Midterm 1 Review Solutions MATH 1A Fall 2015

Easier Problems

Exercise 1.1. Write down the truth tables for the following logical statements.

- 1. P or Q
- 2. P implies Q
- 3. P and not Q
- 4. (not *Q*) implies (not *P*)
- 5. not (*P* implies *Q*)

(Observe that some of these statements have the same truth table, and conclude that those statements are logically the same.)

Solution. P or Q:

		Р	
		Т	F
0	Т	Т	Т
Q	F	Т	F

P implies *Q*:

		P	
		Т	F
0	Т	Т	Т
Q	F	F	Т

P and not *Q*:

		Р		
		Т	F	
0	Т	F	F	
Q	F	Т	F	

(not Q)	implies	(not	<i>P</i>):
		D	

		P	
		Т	F
0	Т	Т	Т
Q	F	F	Т

not (*P* implies *Q*):

		Р		
		Т	F	
0	Т	F	F	
Q	F	Т	F	

Observe that we get the same truth tables for "*P* implies *Q*" and for "(not *Q*) implies (not *P*)", so these two statements are logically the same. This is the *contrapositive*.

We also get the same truth tables for "*P* and not *Q*" and for "not (*P* implies *Q*)", so these two are also the same, i.e. the opposite of "*P* implies *Q*" is "*P* and not *Q*". \Box

Exercise 1.2. Prove that for every $a \in \mathbb{R}$, we have $|a| \ge a$.

Proof. Recall that the absolute value |a| is defined to be *a* or -a, whichever is positive. If *a* is positive, then $|a| \ge a$ because in fact |a| = a. (Same if a = 0). If *a* is negative, $|a| \ge a$ because |a| is positive and *a* is negative.

Exercise 1.3. The sum law for limits:

Suppose f, g are real-valued functions, and suppose that

$$\lim_{x \to a} f(x) = L \quad \text{and} \quad \lim_{x \to a} g(x) = M.$$

Then

$$\lim_{x \to a} f(x) + g(x) = L + M.$$

Proof. We want to get

$$|(f(x)+g(x))-(L+M)|<\varepsilon,$$

and by the triangle inequality

$$|(f(x) + g(x)) - (L + M)| < |f(x) - L| + |g(x) - M|$$

so it's enough to make

$$|f(x) - L| + |g(x) - M| < \varepsilon.$$

We'll do this by making $|f(x) - L| < \varepsilon/2$ and $|g(x) - M| < \varepsilon/2$. So, here's the proof: Let $\varepsilon > 0$. Since $\lim_{x \to a} f(x) = L$, there is a $\delta_1 > 0$ such that if $0 < |x - a| < \delta_1$ then $|f(x) - L| < \varepsilon/2$. Similarly, since $\lim_{x \to a} g(x) = M$, there is a $\delta_2 > 0$ such that if $0 < |x - a| < \delta_2$ then $|g(x) - M| < \varepsilon/2$.

Set $\delta = \min(\delta_1, \delta_2)$, and suppose $0 < |x - a| < \delta$. Then $0 < |x - a| < \delta_1$ so $|f(x) - L| < \varepsilon/2$, and $0 < |x - a| < \delta_2$ so $|g(x) - M| < \varepsilon/2$. Now

$$|(f(x) + g(x)) - (L + M)| = |(f(x) - L) + (g(x) - M)|$$

 $\leq |f(x) - L| + |g(x) - M| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$

We've shown $|(f(x) + g(x)) - (L + M)| < \varepsilon$, so we conclude $\lim_{x \to a} f(x) + g(x) = L + M$. **Exercise 1.4.** Suppose $|x - 3| \le 2$. Conclude that $|x + 1| \le 6$.

Solution.

$$|x-3| \le 2$$

$$-2 \le x-3 \le 2$$

$$2 \le x+1 \le 6$$

$$|x+1| \le 6$$

1		
- 64		

Exercise 1.5. The constant multiple law for limits:

Suppose *f* is a real-valued function and $c \in \mathbb{R}$. Suppose also that

$$\lim_{x \to a} f(x) = L$$

Then

$$\lim_{x \to a} cf(x) = cL.$$

Solution. Note that if c = 0 it's trivial, so we can suppose $c \neq 0$.

