Midterm 1 Review MATH 1A Fall 2015

Easier Problems

Exercise 1.1. Write down the truth tables for the following logical statements.

- 1. P or Q
- 2. P implies Q
- 3. P and not Q
- 4. not Q implies not P
- 5. not (P implies Q)

(Observe that some of these statements have the same truth table, and conclude that those statements are logically the same.)

Exercise 1.2. Prove that for every $a \in \mathbb{R}$, we have $|a| \ge a$.

Exercise 1.3. State and prove the sum law for limits.

Exercise 1.4. Suppose $|x - 3| \le 2$. Conclude that $|x + 1| \le 6$.

Exercise 1.5. State and prove the constant multiple law for limits.

Exercise 1.6. Suppose $|x - 1| \le 4$. Find a bound for |x - 7|.

Exercise 1.7. Define what it means to say $\lim_{x\to a^+} f(x) = \infty$. Then show $\lim_{x\to 1^+} \frac{1}{x-1} = \infty$. What is $\lim_{x\to 1} \frac{1}{x-1}$?

Exercise 1.8. State and prove the difference law for limits.

Exercise 1.9. Define what it means to say $\lim_{x\to a^-} f(x) = L$. Then show $\lim_{x\to 2^-} \frac{x-2}{|x-2|} = -1$. What is $\lim_{x\to 2^+} \frac{x-2}{|x-2|}$?

Exercise 1.10. Define what it means to say $\lim_{x\to\infty} f(x) = L$. Then show $\lim_{x\to\infty} \frac{1}{x^2} = 0$.

Exercise 1.11. State the definition of continuity. Then prove that f(x) = 10x is continuous.

Exercise 1.12. Decide whether the following statements are true or false.

- 1. If *f* is continuous at *a*, then *f* is differentiable at *a*.
- 2. If *f* is differentiable at *a*, then *f* is continuous at *a*.
- 3. If $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ both exist, then $\lim_{x\to a} f(x)$ exists.

Exercise 1.13. Prove that

$$\lim_{x \to 0} \frac{x}{\cos x} = 0.$$

Exercise 1.14. Prove using the definition of a limit (i.e. ε and δ) that

$$\lim_{x \to 3} x^2 - 2x + 1 = 4.$$

Exercise 1.15. Prove using the definition of a limit (i.e. ε and δ) that

$$\lim_{x \to 1} 2x^2 - 3 = -1.$$

Exercise 1.16. State and prove the squeeze theorem.

Harder Problems

Exercise 2.1. Prove the following sort-of-generalization of the squeeze theorem.

Let *f*, *g*, *h* be real-valued functions, and $a \in \mathbb{R}$. Suppose when *x* is near *a*, except possibly at *a*, these functions satisfy $f(x) \le g(x) \le h(x)$. Suppose also that

$$\lim_{x \to a} f(x) = L, \qquad \lim_{x \to a} g(x) = M, \qquad \lim_{x \to a} h(x) = N.$$

Then

 $L \leq M \leq N.$

Exercise 2.2. Show that there is always a pair of diametrically opposite points on Earth's equator where the temperature at both points is the same.

Exercise 2.3. Prove the following variation of the squeeze theorem:

Let *f*, *g*, *h* be real-valued functions. Suppose there exists N > 0 such that for all x > N, we have $f(x) \le g(x) \le h(x)$. Suppose also that

$$\lim_{x\to\infty}f(x)=L=\lim_{x\to\infty}h(x).$$

Then

$$\lim_{x\to\infty}g(x)=L.$$

Exercise 2.4. State and prove the squeeze theorem for limits of the form $\lim_{x\to a^+} f(x) = L$.

Exercise 2.5. Show that the sum of two continuous functions is continuous.

Exercise 2.6. Prove the following variation of the sum law for limits:

Let *f*, *g* be real valued functions, and *a*, *L*, *M* \in \mathbb{R} . Suppose that

 $\lim_{x \to a^+} f(x) = L \quad \text{and} \quad \lim_{x \to a^+} g(x) = M.$

Then

$$\lim_{x \to a^+} f(x) + g(x) = L + M.$$

Exercise 2.7. State and prove the difference law for limits of the form $\lim_{x\to a^-} f(x) = L$.

Exercise 2.8. Prove using the definition of a limit (i.e. ε and δ) that

$$\lim_{x \to 2} x^3 - x^2 + 2x + 1 = 9.$$

Exercise 2.9. Prove using the definition of a limit (i.e. ε and δ) that

$$\lim_{x \to 2} x^4 - 12 = 4.$$

Exercise 2.10. Suppose $|x - a| < \delta$. Find a bound for |x - b| (which may depend on a, b, δ).

Exercise 2.11. Prove that if a function f is differentiable at a (i.e. if the limit defining the derivative at a exists) then f is continuous at a.

Exercise 2.12. Find the derivative of x^x . [Hint: be careful trying to apply the chain rule here: write down precisely what *f* and *g* are, and you'll probably find that it doesn't work! The key is to rewrite x^x in a form that's easier to handle. Use the fact that $x = e^{\log x}$.]

