuous on $[a, b]$ and differentiable on (a, b). Define $g(x)=f(x)-\frac{f(b)-f(a)}{b-a} x$. Then g is continuous on $[a, b]$ because it is a sum of continuous functions, and it is differentiable on (a, b) because it is a sum of differentiable functions. Furthermore

$$
\begin{aligned}
g(a)-g(b) & =f(a)-\frac{f(b)-f(a)}{b-a} a-\left(f(b)-\frac{f(b)-f(a)}{b-a} b\right) \\
& =f(a)-f(b)-\frac{f(b)-f(a)}{b-a} a+\frac{f(b)-f(a)}{b-a} b \\
& =f(a)-f(b)+\frac{f(b)-f(a)}{b-a}(b-a) \\
& =f(a)-f(b)+f(b)-f(a) \\
& =0,
\end{aligned}
$$

so $g(a)=g(b)$. Thus we may apply Rolle's Theorem, and conclude that there is a $c \in(a, b)$ such that $g^{\prime}(c)=0$. Taking the derivative of the expression defining $g(x)$, we see that

$$
g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a},
$$

so

$$
f^{\prime}(c)=g^{\prime}(c)+\frac{f(b)-f(a)}{b-a}=\frac{f(b)-f(a)}{b-a}
$$

as desired.
Exercise 0.2. In each of the following cases, evaluate $\frac{d y}{d x}$.
Solution. 1. $y=\sin x \ln |x|$
By the product rule $\frac{d y}{d x}=\cos x \ln |x|+\frac{1}{x} \sin x$.
2. $y=\frac{x^{2}}{\cos x}$

By the quotient rule $\frac{d y}{d x}=\frac{2 x \cos x+x^{2} \sin x}{\cos ^{2} x}$.
3. $y=\left(10 x^{4}-5\right)^{20}$

By the chain rule and power rule $\frac{d y}{d x}=20\left(10 x^{4}-5\right)^{19} 40 x^{3}$.
4. $y=\sin (x \sin (x))$.

By the chain rule and product rule $\frac{d y}{d x}=\cos (x \sin (x))(\sin x+x \cos x)$.
5. $y=\tan \left(x^{2}\right) e^{x^{3}}$

By the product rule and chain rule $\frac{d y}{d x}=2 x \sec ^{2}\left(x^{2}\right) e^{x^{3}}+\tan \left(x^{2}\right) 3 x^{2} e^{x^{3}}$.
6. $y^{4} x-3 y=e^{2 x}$ (You should leave your answer in terms of x and $\left.y\right)$

By implicit differentiation

$$
\begin{gathered}
4 y^{3} x \frac{d y}{d x}+y^{4}-3 \frac{d y}{d x}=2 e^{2 x} \\
4 y^{3} x \frac{d y}{d x}-3 \frac{d y}{d x}=2 e^{2 x}-y^{4} \\
\left(4 y^{3} x-3\right) \frac{d y}{d x}=2 e^{2 x}-y^{4} \\
\frac{d y}{d x}=\frac{2 e^{2 x}-y^{4}}{4 y^{3} x-3}
\end{gathered}
$$

Exercise 0.3. Calculate $\frac{d}{d x} x^{e^{x}}$.
Solution. Rewriting the base x as $e^{\ln x}$, we have

$$
\begin{aligned}
\frac{d}{d x} x^{e^{x}} & =\frac{d}{d x}\left(e^{\ln x}\right)^{e^{x}} \\
& =\frac{d}{d x} e^{\ln (x) e^{x}} \\
& =e^{\ln (x) e^{x}} \frac{d}{d x} \ln (x) e^{x} \\
& =e^{\ln (x) e^{x}}\left(\frac{1}{x} e^{x}+\ln (x) e^{x}\right) .
\end{aligned}
$$

Exercise 0.4. I start with 5 ties to wear on special occasions. My hair-dresser tells me that my separation anxiety is because I donÕt have enough nice clothes. Taking the advice to heart, I start shopping and my tie collection starts to grow exponentially. After 3 days I have 12 ties. How long will it be before I have 100 ties? You do not need to simplify of evaluate your answer.