Let $\varepsilon > 0$. Since $\lim_{x \to a} f(x) = L$ there is a $\delta > 0$ such that if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon/|c|$, so

$$|cf(x) - cL| = |c||f(x) - L| < \varepsilon,$$

as desired.

Exercise 1.6. Suppose $|x - 1| \le 4$. Find a bound for |x - 7|.

Solution.

$$|x-1| \le 4$$

 $-4 \le x-1 \le 4$
 $-10 \le x-7 \le -2$
 $|x-7| \le 10$

Exercise 1.7. Define what it means to say $\lim_{x\to a^+} f(x) = \infty$. Then show $\lim_{x\to 1^+} \frac{1}{x-1} = \infty$. What is $\lim_{x\to 1} \frac{1}{x-1}$?

Solution. We say $\lim_{x\to a^+} f(x) = \infty$ if for all $M \in \mathbb{R}$ there is a $\delta > 0$ such that if $a < x < a + \delta$ then f(x) > M.

Let $M \in \mathbb{R}$. Without loss of generality we can assume M > 0. Set $\delta = \frac{1}{M}$. Suppose $1 < x < 1 + \delta$, i.e. $1 < x < 1 + \frac{1}{M}$. Then $0 < x - 1 < \frac{1}{M}$, so $\frac{1}{x-1} > M$. Thus $\lim_{x \to 1^+} \frac{1}{x-1} = \infty$.

A similar argument shows that $\lim_{x\to 1^-} \frac{1}{x-1} = -\infty$, so $\lim_{x\to 1} \frac{1}{x-1}$ does not exist (even as an infinite limit).

Exercise 1.8. The difference law for limits:

Suppose f, g are real-valued functions, and suppose that

$$\lim_{x \to a} f(x) = L \quad \text{and} \quad \lim_{x \to a} g(x) = M$$

Then

$$\lim_{x \to a} f(x) - g(x) = L - M.$$

Proof. Just the same as the sum law, with minus signs interted carefully.

Let $\varepsilon > 0$. Since $\lim_{x\to a} f(x) = L$, there is a $\delta_1 > 0$ such that if $0 < |x - a| < \delta_1$ then $|f(x) - L| < \varepsilon/2$. Similarly, since $\lim_{x\to a} g(x) = M$, there is a $\delta_2 > 0$ such that if $0 < |x - a| < \delta_2$ then $|g(x) - M| < \varepsilon/2$.

Set $\delta = \min(\delta_1, \delta_2)$, and suppose $0 < |x - a| < \delta$. Then $0 < |x - a| < \delta_1$ so $|f(x) - L| < \varepsilon/2$, and $0 < |x - a| < \delta_2$ so $|g(x) - M| < \varepsilon/2$. Now

$$|(f(x) - g(x)) - (L - M)| = |(f(x) - L) - (g(x) - M)|$$

 $\leq |f(x) - L| + |g(x) - M| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$

We've shown $|(f(x) - g(x)) - (L - M)| < \varepsilon$, so we conclude $\lim_{x \to a} f(x) - g(x) = L - M$.

Exercise 1.9. Define what it means to say $\lim_{x\to a^-} f(x) = L$. Then show $\lim_{x\to 2^-} \frac{x-2}{|x-2|} = -1$. What is $\lim_{x\to 2^+} \frac{x-2}{|x-2|}$?

Solution. We say $\lim_{x\to a^-} f(x) = L$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that if $a - \delta < x < a$ then $|f(x) - L| < \varepsilon$.

Let $\varepsilon > 0$. Choose any $\delta > 0$, it doesn't matter what. Suppose $2 - \delta < x < 2$. Since x < 2 we have $\frac{x-2}{|x-2|} = -1$, so

$$\left|\frac{x-2}{|x-2|} - (-1)\right| = 0 < \varepsilon$$

 \square

Exercise 1.10. Define what it means to say $\lim_{x\to\infty} f(x) = L$. Then show $\lim_{x\to\infty} \frac{1}{x^2} = 0$.

