Midterm 1 Review Solutions MATH 1A Fall 2015

Easier Problems

Exercise 1.1. Write down the truth tables for the following logical statements.

1. P or Q
2. P implies Q
3. P and not Q
4. $(\operatorname{not} Q)$ implies $(\operatorname{not} P)$
5. not (P implies Q)
(Observe that some of these statements have the same truth table, and conclude that those statements are logically the same.)

Solution. P or $Q:$			
		T	F
	T	T	
Q		T	
	F	T	F

(not Q) implies (not P):			
			P
		T	F
	T	T	T
Q			
	F	F	T

$\operatorname{not}(P$ implies $Q):$			
			P
	T	F	
	T	F	F
	F	T	F

Observe that we get the same truth tables for " P implies Q " and for "(not Q) implies (not P)", so these two statements are logically the same. This is the contrapositive.

We also get the same truth tables for " P and not Q " and for "not (P implies Q)", so these two are also the same, i.e. the opposite of " P implies Q " is " P and not Q ".

Exercise 1.2. Prove that for every $a \in \mathbb{R}$, we have $|a| \geq a$.
Proof. Recall that the absolute value $|a|$ is defined to be a or $-a$, whichever is positive. If a is positive, then $|a| \geq a$ because in fact $|a|=a$. (Same if $a=0$). If a is negative, $|a| \geq a$ because $|a|$ is positive and a is negative.

Exercise 1.3. The sum law for limits:
Suppose f, g are real-valued functions, and suppose that

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=M
$$

Then

$$
\lim _{x \rightarrow a} f(x)+g(x)=L+M
$$

Proof. We want to get

$$
|(f(x)+g(x))-(L+M)|<\varepsilon
$$

and by the triangle inequality

$$
|(f(x)+g(x))-(L+M)|<|f(x)-L|+|g(x)-M|
$$

so it's enough to make

$$
|f(x)-L|+|g(x)-M|<\varepsilon
$$

We'll do this by making $|f(x)-L|<\varepsilon / 2$ and $|g(x)-M|<\varepsilon / 2$.
So, here's the proof:

Let $\varepsilon>0$. Since $\lim _{x \rightarrow a} f(x)=L$, there is a $\delta_{1}>0$ such that if $0<|x-a|<\delta_{1}$ then $|f(x)-L|<\varepsilon / 2$. Similarly, since $\lim _{x \rightarrow a} g(x)=M$, there is a $\delta_{2}>0$ such that if $0<|x-a|<\delta_{2}$ then $|g(x)-M|<\varepsilon / 2$.

Set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$, and suppose $0<|x-a|<\delta$. Then $0<|x-a|<\delta_{1}$ so $|f(x)-L|<\varepsilon / 2$, and $0<|x-a|<\delta_{2}$ so $|g(x)-M|<\varepsilon / 2$. Now

$$
\begin{gathered}
|(f(x)+g(x))-(L+M)|=|(f(x)-L)+(g(x)-M)| \\
\leq|f(x)-L|+|g(x)-M|<\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{gathered}
$$

We've shown $|(f(x)+g(x))-(L+M)|<\varepsilon$, so we conclude $\lim _{x \rightarrow a} f(x)+g(x)=L+M$.
Exercise 1.4. Suppose $|x-3| \leq 2$. Conclude that $|x+1| \leq 6$.
Solution.

$$
\begin{gathered}
|x-3| \leq 2 \\
-2 \leq x-3 \leq 2 \\
2 \leq x+1 \leq 6 \\
|x+1| \leq 6
\end{gathered}
$$

Exercise 1.5. The constant multiple law for limits:
Suppose f is a real-valued function and $c \in \mathbb{R}$. Suppose also that

$$
\lim _{x \rightarrow a} f(x)=L
$$

Then

$$
\lim _{x \rightarrow a} c f(x)=c L
$$

Solution. Note that if $c=0$ it's trivial, so we can suppose $c \neq 0$.
Let $\varepsilon>0$. Since $\lim _{x \rightarrow a} f(x)=L$ there is a $\delta>0$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<$ $\varepsilon /|c|$, so

$$
|c f(x)-c L|=|c||f(x)-L|<\varepsilon
$$

as desired.
Exercise 1.6. Suppose $|x-1| \leq 4$. Find a bound for $|x-7|$.