Bonus Material: Stewart Chapter 2 Review Exercises #6-9, 15-20

Here are a bunch of problems on evaluating limits from the Chapter 2 Review of the textbook. No need to prove anything, just give a quick explanation of what the limit is and why.

Exercise 2.7. $\lim_{x \to 1^+} \frac{x^2 - 9}{x^2 + 2x - 3}$ Exercise 2.7. $\lim_{h \to 0} \frac{(h-1)^3 + 1}{h}$ Exercise 2.8. $\lim_{t \to 2} \frac{t^2 - 4}{t^3 - 8}$ Exercise 2.9. $\lim_{x \to \pi^-} \frac{\sqrt{r}}{(r-9)^4}$ Exercise 2.16. $\lim_{x \to \pi^-} \ln(\sin x)$ Exercise 2.17. Exercise 2.18. $\lim_{x \to \infty} (\sqrt{x^2 + 4x + 1} - x)$ Exercise 2.19. $\lim_{x \to 0^+} \arctan(1/x)$ Exercise 2.20. $\lim_{x \to 1^+} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2}\right)$	Exercise 2.6.	2
Exercise 2.7. $\lim_{h \to 0} \frac{(h-1)^3 + 1}{h}.$ Exercise 2.8. $\lim_{t \to 2} \frac{t^2 - 4}{t^3 - 8}$ Exercise 2.9. $\lim_{r \to 9} \frac{\sqrt{r}}{(r-9)^4}$ Exercise 2.15. Exercise 2.16. $\lim_{x \to \pi^-} \ln(\sin x)$ Exercise 2.17. Exercise 2.18. $\lim_{x \to 0^+} \frac{1 - 2x^2 - x^4}{5 + x - 3x^4}$ Exercise 2.19. $\lim_{x \to 0^+} e^{x-x^2}$ Exercise 2.20. $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2}\right)$		$\lim_{x \to 1^+} \frac{x^2 - 9}{x^2 + 2x - 3}$
Exercise 2.8. Exercise 2.8. Exercise 2.9. Exercise 2.15. Exercise 2.16. Exercise 2.17. Exercise 2.18. Exercise 2.19. Exercise 2.20. $\lim_{k \to 0^{+}} \frac{(n-1)^{k}+1}{h}.$ $\lim_{k \to 0^{+}} \frac{t^{2}-4}{t^{3}-8}$ $\lim_{x \to 0^{+}} \frac{\sqrt{r}}{(r-9)^{4}}$ $\lim_{x \to 0^{-}} \ln(\sin x)$ $\lim_{x \to -\infty} \frac{1-2x^{2}-x^{4}}{5+x-3x^{4}}$ $\lim_{x \to \infty} (\sqrt{x^{2}+4x+1}-x)$ $\lim_{x \to 0^{+}} \arctan(1/x)$ $\lim_{x \to 0^{+}} \arctan(1/x)$ $\lim_{x \to 1} \left(\frac{1}{x-1}+\frac{1}{x^{2}-3x+2}\right)$	Exercise 2.7.	$(1, 1)^3 + 1$
Exercise 2.8. $\lim_{t\to 2} \frac{t^2 - 4}{t^3 - 8}$ Exercise 2.9. $\lim_{r\to 9} \frac{\sqrt{r}}{(r-9)^4}$ Exercise 2.15. Exercise 2.16. $\lim_{x\to -\infty} \frac{1 - 2x^2 - x^4}{5 + x - 3x^4}$ Exercise 2.17. Exercise 2.18. $\lim_{x\to\infty} (\sqrt{x^2 + 4x + 1} - x)$ Exercise 2.19. $\lim_{x\to 0^+} \arctan(1/x)$ Exercise 2.20. $\lim_{x\to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2}\right)$		$\lim_{h\to 0}\frac{(n-1)^2+1}{h}.$
Exercise 2.9. $\lim_{t \to 2} \frac{t^2 - 4}{t^3 - 8}$ Exercise 2.9. $\lim_{r \to 9} \frac{\sqrt{r}}{(r - 9)^4}$ Exercise 2.16. Exercise 2.16. $\lim_{x \to -\infty} \frac{1 - 2x^2 - x^4}{5 + x - 3x^4}$ Exercise 2.17. Exercise 2.18. $\lim_{x \to \infty} (\sqrt{x^2 + 4x + 1} - x)$ Exercise 2.19. $\lim_{x \to 0^+} \arctan(1/x)$ Exercise 2.20. $\lim_{x \to 1} \left(\frac{1}{x - 1} + \frac{1}{x^2 - 3x + 2}\right)$	Exercise 2.8.	+2 1
Exercise 2.9. $\lim_{r \to 9} \frac{\sqrt{r}}{(r-9)^4}$ Exercise 2.15. Exercise 2.16. $\lim_{x \to \pi^-} \ln(\sin x)$ Exercise 2.17. Exercise 2.18. $\lim_{x \to \infty} (\sqrt{x^2 + 4x + 1} - x)$ Exercise 2.19. $\lim_{x \to 0^+} \arctan(1/x)$ Exercise 2.20. $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2}\right)$		$\lim_{t\to 2}\frac{t^2-4}{t^3-8}$