Solution. We say $\lim_{x\to\infty} f(x) = L$ if for every $\varepsilon > 0$ there is an $N \in \mathbb{R}$ such that if x > N then $|f(x) - L| < \varepsilon$. Let $\varepsilon > 0$, and set $N = \frac{1}{\sqrt{\varepsilon}}$. Suppose x > N, i.e. $x > \frac{1}{\sqrt{\varepsilon}}$. Then $0 < \frac{1}{x} < \sqrt{\varepsilon}$, so $0 < \frac{1}{x^2} < \varepsilon$, and

$$\left|\frac{1}{x^2}\right| < \varepsilon.$$

Exercise 1.11. State the definition of continuity. Then prove that f(x) = 10x is continuous.

Solution. A real-valued function is continuous if $\lim_{x\to a} f(x) = f(a)$ for all *a* in the domain.

Thus to prove f(x) = 10x is continuous, we want to show $\lim_{x\to a} 10x = 10a$ for all a. Let $\varepsilon > 0$, and set $\delta = \varepsilon/10$. Suppose $0 < |x - a| < \delta = \varepsilon/10$. Then

$$|10x - 10a| = 10|x - a| < 10 \cdot \varepsilon/10 = \varepsilon$$

Exercise 1.12. Decide whether the following statements are true or false.

1. If *f* is continuous at *a*, then *f* is differentiable at *a*.

2. If *f* is differentiable at *a*, then *f* is continuous at *a*.

3. If $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ both exist, then $\lim_{x\to a} f(x)$ exists.

Solution.

- 1. False, e.g. |x| is continuous but not differentiable at x = 0.
- 2. True (see the Harder problems for a proof).
- 3. False, the one-sided limits must exist and also agree in order for the two-sided limit to exist.

Exercise 1.13. Prove that

$$\lim_{x \to 0} \frac{x}{\cos x} = 0.$$

Proof. Note that $\lim_{x\to 0} \cos x = 1$ and $\lim_{x\to 0} x \to 0$, so by the quotient law $\lim_{x\to 0} \frac{x}{\cos x} = 0$.

Alternatively, if we don't want to assume that cos is continuous (as we had to do to evaluate the first limit), we can bound $\frac{1}{\cos x}$, for example $1 \le \frac{1}{\cos x} \le \sqrt{2}$ on the interval $(-\pi/4, \pi/4)$, and then use the squeeze theorem.

Exercise 1.14. Prove using the definition of a limit (i.e. ε and δ) that

$$\lim_{x \to 3} x^2 - 2x + 1 = 4$$

Proof. Let $\varepsilon > 0$ and choose $\delta = \min(1, \varepsilon/5)$. Suppose $0 < |x - 3| < \delta$. Then

$$|x - 3| < 1$$

 $-1 < x - 3 < 1$
 $3 < x + 1 < 5$
 $|x + 1| < 5;$

and $|x-3| < \varepsilon/5$. Now

$$|x^{2} - 2x + 1 - 4|$$

= $|x^{2} - 2x - 3|$
= $|(x + 1)(x - 3)|$
= $|x + 1||x - 3|$
< $5 \cdot \varepsilon/5 = \varepsilon$.

Exercise 1.15. Prove using the definition of a limit (i.e. ε and δ) that

$$\lim_{x \to 1} 2x^2 - 3 = -1$$

Proof. Let $\varepsilon > 0$ and choose $\delta = \min(1, \varepsilon/6)$. Suppose $0 < |x - 1| < \delta$. Then

$$|x-1| < 1$$

 $-1 < x - 1 < 1$
 $1 < x + 1 < 3$
 $|x+1| < 3;$

and $|x-1| < \varepsilon/6$. Now

$$|2x^{2} - 3 - (-1)|$$

= $|2x^{2} - 2|$
= $2|x^{2} - 1|$
= $2|(x + 1)(x - 1)|$
= $2|x + 1||x - 1|$
< $2 \cdot 3 \cdot \varepsilon/6 = \varepsilon$.

Exercise 1.16. The squeeze theorem:

Let *f*, *g*, *h* be real-valued functions and $a \in \mathbb{R}$. Suppose that when *x* is near *a*, except possibly at *a*, we have $f(x) \le g(x) \le h(x)$. Suppose also that

$$\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x).$$

Then

$$\lim_{x \to a} g(x) = L.$$

Proof. Let $\varepsilon > 0$.