Solution.

$$
\begin{gathered}
|x-1| \leq 4 \\
-4 \leq x-1 \leq 4 \\
-10 \leq x-7 \leq-2 \\
|x-7| \leq 10
\end{gathered}
$$

Exercise 1.7. Define what it means to say $\lim _{x \rightarrow a^{+}} f(x)=\infty$. Then show $\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=\infty$. What is $\lim _{x \rightarrow 1} \frac{1}{x-1}$?

Solution. We say $\lim _{x \rightarrow a^{+}} f(x)=\infty$ if for all $M \in \mathbb{R}$ there is a $\delta>0$ such that if $a<x<a+\delta$ then $f(x)>M$.

Let $M \in \mathbb{R}$. Without loss of generality we can assume $M>0$. Set $\delta=\frac{1}{M}$. Suppose $1<x<$ $1+\delta$, i.e. $1<x<1+\frac{1}{M}$. Then $0<x-1<\frac{1}{M}$, so $\frac{1}{x-1}>M$. Thus $\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=\infty$.

A similar argument shows that $\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=-\infty$, so $\lim _{x \rightarrow 1} \frac{1}{x-1}$ does not exist (even as an infinite limit).

Exercise 1.8. The difference law for limits:
Suppose f, g are real-valued functions, and suppose that

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=M
$$

Then

$$
\lim _{x \rightarrow a} f(x)-g(x)=L-M
$$

Proof. Just the same as the sum law, with minus signs interted carefully.
Let $\varepsilon>0$. Since $\lim _{x \rightarrow a} f(x)=L$, there is a $\delta_{1}>0$ such that if $0<|x-a|<\delta_{1}$ then $|f(x)-L|<\varepsilon / 2$. Similarly, since $\lim _{x \rightarrow a} g(x)=M$, there is a $\delta_{2}>0$ such that if $0<|x-a|<\delta_{2}$ then $|g(x)-M|<\varepsilon / 2$.

Set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$, and suppose $0<|x-a|<\delta$. Then $0<|x-a|<\delta_{1}$ so $|f(x)-L|<\varepsilon / 2$, and $0<|x-a|<\delta_{2}$ so $|g(x)-M|<\varepsilon / 2$. Now

$$
\begin{gathered}
|(f(x)-g(x))-(L-M)|=|(f(x)-L)-(g(x)-M)| \\
\leq|f(x)-L|+|g(x)-M|<\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{gathered}
$$

We've shown $|(f(x)-g(x))-(L-M)|<\varepsilon$, so we conclude $\lim _{x \rightarrow a} f(x)-g(x)=L-M$.
Exercise 1.9. Define what it means to say $\lim _{x \rightarrow a^{-}} f(x)=L$. Then show $\lim _{x \rightarrow 2^{-}} \frac{x-2}{|x-2|}=-1$. What is $\lim _{x \rightarrow 2^{+}} \frac{x-2}{|x-2|}$?

Solution. We say $\lim _{x \rightarrow a^{-}} f(x)=L$ if for every $\varepsilon>0$ there is a $\delta>0$ such that if $a-\delta<x<a$ then $|f(x)-L|<\varepsilon$.

Let $\varepsilon>0$. Choose any $\delta>0$, it doesn't matter what. Suppose $2-\delta<x<2$. Since $x<2$ we have $\frac{x-2}{|x-2|}=-1$, so

$$
\left|\frac{x-2}{|x-2|}-(-1)\right|=0<\varepsilon .
$$

Exercise 1.10. Define what it means to say $\lim _{x \rightarrow \infty} f(x)=L$. Then show $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0$.
Solution. We say $\lim _{x \rightarrow \infty} f(x)=L$ if for every $\varepsilon>0$ there is an $N \in \mathbb{R}$ such that if $x>N$ then $|f(x)-L|<\varepsilon$.

Let $\varepsilon>0$, and set $N=\frac{1}{\sqrt{\varepsilon}}$. Suppose $x>N$, i.e. $x>\frac{1}{\sqrt{\varepsilon}}$. Then $0<\frac{1}{x}<\sqrt{\varepsilon}$, so $0<\frac{1}{x^{2}}<\varepsilon$, and $\left|\frac{1}{x^{2}}\right|<\varepsilon$.

Exercise 1.11. State the definition of continuity. Then prove that $f(x)=10 x$ is continuous.

