
Midterm 1 Review Solutions
MATH 1A Fall 2015

Easier Problems

Exercise 1.1. Write down the truth tables for the following logical statements.

1. P or Q
2. P implies Q
3. P and not Q
4. (not Q) implies (not P)
5. not (P implies Q)

(Observe that some of these statements have the same truth table, and conclude that those state-
ments are logically the same.)

Solution. P or Q:
P

T F

T T T
Q

F T F

P implies Q:
P

T F

T T T
Q

F F T

P and not Q:
P

T F

T F F
Q

F T F
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(not Q) implies (not P):
P

T F

T T T
Q

F F T

not (P implies Q):
P

T F

T F F
Q

F T F

Observe that we get the same truth tables for “P implies Q” and for “(not Q) implies (not P)”,
so these two statements are logically the same. This is the contrapositive.

We also get the same truth tables for “P and not Q” and for “not (P implies Q)”, so these two
are also the same, i.e. the opposite of “P implies Q” is “P and not Q”.

Exercise 1.2. Prove that for every a ∈ R, we have |a| ≥ a.

Proof. Recall that the absolute value |a| is defined to be a or −a, whichever is positive. If a is
positive, then |a| ≥ a because in fact |a| = a. (Same if a = 0). If a is negative, |a| ≥ a because |a| is
positive and a is negative.

Exercise 1.3. The sum law for limits:
Suppose f , g are real-valued functions, and suppose that

lim
x→a

f (x) = L and lim
x→a

g(x) = M.

Then
lim
x→a

f (x) + g(x) = L + M.

Proof. We want to get
|( f (x) + g(x))− (L + M)| < ε,

and by the triangle inequality

|( f (x) + g(x))− (L + M)| < | f (x)− L|+ |g(x)−M|

so it’s enough to make
| f (x)− L|+ |g(x)−M| < ε.

We’ll do this by making | f (x)− L| < ε/2 and |g(x)−M| < ε/2.
So, here’s the proof:
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Let ε > 0. Since limx→a f (x) = L, there is a δ1 > 0 such that if 0 < |x − a| < δ1 then
| f (x)− L| < ε/2. Similarly, since limx→a g(x) = M, there is a δ2 > 0 such that if 0 < |x− a| < δ2
then |g(x)−M| < ε/2.

Set δ = min(δ1, δ2), and suppose 0 < |x− a| < δ. Then 0 < |x− a| < δ1 so | f (x)− L| < ε/2,
and 0 < |x− a| < δ2 so |g(x)−M| < ε/2. Now

|( f (x) + g(x))− (L + M)| = |( f (x)− L) + (g(x)−M)|

≤ | f (x)− L|+ |g(x)−M| < ε/2 + ε/2 = ε.

We’ve shown |( f (x) + g(x))− (L + M)| < ε, so we conclude limx→a f (x) + g(x) = L + M.

Exercise 1.4. Suppose |x− 3| ≤ 2. Conclude that |x + 1| ≤ 6.

Solution.

|x− 3| ≤ 2

−2 ≤ x− 3 ≤ 2

2 ≤ x + 1 ≤ 6

|x + 1| ≤ 6

Exercise 1.5. The constant multiple law for limits:
Suppose f is a real-valued function and c ∈ R. Suppose also that

lim
x→a

f (x) = L.

Then
lim
x→a

c f (x) = cL.

Solution. Note that if c = 0 it’s trivial, so we can suppose c 6= 0.
Let ε > 0. Since limx→a f (x) = L there is a δ > 0 such that if 0 < |x− a| < δ then | f (x)− L| <

ε/|c|, so
|c f (x)− cL| = |c|| f (x)− L| < ε,

as desired.

Exercise 1.6. Suppose |x− 1| ≤ 4. Find a bound for |x− 7|.

Solution.

|x− 1| ≤ 4

−4 ≤ x− 1 ≤ 4

−10 ≤ x− 7 ≤ −2

|x− 7| ≤ 10

Exercise 1.7. Define what it means to say limx→a+ f (x) = ∞. Then show limx→1+
1

x−1 = ∞. What
is limx→1

1
x−1 ?
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Solution. We say limx→a+ f (x) = ∞ if for all M ∈ R there is a δ > 0 such that if a < x < a + δ
then f (x) > M.