Choose $\delta_1 > 0$ such that if $0 < |x - a| < \delta_1$ then $f(x) \le g(x) \le h(x)$.

Since $\lim_{x\to a} f(x) = L$, we can choose $\delta_2 > 0$ such that if $0 < |x-a| < \delta_2$ then $|f(x) - L| < \varepsilon$. Similarly, since $\lim_{x\to a} h(x) = L$, we can choose $\delta_3 > 0$ such that if $0 < |x-a| < \delta_3$ then $|h(x) - L| < \varepsilon$.

Set $\delta = \min(\delta_1, \delta_2, \delta_3)$, and suppose $0 < |x - a| < \delta$. Then $0 < |x - a| < \delta_1$, so $f(x) \le g(x) \le h(x)$. Also $0 < |x - a| < \delta_2$, so $|f(x) - L| < \varepsilon$, i.e. $L - \varepsilon < f(x) < L + \varepsilon$. Also $0 < |x - a| < \delta_3$, so $|h(x) - L| < \varepsilon$, i.e. $L - \varepsilon < h(x) < L + \varepsilon$. Combining these, we see

$$L - \varepsilon < f(x) \le g(x) \le h(x) < L + \varepsilon,$$

so $|g(x) - L| < \varepsilon$.

Harder Problems

Exercise 2.1. Prove the following sort-of-generalization of the squeeze theorem.

Let *f*, *g*, *h* be real-valued functions, and $a \in \mathbb{R}$. Suppose when *x* is near *a*, except possibly at *a*, these functions satisfy $f(x) \le g(x) \le h(x)$. Suppose also that

$$\lim_{x \to a} f(x) = L, \qquad \lim_{x \to a} g(x) = M, \qquad \lim_{x \to a} h(x) = N.$$

Then

 $L \leq M \leq N.$

Solution. Observe that it's enough to prove if $f(x) \le g(x)$ then $L \le M$, because the same proof applied to $g(x) \le h(x)$ will show $M \le N$.

Recall also from the first Easier Problem that "if *P* then *Q*", in our case "if $f(x) \le g(x)$ near *a* then $L \le M$ ", is logically equivalent to "if (not *Q*) then (not *P*)", in our case "if L > M then $f(x) \le g(x)$ near *a*". Since it's all the same, we'll prove the latter instead. In fact, we'll prove the stronger statement that "if L > M then f(x) > g(x) near *a*".

Let $\varepsilon = L - M > 0$. Note that $L - \varepsilon/2 = M + \varepsilon/2$.

Since $\lim_{x\to a} f(x) = L$, there is a $\delta_1 > 0$ such that if $0 < |x-a| < \delta_1$ then $|f(x) - L| < \varepsilon/2$. Similarly, since $\lim_{x\to a} g(x) = M$, there is a $\delta_2 > 0$ such that if $0 < |x-a| < \delta_2$ then $|g(x) - M| < \varepsilon/2$.

Set $\delta = \min(\delta_1, \delta_2)$, and suppose $0 < |x - a| < \delta$. Then $0 < |x - a| < \delta_1$, so

$$|f(x) - L| < \varepsilon/2$$

$$L - \varepsilon/2 < f(x) < L + \varepsilon/2.$$

Also $0 < |x - a| < \delta_2$, so

$$|g(x) - M| < \varepsilon/2$$

 $M - \varepsilon/2 < g(x) < M + \varepsilon/2.$

Combining these, we see

$$g(x) < M + \varepsilon/2 = L - \varepsilon/2 < f(x),$$

so g(x) < f(x) for all x with $0 < |x - a| < \delta$. Thus we've shown that if L > M, then f(x) > g(x) near a.

Exercise 2.2. Show that there is always a pair of diametrically opposite points on Earth's equator where the temperature at both points is the same.

Proof. Let T(x) be the function that gives the temperature at a point x on the equator, and denote by -x the diametrically opposite point. Consider the function f(x) = T(x) - T(-x), i.e. the difference in temperature between a point and its opposite. Note that temperature is a continuous function, and so f(x) is continuous as well. Note also that a point x has our desired property, i.e. the same temperature as its opposite point, precisely when f(x) = 0.