Solution. A real-valued function is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$ for all a in the domain.
Thus to prove $f(x)=10 x$ is continuous, we want to show $\lim _{x \rightarrow a} 10 x=10 a$ for all a. Let $\varepsilon>0$, and set $\delta=\varepsilon / 10$. Suppose $0<|x-a|<\delta=\varepsilon / 10$. Then

$$
|10 x-10 a|=10|x-a|<10 \cdot \varepsilon / 10=\varepsilon
$$

Exercise 1.12. Decide whether the following statements are true or false.

1. If f is continuous at a, then f is differentiable at a.
2. If f is differentiable at a, then f is continuous at a.
3. If $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$ both exist, then $\lim _{x \rightarrow a} f(x)$ exists.

Solution.

1. False, e.g. $|x|$ is continuous but not differentiable at $x=0$.
2. True (see the Harder problems for a proof).
3. False, the one-sided limits must exist and also agree in order for the two-sided limit to exist.

Exercise 1.13. Prove that

$$
\lim _{x \rightarrow 0} \frac{x}{\cos x}=0
$$

Proof. Note that $\lim _{x \rightarrow 0} \cos x=1$ and $\lim x \rightarrow 0 x=0$, so by the quotient law $\lim _{x \rightarrow 0} \frac{x}{\cos x}=0$.
Alternatively, if we don't want to assume that cos is continuous (as we had to do to evaluate the first limit), we can bound $\frac{1}{\cos x}$, for example $1 \leq \frac{1}{\cos x} \leq \sqrt{2}$ on the interval $(-\pi / 4, \pi / 4)$, and then use the squeeze theorem.

Exercise 1.14. Prove using the definition of a limit (i.e. ε and δ) that

$$
\lim _{x \rightarrow 3} x^{2}-2 x+1=4
$$

Proof. Let $\varepsilon>0$ and choose $\delta=\min (1, \varepsilon / 5)$. Suppose $0<|x-3|<\delta$. Then

$$
\begin{gathered}
|x-3|<1 \\
-1<x-3<1 \\
3<x+1<5 \\
|x+1|<5
\end{gathered}
$$

and $|x-3|<\varepsilon / 5$. Now

$$
\begin{gathered}
\left|x^{2}-2 x+1-4\right| \\
=\left|x^{2}-2 x-3\right| \\
=|(x+1)(x-3)| \\
=|x+1||x-3| \\
\quad<5 \cdot \varepsilon / 5=\varepsilon .
\end{gathered}
$$

Exercise 1.15. Prove using the definition of a limit (i.e. ε and δ) that

$$
\lim _{x \rightarrow 1} 2 x^{2}-3=-1
$$

Proof. Let $\varepsilon>0$ and choose $\delta=\min (1, \varepsilon / 6)$. Suppose $0<|x-1|<\delta$. Then

$$
\begin{gathered}
|x-1|<1 \\
-1<x-1<1 \\
1<x+1<3 \\
|x+1|<3
\end{gathered}
$$

and $|x-1|<\varepsilon / 6$. Now

$$
\begin{gathered}
\left|2 x^{2}-3-(-1)\right| \\
=\left|2 x^{2}-2\right| \\
=2\left|x^{2}-1\right| \\
=2|(x+1)(x-1)| \\
=2|x+1||x-1| \\
<2 \cdot 3 \cdot \varepsilon / 6=\varepsilon .
\end{gathered}
$$

Exercise 1.16. The squeeze theorem:

Let f, g, h be real-valued functions and $a \in \mathbb{R}$. Suppose that when x is near a, except possibly at a, we have $f(x) \leq g(x) \leq h(x)$. Suppose also that

$$
\lim _{x \rightarrow a} f(x)=L=\lim _{x \rightarrow a} h(x)
$$

Then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Proof. Let $\varepsilon>0$.
Choose $\delta_{1}>0$ such that if $0<|x-a|<\delta_{1}$ then $f(x) \leq g(x) \leq h(x)$.
Since $\lim _{x \rightarrow a} f(x)=L$, we can choose $\delta_{2}>0$ such that if $0<|x-a|<\delta_{2}$ then $|f(x)-L|<\varepsilon$. Similarly, since $\lim _{x \rightarrow a} h(x)=L$, we can choose $\delta_{3}>0$ such that if $0<|x-a|<\delta_{3}$ then $|h(x)-L|<\varepsilon$.