Let M ∈ R. Without loss of generality we can assume M > 0. Set δ = 1
M . Suppose 1 < x <

1 + δ, i.e. 1 < x < 1 + 1
M . Then 0 < x− 1 < 1

M , so 1
x−1 > M. Thus limx→1+

1
x−1 = ∞.

A similar argument shows that limx→1−
1

x−1 = −∞, so limx→1
1

x−1 does not exist (even as an
infinite limit).

Exercise 1.8. The difference law for limits:
Suppose f , g are real-valued functions, and suppose that

lim
x→a

f (x) = L and lim
x→a

g(x) = M.

Then
lim
x→a

f (x)− g(x) = L−M.

Proof. Just the same as the sum law, with minus signs interted carefully.
Let ε > 0. Since limx→a f (x) = L, there is a δ1 > 0 such that if 0 < |x − a| < δ1 then

| f (x)− L| < ε/2. Similarly, since limx→a g(x) = M, there is a δ2 > 0 such that if 0 < |x− a| < δ2
then |g(x)−M| < ε/2.

Set δ = min(δ1, δ2), and suppose 0 < |x− a| < δ. Then 0 < |x− a| < δ1 so | f (x)− L| < ε/2,
and 0 < |x− a| < δ2 so |g(x)−M| < ε/2. Now

|( f (x)− g(x))− (L−M)| = |( f (x)− L)− (g(x)−M)|

≤ | f (x)− L|+ |g(x)−M| < ε/2 + ε/2 = ε.

We’ve shown |( f (x)− g(x))− (L−M)| < ε, so we conclude limx→a f (x)− g(x) = L−M.

Exercise 1.9. Define what it means to say limx→a− f (x) = L. Then show limx→2−
x−2
|x−2| = −1.

What is limx→2+
x−2
|x−2|?

Solution. We say limx→a− f (x) = L if for every ε > 0 there is a δ > 0 such that if a− δ < x < a
then | f (x)− L| < ε.

Let ε > 0. Choose any δ > 0, it doesn’t matter what. Suppose 2− δ < x < 2. Since x < 2 we
have x−2

|x−2| = −1, so ∣∣∣∣ x− 2
|x− 2| − (−1)

∣∣∣∣ = 0 < ε.

Exercise 1.10. Define what it means to say limx→∞ f (x) = L. Then show limx→∞
1
x2 = 0.

Solution. We say limx→∞ f (x) = L if for every ε > 0 there is an N ∈ R such that if x > N then
| f (x)− L| < ε.

Let ε > 0, and set N = 1√
ε
. Suppose x > N, i.e. x > 1√

ε
. Then 0 < 1

x <
√

ε, so 0 < 1
x2 < ε, and

| 1
x2 | < ε.

Exercise 1.11. State the definition of continuity. Then prove that f (x) = 10x is continuous.
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Solution. A real-valued function is continuous if limx→a f (x) = f (a) for all a in the domain.
Thus to prove f (x) = 10x is continuous, we want to show limx→a 10x = 10a for all a. Let ε > 0,

and set δ = ε/10. Suppose 0 < |x− a| < δ = ε/10. Then

|10x− 10a| = 10|x− a| < 10 · ε/10 = ε.

Exercise 1.12. Decide whether the following statements are true or false.

1. If f is continuous at a, then f is differentiable at a.
2. If f is differentiable at a, then f is continuous at a.
3. If limx→a+ f (x) and limx→a− f (x) both exist, then limx→a f (x) exists.

Solution.

1. False, e.g. |x| is continuous but not differentiable at x = 0.
2. True (see the Harder problems for a proof).
3. False, the one-sided limits must exist and also agree in order for the two-sided limit to exist.

Exercise 1.13. Prove that
lim
x→0

x
cos x

= 0.

Proof. Note that limx→0 cos x = 1 and lim x → 0x = 0, so by the quotient law limx→0
x

cos x = 0.
Alternatively, if we don’t want to assume that cos is continuous (as we had to do to evaluate

the first limit), we can bound 1
cos x , for example 1 ≤ 1

cos x ≤
√

2 on the interval (−π/4, π/4), and
then use the squeeze theorem.

Exercise 1.14. Prove using the definition of a limit (i.e. ε and δ) that

lim
x→3

x2 − 2x + 1 = 4.