If there is no point where the temperature differs, i.e. if f(x) = 0 for all x, then of course we're done; any point has the desired property.

On the other hand, suppose there is a point where f(x) is non-zero, say $f(x_0) = t$. Then $f(-x_0) = T(-x_0) - T(x_0) = -f(x_0) = -t$. One of t, -t is strictly positive and the other strictly negative, so by the intermediate value theorem we conclude there is a point between x_0 and $-x_0$ where f(x) = 0, and this point has our desired property.

Exercise 2.3. Prove the following variation of the squeeze theorem:

Let *f*, *g*, *h* be real-valued functions. Suppose there exists N > 0 such that for all x > N, we have $f(x) \le g(x) \le h(x)$. Suppose also that

$$\lim_{x \to \infty} f(x) = L = \lim_{x \to \infty} h(x).$$

Then

$$\lim_{x\to\infty}g(x)=L.$$

Proof. Let $\varepsilon > 0$.

Choose $N_1 \in \mathbb{R}$ such that if x > N then $f(x) \le g(x) \le h(x)$.

Since $\lim_{x\to\infty} f(x) = L$, we can choose $N_2 \in \mathbb{R}$ such that if $x > N_2$ then $|f(x) - L| < \varepsilon$. Similarly, since $\lim_{x\to\infty} h(x) = L$, we can choose $N_3 > 0$ such that if $x > N_3$ then $|h(x) - L| < \varepsilon$. Set $N = \max(N_1, N_2, N_3)$, and suppose x > N. Then $x > N_1$, so $f(x) \le g(x) \le h(x)$.

Also $x > N_2$, so $|f(x) - L| < \varepsilon$, i.e. $L - \varepsilon < f(x) < L + \varepsilon$. Also $x > N_3$, so $|h(x) - L| < \varepsilon$, i.e. $L - \varepsilon < h(x) < L + \varepsilon$.

Combining these, we see

$$L - \varepsilon < f(x) \le g(x) \le h(x) < L + \varepsilon$$
,

so $|g(x) - L| < \varepsilon$.

Exercise 2.4. The squeeze theorem for limits of the form $\lim_{x\to a^+} f(x) = L$:

Let *f*, *g*, *h* be real-valued functions and $a \in \mathbb{R}$. Suppose that when *x* is near to and greater than *a*, we have $f(x) \le g(x) \le h(x)$. Suppose also that

$$\lim_{x \to a^+} f(x) = L = \lim_{x \to a^+} h(x).$$

Then

$$\lim_{x \to a^+} g(x) = L.$$

Proof. Let $\varepsilon > 0$.

Choose $\delta_1 > 0$ such that if $a < x < a + \delta_1$ then $f(x) \le g(x) \le h(x)$.

Since $\lim_{x\to a^+} f(x) = L$, we can choose $\delta_2 > 0$ such that if $a < x < a + \delta_2$ then $|f(x) - L| < \epsilon$. Similarly, since $\lim_{x\to a^+} h(x) = L$, we can choose $\delta_3 > 0$ such that if $a < x < a + \delta_3$ then $|h(x) - L| < \epsilon$.

Set $\delta = \min(\delta_1, \delta_2, \delta_3)$, and suppose $a < x < a + \delta$. Then $a < x < a + \delta_1$, so $f(x) \le g(x) \le h(x)$. Also $a < x < a + \delta_2$, so $|f(x) - L| < \varepsilon$, i.e. $L - \varepsilon < f(x) < L + \varepsilon$. Also $a < x < a + \delta_3$, so $|h(x) - L| < \varepsilon$, i.e. $L - \varepsilon < h(x) < L + \varepsilon$. Combining these, we see

$$L - \varepsilon < f(x) \le g(x) \le h(x) < L + \varepsilon$$
,

so $|g(x) - L| < \varepsilon$.

Exercise 2.5. Show that the sum of two continuous functions is continuous.