Set $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$, and suppose $0<|x-a|<\delta$.
Then $0<|x-a|<\delta_{1}$, so $f(x) \leq g(x) \leq h(x)$.
Also $0<|x-a|<\delta_{2}$, so $|f(x)-L|<\varepsilon$, i.e. $L-\varepsilon<f(x)<L+\varepsilon$.
Also $0<|x-a|<\delta_{3}$, so $|h(x)-L|<\varepsilon$, i.e. $L-\varepsilon<h(x)<L+\varepsilon$.
Combining these, we see

$$
L-\varepsilon<f(x) \leq g(x) \leq h(x)<L+\varepsilon
$$

so $|g(x)-L|<\varepsilon$.

Harder Problems

Exercise 2.1. Prove the following sort-of-generalization of the sqeeze theorem.
Let f, g, h be real-valued functions, and $a \in \mathbb{R}$. Suppose when x is near a, except possibly at a, these functions satisfy $f(x) \leq g(x) \leq h(x)$. Suppose also that

$$
\lim _{x \rightarrow a} f(x)=L, \quad \lim _{x \rightarrow a} g(x)=M, \quad \lim _{x \rightarrow a} h(x)=N .
$$

Then

$$
L \leq M \leq N .
$$

Solution. Observe that it's enough to prove if $f(x) \leq g(x)$ then $L \leq M$, because the same proof applied to $g(x) \leq h(x)$ will show $M \leq N$.

Recall also from the first Easier Problem that "if P then Q ", in our case "if $f(x) \leq g(x)$ near a then $L \leq M$ ", is logically equivalent to "if (not Q) then (not P)", in our case "if $L>M$ then $f(x) \not \leq g(x)$ near $a^{\prime \prime}$. Since it's all the same, we'll prove the latter instead. In fact, we'll prove the stronger statement that "if $L>M$ then $f(x)>g(x)$ near a ".

Let $\varepsilon=L-M>0$. Note that $L-\varepsilon / 2=M+\varepsilon / 2$.
Since $\lim _{x \rightarrow a} f(x)=L$, there is a $\delta_{1}>0$ such that if $0<|x-a|<\delta_{1}$ then $|f(x)-L|<\varepsilon / 2$. Similarly, since $\lim _{x \rightarrow a} g(x)=M$, there is a $\delta_{2}>0$ such that if $0<|x-a|<\delta_{2}$ then $|g(x)-M|<$ $\varepsilon / 2$.

Set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$, and suppose $0<|x-a|<\delta$. Then $0<|x-a|<\delta_{1}$, so

$$
\begin{gathered}
|f(x)-L|<\varepsilon / 2 \\
L-\varepsilon / 2<f(x)<L+\varepsilon / 2 .
\end{gathered}
$$

Also $0<|x-a|<\delta_{2}$, so

$$
\begin{gathered}
|g(x)-M|<\varepsilon / 2 \\
M-\varepsilon / 2<g(x)<M+\varepsilon / 2 .
\end{gathered}
$$

Combining these, we see

$$
g(x)<M+\varepsilon / 2=L-\varepsilon / 2<f(x),
$$

so $g(x)<f(x)$ for all x with $0<|x-a|<\delta$. Thus we've shown that if $L>M$, then $f(x)>g(x)$ near a.

Exercise 2.2. Show that there is always a pair of diametrically opposite points on Earth's equator where the temperature at both points is the same.

Proof. Let $T(x)$ be the function that gives the temperature at a point x on the equator, and denote by $-x$ the diametrically opposite point. Consider the function $f(x)=T(x)-T(-x)$, i.e. the difference in temperature between a point and its opposite. Note that temperature is a continuous function, and so $f(x)$ is continuous as well. Note also that a point x has our desired property, i.e. the same temperature as its opposite point, precisely when $f(x)=0$.

If there is no point where the temeperature differs, i.e. if $f(x)=0$ for all x, then of course we're done; any point has the desired property.

On the other hand, suppose there is a point where $f(x)$ is non-zero, say $f\left(x_{0}\right)=t$. Then $f\left(-x_{0}\right)=T\left(-x_{0}\right)-T\left(x_{0}\right)=-f\left(x_{0}\right)=-t$. One of $t,-t$ is strictly positive and the other strictly negative, so by the intermediate value theorem we conclude there is a point between x_{0} and $-x_{0}$ where $f(x)=0$, and this point has our desired property.