Proof. Let ε > 0 and choose δ = min(1, ε/5). Suppose 0 < |x− 3| < δ. Then

|x− 3| < 1

−1 < x− 3 < 1

3 < x + 1 < 5

|x + 1| < 5;

and |x− 3| < ε/5. Now

|x2 − 2x + 1− 4|
= |x2 − 2x− 3|

= |(x + 1)(x− 3)|
= |x + 1||x− 3|
< 5 · ε/5 = ε.
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Exercise 1.15. Prove using the definition of a limit (i.e. ε and δ) that

lim
x→1

2x2 − 3 = −1.

Proof. Let ε > 0 and choose δ = min(1, ε/6). Suppose 0 < |x− 1| < δ. Then

|x− 1| < 1

−1 < x− 1 < 1

1 < x + 1 < 3

|x + 1| < 3;

and |x− 1| < ε/6. Now

|2x2 − 3− (−1)|
= |2x2 − 2|
= 2|x2 − 1|

= 2|(x + 1)(x− 1)|
= 2|x + 1||x− 1|
< 2 · 3 · ε/6 = ε.

Exercise 1.16. The squeeze theorem:
Let f , g, h be real-valued functions and a ∈ R. Suppose that when x is near a, except possibly

at a, we have f (x) ≤ g(x) ≤ h(x). Suppose also that

lim
x→a

f (x) = L = lim
x→a

h(x).

Then
lim
x→a

g(x) = L.

Proof. Let ε > 0.
Choose δ1 > 0 such that if 0 < |x− a| < δ1 then f (x) ≤ g(x) ≤ h(x).
Since limx→a f (x) = L, we can choose δ2 > 0 such that if 0 < |x− a| < δ2 then | f (x)− L| < ε.

Similarly, since limx→a h(x) = L, we can choose δ3 > 0 such that if 0 < |x − a| < δ3 then
|h(x)− L| < ε.

Set δ = min(δ1, δ2, δ3), and suppose 0 < |x− a| < δ.
Then 0 < |x− a| < δ1, so f (x) ≤ g(x) ≤ h(x).
Also 0 < |x− a| < δ2, so | f (x)− L| < ε, i.e. L− ε < f (x) < L + ε.
Also 0 < |x− a| < δ3, so |h(x)− L| < ε, i.e. L− ε < h(x) < L + ε.
Combining these, we see

L− ε < f (x) ≤ g(x) ≤ h(x) < L + ε,

so |g(x)− L| < ε.
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Harder Problems

Exercise 2.1. Prove the following sort-of-generalization of the sqeeze theorem.
Let f , g, h be real-valued functions, and a ∈ R. Suppose when x is near a, except possibly at a,

these functions satisfy f (x) ≤ g(x) ≤ h(x). Suppose also that

lim
x→a

f (x) = L, lim
x→a

g(x) = M, lim
x→a

h(x) = N.

Then
L ≤ M ≤ N.

Solution. Observe that it’s enough to prove if f (x) ≤ g(x) then L ≤ M, because the same proof
applied to g(x) ≤ h(x) will show M ≤ N.

Recall also from the first Easier Problem that “if P then Q”, in our case “if f (x) ≤ g(x) near
a then L ≤ M”, is logically equivalent to “if (not Q) then (not P)”, in our case “if L > M then
f (x) 6≤ g(x) near a”. Since it’s all the same, we’ll prove the latter instead. In fact, we’ll prove the
stronger statement that “if L > M then f (x) > g(x) near a”.

Let ε = L−M > 0. Note that L− ε/2 = M + ε/2.
Since limx→a f (x) = L, there is a δ1 > 0 such that if 0 < |x − a| < δ1 then | f (x)− L| < ε/2.

Similarly, since limx→a g(x) = M, there is a δ2 > 0 such that if 0 < |x− a| < δ2 then |g(x)−M| <
ε/2.

Set δ = min(δ1, δ2), and suppose 0 < |x− a| < δ. Then 0 < |x− a| < δ1, so

| f (x)− L| < ε/2

L− ε/2 < f (x) < L + ε/2.

Also 0 < |x− a| < δ2, so

|g(x)−M| < ε/2

M− ε/2 < g(x) < M + ε/2.

Combining these, we see
g(x) < M + ε/2 = L− ε/2 < f (x),

so g(x) < f (x) for all x with 0 < |x− a| < δ. Thus we’ve shown that if L > M, then f (x) > g(x)
near a.

Exercise 2.2. Show that there is always a pair of diametrically opposite points on Earth’s equator
where the temperature at both points is the same.