Proof. Suppose *f*, *g* are continuous functions, i.e.

$$\lim_{x \to a} f(x) = f(a) \quad \text{and} \quad \lim_{x \to a} g(x) = g(a)$$

for all *a*. By the sum law for limits,

$$\lim_{x \to a} f(x) + g(x) = f(a) + g(a)$$

for all *a*, i.e. f(x) + g(x) is continuous.

Exercise 2.6. Prove the following variation of the sum law for limits:

Let *f*, *g* be real valued functions, and *a*, *L*, *M* \in \mathbb{R} . Suppose that

$$\lim_{x \to a^+} f(x) = L \quad \text{and} \quad \lim_{x \to a^+} g(x) = M.$$

Then

$$\lim_{x \to a^+} f(x) + g(x) = L + M.$$

Proof. Let $\varepsilon > 0$. Since $\lim_{x \to a^+} f(x) = L$, there is a $\delta_1 > 0$ such that if $a < x < a + \delta_1$ then $|f(x) - L| < \varepsilon/2$. Similarly, since $\lim_{x \to a^+} g(x) = M$, there is a $\delta_2 > 0$ such that if $a < x < a + \delta_2$ then $|g(x) - M| < \varepsilon/2$.

Set $\delta = \min(\delta_1, \delta_2)$, and suppose $a < x < a + \delta$. Then $a < x < a + \delta_1$ so $|f(x) - L| < \varepsilon/2$, and $a < x < a + \delta_2$ so $|g(x) - M| < \varepsilon/2$. Now

$$|(f(x) + g(x)) - (L + M)| = |(f(x) - L) + (g(x) - M)|$$

$$\leq |f(x) - L| + |g(x) - M| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

We've shown $|(f(x) + g(x)) - (L + M)| < \varepsilon$, so we conclude $\lim_{x \to a^+} f(x) + g(x) = L + M$. \Box

Exercise 2.7. The difference law for limits of the form $\lim_{x\to a^-} f(x) = L$:

Suppose f, g are real-valued functions, and suppose that

$$\lim_{x \to a^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to a^{-}} g(x) = M.$$

Then

$$\lim_{x\to a^-} f(x) - g(x) = L - M.$$

Proof. Let $\varepsilon > 0$. Since $\lim_{x \to a^-} f(x) = L$, there is a $\delta_1 > 0$ such that if $a - \delta_1 < x < a$ then $|f(x) - L| < \varepsilon/2$. Similarly, since $\lim_{x \to a^-} g(x) = M$, there is a $\delta_2 > 0$ such that if $a - \delta_2 < x < a$ then $|g(x) - M| < \varepsilon/2$.

Set $\delta = \min(\delta_1, \delta_2)$, and suppose $a - \delta < x < a$. Then $a - \delta_1 < x < a$ so $|f(x) - L| < \varepsilon/2$, and $a - \delta_2 < x < a$ so $|g(x) - M| < \varepsilon/2$. Now

$$|(f(x) - g(x)) - (L - M)| = |(f(x) - L) - (g(x) - M)|$$

 $\leq |f(x) - L| + |g(x) - M| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$

We've shown $|(f(x) - g(x)) - (L - M)| < \varepsilon$, so we conclude $\lim_{x \to a^-} f(x) - g(x) = L - M$. \Box

Exercise 2.8. Prove using the definition of a limit (i.e. ε and δ) that

$$\lim_{x \to 2} x^3 - x^2 + 2x + 1 = 9.$$

Proof. Let $\varepsilon > 0$. Set $\delta = \min(1, \varepsilon/16)$. Suppose $|x - 2| < \delta$. Then |x - 2| < 1, so

$$-1 < x - 2 < 1$$

 $1 < x < 3$

and since $x^2 + x + 4$ is increasing on the interval [1,3], we have

$$1^{2} + 1 + 4 = 6 < x^{2} + x + 4 < 16 = 3^{2} + 3 + 4$$
$$|x^{2} + x + 4| < 16.$$

Also $|x-2| < \varepsilon/16$. Now

$$|x^{3} - x^{2} + 2x + 1 - 9|$$

=|x^{3} - x^{2} + 2x - 8|
=|(x - 2)(x^{2} + x + 4)|
=|x - 2||x^{2} + x + 4|
< \frac{\varepsilon}{16} \cdot 16
=\varepsilon.