Exercise 2.3. Prove the following variation of the squeeze theorem:
Let f, g, h be real-valued functions. Suppose there exists $N>0$ such that for all $x>N$, we have $f(x) \leq g(x) \leq h(x)$. Suppose also that

$$
\lim _{x \rightarrow \infty} f(x)=L=\lim _{x \rightarrow \infty} h(x)
$$

Then

$$
\lim _{x \rightarrow \infty} g(x)=L
$$

Proof. Let $\varepsilon>0$.
Choose $N_{1} \in \mathbb{R}$ such that if $x>N$ then $f(x) \leq g(x) \leq h(x)$.
Since $\lim _{x \rightarrow \infty} f(x)=L$, we can choose $N_{2} \in \mathbb{R}$ such that if $x>N_{2}$ then $|f(x)-L|<\varepsilon$. Similarly, since $\lim _{x \rightarrow \infty} h(x)=L$, we can choose $N_{3}>0$ such that if $x>N_{3}$ then $|h(x)-L|<\varepsilon$.

Set $N=\max \left(N_{1}, N_{2}, N_{3}\right)$, and suppose $x>N$.
Then $x>N_{1}$, so $f(x) \leq g(x) \leq h(x)$.
Also $x>N_{2}$, so $|f(x)-L|<\varepsilon$, i.e. $L-\varepsilon<f(x)<L+\varepsilon$.
Also $x>N_{3}$, so $|h(x)-L|<\varepsilon$, i.e. $L-\varepsilon<h(x)<L+\varepsilon$.
Combining these, we see

$$
L-\varepsilon<f(x) \leq g(x) \leq h(x)<L+\varepsilon
$$

so $|g(x)-L|<\varepsilon$.
Exercise 2.4. The squeeze theorem for limits of the form $\lim _{x \rightarrow a^{+}} f(x)=L$:
Let f, g, h be real-valued functions and $a \in \mathbb{R}$. Suppose that when x is near to and greater than a, we have $f(x) \leq g(x) \leq h(x)$. Suppose also that

$$
\lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{+}} h(x) .
$$

Then

$$
\lim _{x \rightarrow a^{+}} g(x)=L
$$

Proof. Let $\varepsilon>0$.
Choose $\delta_{1}>0$ such that if $a<x<a+\delta_{1}$ then $f(x) \leq g(x) \leq h(x)$.
Since $\lim _{x \rightarrow a^{+}} f(x)=L$, we can choose $\delta_{2}>0$ such that if $a<x<a+\delta_{2}$ then $|f(x)-L|<$ ε. Similarly, since $\lim _{x \rightarrow a^{+}} h(x)=L$, we can choose $\delta_{3}>0$ such that if $a<x<a+\delta_{3}$ then $|h(x)-L|<\varepsilon$.

Set $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$, and suppose $a<x<a+\delta$.
Then $a<x<a+\delta_{1}$, so $f(x) \leq g(x) \leq h(x)$.
Also $a<x<a+\delta_{2}$, so $|f(x)-L|<\varepsilon$, i.e. $L-\varepsilon<f(x)<L+\varepsilon$.
Also $a<x<a+\delta_{3}$, so $|h(x)-L|<\varepsilon$, i.e. $L-\varepsilon<h(x)<L+\varepsilon$.
Combining these, we see

$$
L-\varepsilon<f(x) \leq g(x) \leq h(x)<L+\varepsilon,
$$

so $|g(x)-L|<\varepsilon$.
Exercise 2.5. Show that the sum of two continuous functions is continuous.

Proof. Suppose f, g are continuous functions, i.e.

$$
\lim _{x \rightarrow a} f(x)=f(a) \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=g(a)
$$

for all a. By the sum law for limits,

$$
\lim _{x \rightarrow a} f(x)+g(x)=f(a)+g(a)
$$

for all a, i.e. $f(x)+g(x)$ is continuous.
Exercise 2.6. Prove the following variation of the sum law for limits:
Let f, g be real valued functions, and $a, L, M \in \mathbb{R}$. Suppose that

$$
\lim _{x \rightarrow a^{+}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a^{+}} g(x)=M
$$

Then

$$
\lim _{x \rightarrow a^{+}} f(x)+g(x)=L+M
$$

Proof. Let $\varepsilon>0$. Since $\lim _{x \rightarrow a^{+}} f(x)=L$, there is a $\delta_{1}>0$ such that if $a<x<a+\delta_{1}$ then $|f(x)-L|<\varepsilon / 2$. Similarly, since $\lim _{x \rightarrow a^{+}} g(x)=M$, there is a $\delta_{2}>0$ such that if $a<x<a+\delta_{2}$ then $|g(x)-M|<\varepsilon / 2$.