Proof. Let T(x) be the function that gives the temperature at a point x on the equator, and denote
by −x the diametrically opposite point. Consider the function f (x) = T(x) − T(−x), i.e. the
difference in temperature between a point and its opposite. Note that temperature is a continuous
function, and so f (x) is continuous as well. Note also that a point x has our desired property, i.e.
the same temperature as its opposite point, precisely when f (x) = 0.

If there is no point where the temeperature differs, i.e. if f (x) = 0 for all x, then of course
we’re done; any point has the desired property.

On the other hand, suppose there is a point where f (x) is non-zero, say f (x0) = t. Then
f (−x0) = T(−x0)− T(x0) = − f (x0) = −t. One of t,−t is strictly positive and the other strictly
negative, so by the intermediate value theorem we conclude there is a point between x0 and −x0
where f (x) = 0, and this point has our desired property.
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Exercise 2.3. Prove the following variation of the squeeze theorem:
Let f , g, h be real-valued functions. Suppose there exists N > 0 such that for all x > N, we

have f (x) ≤ g(x) ≤ h(x). Suppose also that

lim
x→∞

f (x) = L = lim
x→∞

h(x).

Then
lim

x→∞
g(x) = L.

Proof. Let ε > 0.
Choose N1 ∈ R such that if x > N then f (x) ≤ g(x) ≤ h(x).
Since limx→∞ f (x) = L, we can choose N2 ∈ R such that if x > N2 then | f (x) − L| < ε.

Similarly, since limx→∞ h(x) = L, we can choose N3 > 0 such that if x > N3 then |h(x)− L| < ε.
Set N = max(N1, N2, N3), and suppose x > N.
Then x > N1, so f (x) ≤ g(x) ≤ h(x).
Also x > N2, so | f (x)− L| < ε, i.e. L− ε < f (x) < L + ε.
Also x > N3, so |h(x)− L| < ε, i.e. L− ε < h(x) < L + ε.
Combining these, we see

L− ε < f (x) ≤ g(x) ≤ h(x) < L + ε,

so |g(x)− L| < ε.

Exercise 2.4. The squeeze theorem for limits of the form limx→a+ f (x) = L:
Let f , g, h be real-valued functions and a ∈ R. Suppose that when x is near to and greater than

a, we have f (x) ≤ g(x) ≤ h(x). Suppose also that

lim
x→a+

f (x) = L = lim
x→a+

h(x).

Then
lim

x→a+
g(x) = L.

Proof. Let ε > 0.
Choose δ1 > 0 such that if a < x < a + δ1 then f (x) ≤ g(x) ≤ h(x).
Since limx→a+ f (x) = L, we can choose δ2 > 0 such that if a < x < a + δ2 then | f (x)− L| <

ε. Similarly, since limx→a+ h(x) = L, we can choose δ3 > 0 such that if a < x < a + δ3 then
|h(x)− L| < ε.

Set δ = min(δ1, δ2, δ3), and suppose a < x < a + δ.
Then a < x < a + δ1, so f (x) ≤ g(x) ≤ h(x).
Also a < x < a + δ2, so | f (x)− L| < ε, i.e. L− ε < f (x) < L + ε.
Also a < x < a + δ3, so |h(x)− L| < ε, i.e. L− ε < h(x) < L + ε.
Combining these, we see

L− ε < f (x) ≤ g(x) ≤ h(x) < L + ε,

so |g(x)− L| < ε.

Exercise 2.5. Show that the sum of two continuous functions is continuous.
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Proof. Suppose f , g are continuous functions, i.e.

lim
x→a

f (x) = f (a) and lim
x→a

g(x) = g(a)

for all a. By the sum law for limits,

lim
x→a

f (x) + g(x) = f (a) + g(a)

for all a, i.e. f (x) + g(x) is continuous.

Exercise 2.6. Prove the following variation of the sum law for limits:
Let f , g be real valued functions, and a, L, M ∈ R. Suppose that

lim
x→a+

f (x) = L and lim
x→a+

g(x) = M.

Then
lim

x→a+
f (x) + g(x) = L + M.

Proof. Let ε > 0. Since limx→a+ f (x) = L, there is a δ1 > 0 such that if a < x < a + δ1 then
| f (x)− L| < ε/2. Similarly, since limx→a+ g(x) = M, there is a δ2 > 0 such that if a < x < a + δ2
then |g(x)−M| < ε/2.