Thus $|x^3 - x^2 + 2x + 1 - 9| < \varepsilon$, as desired.

Exercise 2.9. Prove using the definition of a limit (i.e. ε and δ) that

$$\lim_{x \to 2} x^4 - 12 = 4.$$

Proof. Let $\varepsilon > 0$, and set $\delta = \min(1, \varepsilon/203)$. Suppose $|x - 2| < \delta$. Then |x - 4| < 1, so

$$-1 < x - 4 < 1$$

 $5 < x + 2 < 7$
 $|x + 2| < 7$

and

$$-1 < x - 4 < 1$$

$$3 < x < 5$$

$$0 < x^{2} < 25$$

$$4 < x^{2} + 4 < 29$$

$$|x^{2} + 4| < 29.$$

Also $|x - 4| < \varepsilon/203$.

Now

$$|x^{4} - 12 - 4|$$

$$= |x^{4} - 16|$$

$$= |(x^{2} - 4)(x^{2} + 4)|$$

$$= |(x - 2)(x + 2)(x^{2} + 4)|$$

$$= |(x - 2)||(x + 2)||(x^{2} + 4)|$$

$$< \frac{\varepsilon}{203} \cdot 7 \cdot 29$$

$$= \varepsilon.$$

Thus $|x^4 - 12 - 4| < \varepsilon$, as desired.

Exercise 2.10. Suppose $|x - a| < \delta$. Find a bound for |x - b| (which may depend on a, b, δ). *Solution.*

$$|x-a| < \delta$$

$$-\delta < x-a < \delta$$

$$-\delta + a - b < x - b < \delta + a - b$$

$$|x-b| < \max(|-\delta + a - b|, |\delta + a - b|)$$

Exercise 2.11. Prove that if a function f is differentiable at a (i.e. if the limit defining the derivative at a exists) then f is continuous at a.

Proof. Suppose f is differentiable at a. Then the limit

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists. Now observe, using the product law for limits,

$$\lim_{x \to a} f(x) - f(a) = \lim_{h \to 0} f(a+h) - f(a) = \lim_{h \to 0} h \cdot \frac{f(a+h) - f(a)}{h}$$
$$= \lim_{h \to 0} h \cdot \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = 0 \cdot f'(a) = 0.$$

Since $\lim_{x\to a} f(x) - f(a) = 0$, we conclude that $\lim_{x\to a} f(x) = f(a)$, i.e. *f* is continuous at *a*.

Exercise 2.12. Find the derivative of x^x . [Hint: be careful trying to apply the chain rule here: write down precisely what *f* and *g* are, and you'll probably find that it doesn't work! The key is to rewrite x^x in a form that's easier to handle. Use the fact that $x = e^{\log x}$.]

Solution. Since $x = e^{\log x}$, we can rewrite $x^x = (e^{\log x})^x = e^{x \log x}$, and this looks more like something we can evaluate. We have

$$\frac{d}{dx}x^{x}$$

$$=\frac{d}{dx}e^{x\log x}$$

$$=e^{x\log x}\frac{d}{dx}x\log x$$

$$=e^{x\log x}(\log x + x \cdot \frac{1}{x})$$

$$=x^{x}(\log x + 1).$$

Bonus Material: Stewart Chapter 2 Review Exercises #6-9, 15-20

Here are a bunch of problems on evaluating limits from the Chapter 2 Review of the textbook. I won't prove anything, just give a quick explanation of what the limit is and why.

Exercise 2.6.

$$\lim_{x \to 1^+} \frac{x^2 - 9}{x^2 + 2x - 3}$$

Solution. Factor and cancel:

$$\lim_{x \to 1^+} \frac{x^2 - 9}{x^2 + 2x - 3} = \lim_{x \to 1^+} \frac{(x + 3)(x - 3)}{(x - 1)(x + 3)} = \lim_{x \to 1^+} \frac{x - 3}{x - 1} = -\infty.$$

As *x* approaches 1 from above, $\frac{1}{x-1}$ will go to $+\infty$, and x-3 will be about -2, so the limit is $-\infty$.