Set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$, and suppose $a<x<a+\delta$. Then $a<x<a+\delta_{1}$ so $|f(x)-L|<\varepsilon / 2$, and $a<x<a+\delta_{2}$ so $|g(x)-M|<\varepsilon / 2$. Now

$$
\begin{gathered}
|(f(x)+g(x))-(L+M)|=|(f(x)-L)+(g(x)-M)| \\
\leq|f(x)-L|+|g(x)-M|<\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{gathered}
$$

We've shown $|(f(x)+g(x))-(L+M)|<\varepsilon$, so we conclude $\lim _{x \rightarrow a^{+}} f(x)+g(x)=L+M$.
Exercise 2.7. The difference law for limits of the form $\lim _{x \rightarrow a^{-}} f(x)=L$:
Suppose f, g are real-valued functions, and suppose that

$$
\lim _{x \rightarrow a^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a^{-}} g(x)=M .
$$

Then

$$
\lim _{x \rightarrow a^{-}} f(x)-g(x)=L-M
$$

Proof. Let $\varepsilon>0$. Since $\lim _{x \rightarrow a^{-}} f(x)=L$, there is a $\delta_{1}>0$ such that if $a-\delta_{1}<x<a$ then $|f(x)-L|<\varepsilon / 2$. Similarly, since $\lim _{x \rightarrow a^{-}} g(x)=M$, there is a $\delta_{2}>0$ such that if $a-\delta_{2}<x<a$ then $|g(x)-M|<\varepsilon / 2$.

Set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$, and suppose $a-\delta<x<a$. Then $a-\delta_{1}<x<a$ so $|f(x)-L|<\varepsilon / 2$, and $a-\delta_{2}<x<a$ so $|g(x)-M|<\varepsilon / 2$. Now

$$
\begin{gathered}
|(f(x)-g(x))-(L-M)|=|(f(x)-L)-(g(x)-M)| \\
\leq|f(x)-L|+|g(x)-M|<\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{gathered}
$$

We've shown $|(f(x)-g(x))-(L-M)|<\varepsilon$, so we conclude $\lim _{x \rightarrow a^{-}} f(x)-g(x)=L-M$.
Exercise 2.8. Prove using the definition of a limit (i.e. ε and δ) that

$$
\lim _{x \rightarrow 2} x^{3}-x^{2}+2 x+1=9
$$

Proof. Let $\varepsilon>0$. Set $\delta=\min (1, \varepsilon / 16)$.
Suppose $|x-2|<\delta$. Then $|x-2|<1$, so

$$
\begin{gathered}
-1<x-2<1 \\
1<x<3
\end{gathered}
$$

and since $x^{2}+x+4$ is increasing on the interval $[1,3]$, we have

$$
\begin{gathered}
1^{2}+1+4=6<x^{2}+x+4<16=3^{2}+3+4 \\
\left|x^{2}+x+4\right|<16
\end{gathered}
$$

Also $|x-2|<\varepsilon / 16$.
Now

$$
\begin{aligned}
& \left|x^{3}-x^{2}+2 x+1-9\right| \\
= & \left|x^{3}-x^{2}+2 x-8\right| \\
= & \left|(x-2)\left(x^{2}+x+4\right)\right| \\
= & |x-2|\left|x^{2}+x+4\right| \\
< & \frac{\varepsilon}{16} \cdot 16 \\
= & \varepsilon .
\end{aligned}
$$

Thus $\left|x^{3}-x^{2}+2 x+1-9\right|<\varepsilon$, as desired.
Exercise 2.9. Prove using the definition of a limit (i.e. ε and δ) that

$$
\lim _{x \rightarrow 2} x^{4}-12=4
$$

Proof. Let $\varepsilon>0$, and set $\delta=\min (1, \varepsilon / 203)$.
Suppose $|x-2|<\delta$. Then $|x-4|<1$, so

$$
\begin{gathered}
-1<x-4<1 \\
5<x+2<7 \\
|x+2|<7
\end{gathered}
$$

and

$$
\begin{gathered}
-1<x-4<1 \\
3<x<5 \\
0<x^{2}<25 \\
4<x^{2}+4<29 \\
\left|x^{2}+4\right|<29
\end{gathered}
$$

Also $|x-4|<\varepsilon / 203$.