Set δ = min(δ1, δ2), and suppose a < x < a + δ. Then a < x < a + δ1 so | f (x)− L| < ε/2, and
a < x < a + δ2 so |g(x)−M| < ε/2. Now

|( f (x) + g(x))− (L + M)| = |( f (x)− L) + (g(x)−M)|

≤ | f (x)− L|+ |g(x)−M| < ε/2 + ε/2 = ε.

We’ve shown |( f (x) + g(x))− (L + M)| < ε, so we conclude limx→a+ f (x) + g(x) = L + M.

Exercise 2.7. The difference law for limits of the form limx→a− f (x) = L:
Suppose f , g are real-valued functions, and suppose that

lim
x→a−

f (x) = L and lim
x→a−

g(x) = M.

Then
lim

x→a−
f (x)− g(x) = L−M.

Proof. Let ε > 0. Since limx→a− f (x) = L, there is a δ1 > 0 such that if a − δ1 < x < a then
| f (x)− L| < ε/2. Similarly, since limx→a− g(x) = M, there is a δ2 > 0 such that if a− δ2 < x < a
then |g(x)−M| < ε/2.

Set δ = min(δ1, δ2), and suppose a− δ < x < a. Then a− δ1 < x < a so | f (x)− L| < ε/2, and
a− δ2 < x < a so |g(x)−M| < ε/2. Now

|( f (x)− g(x))− (L−M)| = |( f (x)− L)− (g(x)−M)|

≤ | f (x)− L|+ |g(x)−M| < ε/2 + ε/2 = ε.

We’ve shown |( f (x)− g(x))− (L−M)| < ε, so we conclude limx→a− f (x)− g(x) = L−M.

Exercise 2.8. Prove using the definition of a limit (i.e. ε and δ) that

lim
x→2

x3 − x2 + 2x + 1 = 9.
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Proof. Let ε > 0. Set δ = min(1, ε/16).
Suppose |x− 2| < δ. Then |x− 2| < 1, so

−1 < x− 2 < 1

1 < x < 3

and since x2 + x + 4 is increasing on the interval [1, 3], we have

12 + 1 + 4 = 6 < x2 + x + 4 < 16 = 32 + 3 + 4

|x2 + x + 4| < 16.

Also |x− 2| < ε/16.
Now

|x3 − x2 + 2x + 1− 9|
=|x3 − x2 + 2x− 8|
=|(x− 2)(x2 + x + 4)|
=|x− 2||x2 + x + 4|

<
ε

16
· 16

=ε.

Thus |x3 − x2 + 2x + 1− 9| < ε, as desired.

Exercise 2.9. Prove using the definition of a limit (i.e. ε and δ) that

lim
x→2

x4 − 12 = 4.

Proof. Let ε > 0, and set δ = min(1, ε/203).
Suppose |x− 2| < δ. Then |x− 4| < 1, so

−1 < x− 4 < 1

5 < x + 2 < 7

|x + 2| < 7

and

−1 < x− 4 < 1

3 < x < 5

0 < x2 < 25

4 < x2 + 4 < 29

|x2 + 4| < 29.

Also |x− 4| < ε/203.
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Now

|x4 − 12− 4|
=|x4 − 16|
=|(x2 − 4)(x2 + 4)|
=|(x− 2)(x + 2)(x2 + 4)|
=|(x− 2)||(x + 2)||(x2 + 4)|

<
ε

203
· 7 · 29

=ε.

Thus |x4 − 12− 4| < ε, as desired.

Exercise 2.10. Suppose |x− a| < δ. Find a bound for |x− b| (which may depend on a, b, δ).

Solution.

|x− a| < δ

−δ < x− a < δ

−δ + a− b < x− b < δ + a− b

|x− b| < max(|−δ + a− b|, |δ + a− b|)

Exercise 2.11. Prove that if a function f is differentiable at a (i.e. if the limit defining the derivative
at a exists) then f is continuous at a.

Proof. Suppose f is differentiable at a. Then the limit

lim
h→0

f (x + h)− f (x)
h

exists. Now observe, using the product law for limits,

lim
x→a

f (x)− f (a) = lim
h→0

f (a + h)− f (a) = lim
h→0

h · f (a + h)− f (a)
h

= lim
h→0

h · lim
h→0

f (a + h)− f (a)
h

= 0 · f ′(a) = 0.

Since limx→a f (x)− f (a) = 0, we conclude that limx→a f (x) = f (a), i.e. f is continuous at a.

