Midterm 1 Review
 MATH 1A Fall 2015

Easier Problems

Exercise 1.1. Write down the truth tables for the following logical statements.

1. P or Q
2. P implies Q
3. P and not Q
4. not Q implies not P
5. not (P implies Q)
(Observe that some of these statements have the same truth table, and conclude that those statements are logically the same.)
Exercise 1.2. Prove that for every $a \in \mathbb{R}$, we have $|a| \geq a$.
Exercise 1.3. State and prove the sum law for limits.
Exercise 1.4. Suppose $|x-3| \leq 2$. Conclude that $|x+1| \leq 6$.
Exercise 1.5. State and prove the constant multiple law for limits.
Exercise 1.6. Suppose $|x-1| \leq 4$. Find a bound for $|x-7|$.
Exercise 1.7. Define what it means to say $\lim _{x \rightarrow a^{+}} f(x)=\infty$. Then show $\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=\infty$. What is $\lim _{x \rightarrow 1} \frac{1}{x-1}$?

Exercise 1.8. State and prove the difference law for limits.
Exercise 1.9. Define what it means to say $\lim _{x \rightarrow a^{-}} f(x)=L$. Then show $\lim _{x \rightarrow 2^{-}} \frac{x-2}{|x-2|}=-1$. What is $\lim _{x \rightarrow 2^{+}} \frac{x-2}{|x-2|}$?
Exercise 1.10. Define what it means to say $\lim _{x \rightarrow \infty} f(x)=L$. Then show $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0$.
Exercise 1.11. State the definition of continuity. Then prove that $f(x)=10 x$ is continuous.
Exercise 1.12. Decide whether the following statements are true or false.

1. If f is continuous at a, then f is differentiable at a.
2. If f is differentiable at a, then f is continuous at a.
3. If $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$ both exist, then $\lim _{x \rightarrow a} f(x)$ exists.

Exercise 1.13. Prove that

$$
\lim _{x \rightarrow 0} \frac{x}{\cos x}=0
$$

Exercise 1.14. Prove using the definition of a limit (i.e. ε and δ) that

$$
\lim _{x \rightarrow 3} x^{2}-2 x+1=4
$$

Exercise 1.15. Prove using the definition of a limit (i.e. ε and δ) that

$$
\lim _{x \rightarrow 1} 2 x^{2}-3=-1
$$

Exercise 1.16. State and prove the squeeze theorem.

Harder Problems

Exercise 2.1. Prove the following sort-of-generalization of the sqeeze theorem.
Let f, g, h be real-valued functions, and $a \in \mathbb{R}$. Suppose when x is near a, except possibly at a, these functions satisfy $f(x) \leq g(x) \leq h(x)$. Suppose also that

$$
\lim _{x \rightarrow a} f(x)=L, \quad \lim _{x \rightarrow a} g(x)=M, \quad \lim _{x \rightarrow a} h(x)=N .
$$

Then

$$
L \leq M \leq N .
$$

Exercise 2.2. Show that there is always a pair of diametrically opposite points on Earth's equator where the temperature at both points is the same.

Exercise 2.3. Prove the following variation of the squeeze theorem:
Let f, g, h be real-valued functions. Suppose there exists $N>0$ such that for all $x>N$, we have $f(x) \leq g(x) \leq h(x)$. Suppose also that

$$
\lim _{x \rightarrow \infty} f(x)=L=\lim _{x \rightarrow \infty} h(x) .
$$

Then

$$
\lim _{x \rightarrow \infty} g(x)=L .
$$

Exercise 2.4. State and prove the squeeze theorem for limits of the form $\lim _{x \rightarrow a^{+}} f(x)=L$.
Exercise 2.5. Show that the sum of two continuous functions is continuous.
Exercise 2.6. Prove the following variation of the sum law for limits:
Let f, g be real valued functions, and $a, L, M \in \mathbb{R}$. Suppose that

$$
\lim _{x \rightarrow a^{+}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a^{+}} g(x)=M .
$$

Then

$$
\lim _{x \rightarrow a^{+}} f(x)+g(x)=L+M .
$$

Exercise 2.7. State and prove the difference law for limits of the form $\lim _{x \rightarrow a^{-}} f(x)=L$.
Exercise 2.8. Prove using the definition of a limit (i.e. ε and δ) that

$$
\lim _{x \rightarrow 2} x^{3}-x^{2}+2 x+1=9 .
$$

Exercise 2.9. Prove using the definition of a limit (i.e. ε and δ) that

$$
\lim _{x \rightarrow 2} x^{4}-12=4 .
$$

Exercise 2.10. Suppose $|x-a|<\delta$. Find a bound for $|x-b|$ (which may depend on a, b, δ).
Exercise 2.11. Prove that if a function f is differentiable at a (i.e. if the limit defining the derivative at a exists) then f is continuous at a.

Exercise 2.12. Find the derivative of x^{x}. [Hint: be careful trying to apply the chain rule here: write down precisely what f and g are, and you'll probably find that it doesn't work! The key is to rewrite x^{x} in a form that's easier to handle. Use the fact that $x=e^{\log x}$.]

Bonus Material: Stewart Chapter 2 Review Exercises \#6-9, 15-20

Here are a bunch of problems on evaluating limits from the Chapter 2 Review of the textbook. No need to prove anything, just give a quick explanation of what the limit is and why.

Exercise 2.6.

$$
\lim _{x \rightarrow 1^{+}} \frac{x^{2}-9}{x^{2}+2 x-3}
$$

Exercise 2.7.

$$
\lim _{h \rightarrow 0} \frac{(h-1)^{3}+1}{h} .
$$

Exercise 2.8.

$$
\lim _{t \rightarrow 2} \frac{t^{2}-4}{t^{3}-8}
$$

Exercise 2.9.

$$
\lim _{r \rightarrow 9} \frac{\sqrt{r}}{(r-9)^{4}}
$$

Exercise 2.15.

$$
\lim _{x \rightarrow \pi^{-}} \ln (\sin x)
$$

Exercise 2.16.

$$
\lim _{x \rightarrow-\infty} \frac{1-2 x^{2}-x^{4}}{5+x-3 x^{4}}
$$

Exercise 2.17.

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x+1}-x\right)
$$

Exercise 2.18.

$$
\lim _{x \rightarrow \infty} e^{x-x^{2}}
$$

Exercise 2.19.

$$
\lim _{x \rightarrow 0^{+}} \arctan (1 / x)
$$

Exercise 2.20.

$$
\lim _{x \rightarrow 1}\left(\frac{1}{x-1}+\frac{1}{x^{2}-3 x+2}\right)
$$