Now

$$
\begin{aligned}
& \left|x^{4}-12-4\right| \\
= & \left|x^{4}-16\right| \\
= & \left|\left(x^{2}-4\right)\left(x^{2}+4\right)\right| \\
= & \left|(x-2)(x+2)\left(x^{2}+4\right)\right| \\
= & |(x-2)||(x+2)|\left|\left(x^{2}+4\right)\right| \\
< & \frac{\varepsilon}{203} \cdot 7 \cdot 29 \\
= & \varepsilon .
\end{aligned}
$$

Thus $\left|x^{4}-12-4\right|<\varepsilon$, as desired.
Exercise 2.10. Suppose $|x-a|<\delta$. Find a bound for $|x-b|$ (which may depend on a, b, δ).
Solution.

$$
\begin{gathered}
|x-a|<\delta \\
-\delta<x-a<\delta \\
-\delta+a-b<x-b<\delta+a-b \\
|x-b|<\max (|-\delta+a-b|,|\delta+a-b|)
\end{gathered}
$$

Exercise 2.11. Prove that if a function f is differentiable at a (i.e. if the limit defining the derivative at a exists) then f is continuous at a.

Proof. Suppose f is differentiable at a. Then the limit

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists. Now observe, using the product law for limits,

$$
\begin{gathered}
\lim _{x \rightarrow a} f(x)-f(a)=\lim _{h \rightarrow 0} f(a+h)-f(a)=\lim _{h \rightarrow 0} h \cdot \frac{f(a+h)-f(a)}{h} \\
=\lim _{h \rightarrow 0} h \cdot \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=0 \cdot f^{\prime}(a)=0 .
\end{gathered}
$$

Since $\lim _{x \rightarrow a} f(x)-f(a)=0$, we conclude that $\lim _{x \rightarrow a} f(x)=f(a)$, i.e. f is continuous at a.
Exercise 2.12. Find the derivative of x^{x}. [Hint: be careful trying to apply the chain rule here: write down precisely what f and g are, and you'll probably find that it doesn't work! The key is to rewrite x^{x} in a form that's easier to handle. Use the fact that $x=e^{\log x}$.]

Solution. Since $x=e^{\log x}$, we can rewrite $x^{x}=\left(e^{\log x}\right)^{x}=e^{x \log x}$, and this looks more like something we can evaluate. We have

$$
\begin{aligned}
& \frac{d}{d x} x^{x} \\
= & \frac{d}{d x} e^{x \log x} \\
= & e^{x \log x} \frac{d}{d x} x \log x \\
= & =e^{x \log x}\left(\log x+x \cdot \frac{1}{x}\right) \\
= & x^{x}(\log x+1) .
\end{aligned}
$$

Bonus Material: Stewart Chapter 2 Review Exercises \#6-9, 15-20

Here are a bunch of problems on evaluating limits from the Chapter 2 Review of the textbook. I won't prove anything, just give a quick explanation of what the limit is and why.

Exercise 2.6.

$$
\lim _{x \rightarrow 1^{+}} \frac{x^{2}-9}{x^{2}+2 x-3}
$$

Solution. Factor and cancel:

$$
\lim _{x \rightarrow 1^{+}} \frac{x^{2}-9}{x^{2}+2 x-3}=\lim _{x \rightarrow 1^{+}} \frac{(x+3)(x-3)}{(x-1)(x+3)}=\lim _{x \rightarrow 1^{+}} \frac{x-3}{x-1}=-\infty .
$$

As x approaches 1 from above, $\frac{1}{x-1}$ will go to $+\infty$, and $x-3$ will be about -2 , so the limit is $-\infty$.