Solution. Our exponential model will have the form $y=c e^{k t}$. As usual c is the initial value, which in this case is 5 (ties). Thus $y=5 e^{k t}$. We also know that $y=12$ when $t=3$, so

$$
\begin{gathered}
12=5 e^{3 k} \\
12 / 5=e^{3 k} \\
\ln (12 / 5)=3 k \\
k=\frac{\ln (12 / 5)}{3} .
\end{gathered}
$$

Thus the number of ties is $y=5 e^{\frac{\ln (12 / 5)}{3} t}$. The time until 100 ties is given by solving

$$
\begin{aligned}
100 & =5 e^{\frac{\ln (12 / 5)}{3} t} t \\
20 & =e^{\frac{\ln (12 / 5)}{3} t} t \\
\ln 20 & =\frac{\ln (12 / 5)}{3} t \\
t & =\frac{3 \ln 20}{\ln (12 / 5)} .
\end{aligned}
$$

Exercise 0.5. Which point on the graph of $y=\sqrt{x}$ is closest to the point $(4,0)$?
Solution. The distance from (x, y) to $(4,0)$ is

$$
D=\sqrt{(x-4)^{2}+y^{2}}
$$

Our point is constrained to lie on $y=\sqrt{x}$, so we can substitute this into the above equation to find

$$
D=\sqrt{(x-4)^{2}+x}
$$

To minimize this we take its derivative and find the critical points.

$$
\frac{d D}{d t}=\frac{1}{2 \sqrt{(x-4)^{2}+x}}(2(x-4)+1)
$$

This is never undefined for $x \geq 0$ (which is the only place it makes sense to ask for the graph of $y=\sqrt{x}$) and is zero precisely when

$$
\begin{gathered}
2(x-4)+1=0 \\
2 x-7=0 \\
x=\frac{7}{2} .
\end{gathered}
$$

Thus our only critical point is $x=\frac{7}{2}$. To see that it is a minimum we can use the first derivative test: the denominator $2 \sqrt{(x-4)^{2}+x}$ of $\frac{d D}{d t}$ is always positive, and the numerator $2(x-4)+1$ is negative for $x<\frac{7}{2}$ and positive for $x>\frac{7}{2}$. This implies that $x=\frac{7}{2}$ is indeed a minimum, so we conclude that the closest point to $(4,0)$ on the graph of $y=\sqrt{x}$ is the point $\left(\frac{7}{2}, \sqrt{\frac{7}{2}}\right)$.
Exercise 0.6. A salt crystal is growing is a super-saturated solution of salt. It is a perfect cube and its length, width and height are all growing at a rate of 1 mm per day. What is the rate of increase of the volume of the cube when its length, width and height all equal 10 mm ?

Solution. The length, width, height, and volume of a cube are related by the equation

$$
V=l w h .
$$

Taking an implicit derivative, and using the product rule (twice) on the right hand side, we find

$$
\frac{d V}{d t}=\frac{d l}{d t} w h+l \frac{d w}{d t} h+l w \frac{d h}{d t} .
$$

We're told that $l=w=h=10$, so $V=1000$, and $\frac{d l}{d t}=\frac{d w}{d t}=\frac{d h}{d t}=1$; plugging all these into the above equation we have

$$
\frac{d V}{d t}=(1)(10)(10)+(10)(1)(10)+(10)(10)(1)=300 .
$$

Exercise 0.7. Evaluate $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{4 x^{2}}$.
Solution. This limit has the indeterminate form $\frac{0}{0}$, so we can use l'Hôpital's rule to see

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{4 x^{2}}=\lim _{x \rightarrow 0} \frac{2 \sin x \cos x}{8 x} .
$$

This new limit still has the indeterminate form $\frac{0}{0}$, so using l'Hôpital's rule once more,

$$
\lim _{x \rightarrow 0} \frac{2 \sin x \cos x}{8 x}=\lim _{x \rightarrow 0} \frac{2 \cos ^{2} x-2 \sin ^{2} x}{8} .
$$

Now plugging in $x=0$ we find the limit is $\frac{1}{4}$.
Exercise 0.8. What is $9^{\log _{49}(7)}$?
Solution. Since $7^{2}=49$, we have $7=49^{1 / 2}$, and $\log _{49}(7)=1 / 2$. Thus

$$
9^{\log _{49}(7)}=9^{1 / 2}=\sqrt{9}=3 .
$$

Exercise 0.9. What is $\log _{4}(8)$?
Solution. We have $8=2^{3}=\left(2^{2}\right)^{3 / 2}=4^{3 / 2}$, so $\log _{4}(8)=3 / 2$.