Exercise 2.12. Find the derivative of xx. [Hint: be careful trying to apply the chain rule here:
write down precisely what f and g are, and you’ll probably find that it doesn’t work! The key is
to rewrite xx in a form that’s easier to handle. Use the fact that x = elog x.]

11



Solution. Since x = elog x, we can rewrite xx = (elog x)x = ex log x, and this looks more like some-
thing we can evaluate. We have

d
dx

xx

=
d

dx
ex log x

=ex log x d
dx

x log x

=ex log x(log x + x · 1
x )

=xx(log x + 1).
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Bonus Material: Stewart Chapter 2 Review Exercises #6-9, 15-20

Here are a bunch of problems on evaluating limits from the Chapter 2 Review of the textbook. I
won’t prove anything, just give a quick explanation of what the limit is and why.

Exercise 2.6.

lim
x→1+

x2 − 9
x2 + 2x− 3

Solution. Factor and cancel:

lim
x→1+

x2 − 9
x2 + 2x− 3

= lim
x→1+

(x + 3)(x− 3)
(x− 1)(x + 3)

= lim
x→1+

x− 3
x− 1

= −∞.

As x approaches 1 from above, 1
x−1 will go to +∞, and x − 3 will be about −2, so the limit is

−∞.

Exercise 2.7.

lim
h→0

(h− 1)3 + 1
h

.

Solution. Expand the cube:

lim
h→0

(h− 1)3 + 1
h

= lim
h→0

h3 − 3h2 + 3h− 1 + 1
h

= lim
h→0

h3 − 3h2 + 3h
h

= lim
h→0

h2 − 3h + 3 = 3.

Exercise 2.8.

lim
t→2

t2 − 4
t3 − 8

Solution. Factor and cancel:

lim
t→2

t2 − 4
t3 − 8

= lim
t→2

(t− 2)(t + 2)
(t− 2)(t2 + 2t + 4)

= lim
t→2

(t + 2)
(t2 + 2t + 4)

=
1
3

.

Exercise 2.9.

lim
r→9

√
r

(r− 9)4

Solution. Plug in: as r approaches 9 (from either side), 1
(r−9)4 goes to +∞, and

√
r is about 3, so

the limit is +∞.

Exercise 2.15.
lim

x→π−
ln(sin x)

Solution. Composition: set y = sin x, so limx→π− ln(sin x) = limx→π− ln y. As x approaches π
from below, y = sin x approaches 0 from above. As y approaches 0 from above, ln y approaches
−∞. Thus the limit is −∞.

Exercise 2.16.

lim
x→−∞

1− 2x2 − x4

5 + x− 3x4
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Solution. Highest powers: since we’re taking a limit at −∞, we can ignore everything except the
highest power in the numerator and denominator. That is,

lim
x→−∞

1− 2x2 − x4

5 + x− 3x4 = lim
x→−∞

−x4

−3x4 =
1
3

.

Exercise 2.17.
lim

x→∞
(
√

x2 + 4x + 1− x)

Solution. Not sure about this one. Let me know if y’all have ideas. WolframAlpha tells me the
limit is 2.

Exercise 2.18.
lim

x→∞
ex−x2

Solution. Composition: let y = x − x2, so limx→∞ ex−x2
= limx→∞ ey. As x approaches ∞, y =

x− x2 approaches −∞. As y approaches −∞, ey approaches 0. Thus the limit is 0.

Exercise 2.19.
lim

x→0+
arctan(1/x)

Solution. Composition: let y = 1/x, so limx→0+ arctan(1/x) = limx→0+ arctan(y). As x ap-
proaches 0 from above, y = 1/x approaches +∞. As y approaches +∞, arctan(y) approaches
π/2. Thus the limit is π/2.

Exercise 2.20.

lim
x→1

(
1

x− 1
+

1
x2 − 3x + 2

)
Solution. Common denominator and cancel:

lim
x→1

(
1

x− 1
+

1
x2 − 3x + 2

)
= lim

x→1

(
1

x− 1
+

1
(x− 1)(x− 2)

)

= lim
x→1

(
x− 2

(x− 1)(x− 2)
+

1
(x− 1)(x− 2)

)
= lim

x→1

(
x− 2 + 1

(x− 1)(x− 2)

)
= lim

x→1

(
x− 1

(x− 1)(x− 2)

)
= lim

x→1

(
1

x− 2

)
= −1.
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