Exercise 2.7.

$$
\lim _{h \rightarrow 0} \frac{(h-1)^{3}+1}{h} .
$$

Solution. Expand the cube:

$$
\lim _{h \rightarrow 0} \frac{(h-1)^{3}+1}{h}=\lim _{h \rightarrow 0} \frac{h^{3}-3 h^{2}+3 h-1+1}{h}=\lim _{h \rightarrow 0} \frac{h^{3}-3 h^{2}+3 h}{h}=\lim _{h \rightarrow 0} h^{2}-3 h+3=3 .
$$

Exercise 2.8.

$$
\lim _{t \rightarrow 2} \frac{t^{2}-4}{t^{3}-8}
$$

Solution. Factor and cancel:

$$
\lim _{t \rightarrow 2} \frac{t^{2}-4}{t^{3}-8}=\lim _{t \rightarrow 2} \frac{(t-2)(t+2)}{(t-2)\left(t^{2}+2 t+4\right)}=\lim _{t \rightarrow 2} \frac{(t+2)}{\left(t^{2}+2 t+4\right)}=\frac{1}{3}
$$

Exercise 2.9.

$$
\lim _{r \rightarrow 9} \frac{\sqrt{r}}{(r-9)^{4}}
$$

Solution. Plug in: as r approaches 9 (from either side), $\frac{1}{(r-9)^{4}}$ goes to $+\infty$, and \sqrt{r} is about 3 , so the limit is $+\infty$.

Exercise 2.15.

$$
\lim _{x \rightarrow \pi^{-}} \ln (\sin x)
$$

Solution. Composition: set $y=\sin x$, so $\lim _{x \rightarrow \pi^{-}} \ln (\sin x)=\lim _{x \rightarrow \pi^{-}} \ln y$. As x approaches π from below, $y=\sin x$ approaches 0 from above. As y approaches 0 from above, $\ln y$ approaches $-\infty$. Thus the limit is $-\infty$.

Exercise 2.16.

$$
\lim _{x \rightarrow-\infty} \frac{1-2 x^{2}-x^{4}}{5+x-3 x^{4}}
$$

Solution. Highest powers: since we're taking a limit at $-\infty$, we can ignore everything except the highest power in the numerator and denominator. That is,

$$
\lim _{x \rightarrow-\infty} \frac{1-2 x^{2}-x^{4}}{5+x-3 x^{4}}=\lim _{x \rightarrow-\infty} \frac{-x^{4}}{-3 x^{4}}=\frac{1}{3} .
$$

Exercise 2.17.

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x+1}-x\right)
$$

Solution. Not sure about this one. Let me know if y'all have ideas. WolframAlpha tells me the limit is 2.

Exercise 2.18.

$$
\lim _{x \rightarrow \infty} e^{x-x^{2}}
$$

Solution. Composition: let $y=x-x^{2}$, so $\lim _{x \rightarrow \infty} e^{x-x^{2}}=\lim _{x \rightarrow \infty} e^{y}$. As x approaches $\infty, y=$ $x-x^{2}$ approaches $-\infty$. As y approaches $-\infty, e^{y}$ approaches 0 . Thus the limit is 0 .

Exercise 2.19.

$$
\lim _{x \rightarrow 0^{+}} \arctan (1 / x)
$$

Solution. Composition: let $y=1 / x$, so $\lim _{x \rightarrow 0^{+}} \arctan (1 / x)=\lim _{x \rightarrow 0^{+}} \arctan (y)$. As x approaches 0 from above, $y=1 / x$ approaches $+\infty$. As y approaches $+\infty$, $\arctan (y)$ approaches $\pi / 2$. Thus the limit is $\pi / 2$.

Exercise 2.20.

$$
\lim _{x \rightarrow 1}\left(\frac{1}{x-1}+\frac{1}{x^{2}-3 x+2}\right)
$$

Solution. Common denominator and cancel:

$$
\begin{gathered}
\lim _{x \rightarrow 1}\left(\frac{1}{x-1}+\frac{1}{x^{2}-3 x+2}\right)=\lim _{x \rightarrow 1}\left(\frac{1}{x-1}+\frac{1}{(x-1)(x-2)}\right) \\
=\lim _{x \rightarrow 1}\left(\frac{x-2}{(x-1)(x-2)}+\frac{1}{(x-1)(x-2)}\right)=\lim _{x \rightarrow 1}\left(\frac{x-2+1}{(x-1)(x-2)}\right) \\
=\lim _{x \rightarrow 1}\left(\frac{x-1}{(x-1)(x-2)}\right)=\lim _{x \rightarrow 1}\left(\frac{1}{x-2}\right)=-1 .
\end{gathered}
$$