Exercise 2.15. $\lim_{r \to 9} \frac{\sqrt{r}}{(r-9)^4}$ Exercise 2.16. $\lim_{x \to -\infty} \ln(\sin x)$ Exercise 2.17. Exercise 2.18. $\lim_{x \to \infty} (\sqrt{x^2 + 4x + 1} - x)$ Exercise 2.19. $\lim_{x \to 0^+} \arctan(1/x)$ Exercise 2.20. $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2}\right)$	Exercise 2.9.	<i>[</i>
Exercise 2.15. Exercise 2.16. Exercise 2.16. Exercise 2.17. Exercise 2.18. Exercise 2.19. Exercise 2.20. $\lim_{x \to 0^+} \ln(\sin x)$ $\lim_{x \to -\infty} \frac{1 - 2x^2 - x^4}{5 + x - 3x^4}$ $\lim_{x \to \infty} (\sqrt{x^2 + 4x + 1} - x)$ $\lim_{x \to 0^+} e^{x - x^2}$ $\lim_{x \to 0^+} \arctan(1/x)$ $\lim_{x \to 1^+} \left(\frac{1}{x - 1} + \frac{1}{x^2 - 3x + 2}\right)$		$\lim_{r \to 9} \frac{\sqrt{r}}{(r-9)^4}$
Exercise 2.16. $\lim_{x \to \pi^{-}} \ln(\sin x)$ Exercise 2.16. $\lim_{x \to -\infty} \frac{1 - 2x^2 - x^4}{5 + x - 3x^4}$ Exercise 2.17. Exercise 2.18. $\lim_{x \to \infty} (\sqrt{x^2 + 4x + 1} - x)$ Exercise 2.19. $\lim_{x \to 0^+} \operatorname{arctan}(1/x)$ Exercise 2.20. $\lim_{x \to 1} \left(\frac{1}{x - 1} + \frac{1}{x^2 - 3x + 2}\right)$	Exercise 2.15.	
Exercise 2.16. $\lim_{x \to -\infty} \frac{1 - 2x^2 - x^4}{5 + x - 3x^4}$ Exercise 2.17. Exercise 2.18. $\lim_{x \to \infty} (\sqrt{x^2 + 4x + 1} - x)$ Exercise 2.19. $\lim_{x \to 0^+} \arctan(1/x)$ Exercise 2.20. $\lim_{x \to 1} \left(\frac{1}{x - 1} + \frac{1}{x^2 - 3x + 2}\right)$		$\lim_{x\to\pi^-}\ln(\sin x)$
Exercise 2.17. $\lim_{x \to -\infty} \frac{1-2x^2-x}{5+x-3x^4}$ Exercise 2.17. $\lim_{x \to \infty} (\sqrt{x^2+4x+1}-x)$ Exercise 2.18. $\lim_{x \to \infty} e^{x-x^2}$ Exercise 2.19. $\lim_{x \to 0^+} \arctan(1/x)$ Exercise 2.20. $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2-3x+2}\right)$	Exercise 2.16.	$1 2 \sim^2 \sim^4$
Exercise 2.17. $\lim_{x \to \infty} (\sqrt{x^2 + 4x + 1} - x)$ Exercise 2.18. $\lim_{x \to \infty} e^{x - x^2}$ Exercise 2.19. $\lim_{x \to 0^+} \arctan(1/x)$ Exercise 2.20. $\lim_{x \to 1} \left(\frac{1}{x - 1} + \frac{1}{x^2 - 3x + 2}\right)$		$\lim_{x \to -\infty} \frac{1 - 2x - x}{5 + x - 3x^4}$
Exercise 2.18. Exercise 2.19. Exercise 2.20. $\lim_{x \to 0^+} \operatorname{e}^{x-x^2}$ $\lim_{x \to 0^+} \operatorname{arctan}(1/x)$ $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2}\right)$	Exercise 2.17.	
Exercise 2.18. $\lim_{x \to \infty} e^{x-x^2}$ Exercise 2.19. $\lim_{x \to 0^+} \arctan(1/x)$ Exercise 2.20. $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2}\right)$		$\lim_{x\to\infty}(\sqrt{x^2+4x+1-x})$
Exercise 2.19. Exercise 2.20. $\lim_{x \to 0^+} \operatorname{ectan}(1/x)$ $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2}\right)$	Exercise 2.18.	$\lim_{x \to x^2} e^{x-x^2}$
Exercise 2.19. $\lim_{x \to 0^+} \arctan(1/x)$ Exercise 2.20. $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2}\right)$		$\lim_{x\to\infty} e$
Exercise 2.20. $\lim_{x \to 0^+} \arctan(1/x)$ $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2}\right)$	Exercise 2.19.	
Exercise 2.20. $\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2} \right)$		$\lim_{x \to 0^+} \arctan(1/x)$
$\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2} \right)$	Exercise 2.20.	(1 1
		$\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2} \right)$