Exercise 2.7.

$$\lim_{h \to 0} \frac{(h-1)^3 + 1}{h}$$

Solution. Expand the cube:

$$\lim_{h \to 0} \frac{(h-1)^3 + 1}{h} = \lim_{h \to 0} \frac{h^3 - 3h^2 + 3h - 1 + 1}{h} = \lim_{h \to 0} \frac{h^3 - 3h^2 + 3h}{h} = \lim_{h \to 0} h^2 - 3h + 3 = 3.$$

Exercise 2.8.

$$\lim_{t\to 2}\frac{t^2-4}{t^3-8}$$

Solution. Factor and cancel:

$$\lim_{t \to 2} \frac{t^2 - 4}{t^3 - 8} = \lim_{t \to 2} \frac{(t - 2)(t + 2)}{(t - 2)(t^2 + 2t + 4)} = \lim_{t \to 2} \frac{(t + 2)}{(t^2 + 2t + 4)} = \frac{1}{3}.$$

T	•	a a
Exer	CISE	2.9.
LACI	eroe	

$$\lim_{r \to 9} \frac{\sqrt{r}}{(r-9)^4}$$

Solution. Plug in: as *r* approaches 9 (from either side), $\frac{1}{(r-9)^4}$ goes to $+\infty$, and \sqrt{r} is about 3, so the limit is $+\infty$.

Exercise 2.15.

$$\lim_{x\to\pi^-}\ln(\sin x)$$

Solution. Composition: set $y = \sin x$, so $\lim_{x \to \pi^{-}} \ln(\sin x) = \lim_{x \to \pi^{-}} \ln y$. As *x* approaches π from below, $y = \sin x$ approaches 0 from above. As *y* approaches 0 from above, $\ln y$ approaches $-\infty$. Thus the limit is $-\infty$.

Exercise 2.16.

$$\lim_{x \to -\infty} \frac{1 - 2x^2 - x^4}{5 + x - 3x^4}$$

Solution. Highest powers: since we're taking a limit at $-\infty$, we can ignore everything except the highest power in the numerator and denominator. That is,

$$\lim_{x \to -\infty} \frac{1 - 2x^2 - x^4}{5 + x - 3x^4} = \lim_{x \to -\infty} \frac{-x^4}{-3x^4} = \frac{1}{3}.$$

Exercise 2.17.

$$\lim_{x\to\infty}(\sqrt{x^2+4x+1}-x)$$

Solution. Not sure about this one. Let me know if y'all have ideas. WolframAlpha tells me the limit is 2. $\hfill \Box$

Exercise 2.18.

$$\lim_{x\to\infty}e^{x-x^2}$$

Solution. Composition: let $y = x - x^2$, so $\lim_{x\to\infty} e^{x-x^2} = \lim_{x\to\infty} e^y$. As x approaches ∞ , $y = x - x^2$ approaches $-\infty$. As y approaches $-\infty$, e^y approaches 0. Thus the limit is 0.

Exercise 2.19.

$$\lim_{x \to 0^+} \arctan(1/x)$$

Solution. Composition: let y = 1/x, so $\lim_{x\to 0^+} \arctan(1/x) = \lim_{x\to 0^+} \arctan(y)$. As x approaches 0 from above, y = 1/x approaches $+\infty$. As y approaches $+\infty$, $\arctan(y)$ approaches $\pi/2$. Thus the limit is $\pi/2$.

Exercise 2.20.

$$\lim_{x \to 1} \left(\frac{1}{x - 1} + \frac{1}{x^2 - 3x + 2} \right)$$

Solution. Common denominator and cancel:

$$\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2} \right) = \lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{(x-1)(x-2)} \right)$$
$$= \lim_{x \to 1} \left(\frac{x-2}{(x-1)(x-2)} + \frac{1}{(x-1)(x-2)} \right) = \lim_{x \to 1} \left(\frac{x-2+1}{(x-1)(x-2)} \right)$$
$$= \lim_{x \to 1} \left(\frac{x-1}{(x-1)(x-2)} \right) = \lim_{x \to 1} \left(\frac{1}{x-2} \right) = -1.$$