CHAPTER 1

Preliminaries to Complex Analysis

1. Complex numbers and the complex plane

Set of complex numbers is the same as \(\mathbb{R}^2 \) and is denoted by
\[
\mathbb{C} = \{ z = x + iy \mid x, y \in \mathbb{R} \}.
\]
In \(z = x + it \), the \(x \) is called the real part and the \(y \) is called the imaginary part of \(z \), and write as
\[
x = \Re(z), \quad y = \Im(z).
\]

One can extend addition + and multiplication \(\cdot \) over \(\mathbb{R} \) to \(\mathbb{C} \) (as real part) via
\[
z + w = (\Re(z) + \Re(w)) + i(\Im(z) + \Im(w)),
\]
and
\[
z \cdot w = (\Re(z)\Re(w) - \Im(z)\Im(w)) + i(\Re(z)\Im(w) + \Im(z)\Re(w)).
\]

In particular, \(i^2 = i \cdot i = -1 \). It is easy to check \((\mathbb{C}, +, \cdot)\) is a field as a field extension of \(\mathbb{R} \).

It is much easier to express the multiplication using polar coordinates. For each \(r \geq 0 \), \(\theta \in \mathbb{R} \),
\[
 z = re^{i\theta}.
\]

Conversely, every nonzero complex number \(z \in \mathbb{C}^* \), there is a unique \(r > 0 \) and \([\theta] \in \mathbb{R}/2\pi \) so that
\(z = re^{i\theta} \). Such \((r, \theta)\) is called a polar coordinate of \(z \).
Assume \(z_k = r_k e^{i\theta_k} \), \(k = 1, 2 \). Then
\[
z_1 \cdot z_2 = (r_1 r_2) e^{i(\theta_1 + \theta_2)}.
\]

The geometric meaning of \(r \) is the norm of \(z \), i.e., the distance between the origin and \(z \), as
\[
|z| := \sqrt{\Re(z)^2 + \Im(z)^2}.
\]

The geometric meaning of \(\theta \) is the argument of \(z \), i.e., the angle between the real axis and the radical line \(\overline{oz} \), as
\[
\tan \theta = \frac{y}{x}.
\]

Another operation over \(\mathbb{C} \) is the conjugation, which is the reflection about the real axis, i.e.,
\[
\bar{z} = \Re(z) - i\Im(z).
\]

It is easy to check
\[
|z|^2 = z\bar{z} = \bar{z}z, \quad \frac{1}{z} = \frac{\bar{z}}{|z|^2},
\]
and
\[
\Re(z) = \frac{z + \bar{z}}{2}, \quad \Im(z) = \frac{z - \bar{z}}{2i}.
\]

The norm \(|\cdot| \) introduces a natural distance
\[
d(z, w) = |z - w|.
\]
over \(\mathbb{C} \). As a metric space, \((\mathbb{C}, d)\) behaves exactly the same as \(\mathbb{R}^2\). We now review some basic properties for this metric space.

1.1. Sequences and convergence in \(\mathbb{C} \)

A sequence \(\{z_n\} \) is called convergent in \(\mathbb{C} \), if there is some \(w \in \mathbb{C} \) so that

\[
\lim_{n \to \infty} |z_n - w| = 0.
\]

Such \(w \), if exists, must be unique, and we denote such convergence as \(\lim_{n \to \infty} z_n = w \), or

\[
z_n \to w, \quad \text{as} \quad n \to \infty.
\]

Lemma 1.1. \(\lim_{n \to \infty} z_n = w \) if and only if

\[
\lim_{n \to \infty} \text{Re}(z_n) = \text{Re}(w), \quad \lim_{n \to \infty} \text{Im}(z_n) = \text{Im}(w).
\]

Proof. Details are left to you. \(\square \)

A sequence \(\{z_n\} \) is called a Cauchy sequence, if for any \(\varepsilon > 0 \), there exists some \(N > 0 \) so that any \(m, n > N \), \(|z_n - z_m| < \varepsilon\). Clearly, every convergent sequence is a Cauchy sequence. The converse is also true for \(\mathbb{C} \). In another word, we have

Theorem 1.2. \(\mathbb{C} \) is complete.

Proof. \(\{z_n\} \) is a Cauchy sequence if and only if \(\{\text{Re}(z_n)\}, \{\text{Im}(z_n)\} \) are both Cauchy sequences. Then the completeness of \(\mathbb{C} \) follows from completeness of \(\mathbb{R} \). \(\square \)

1.2. Open sets in \(\mathbb{C} \)

Denote by

\[
D_r(z_0) := \{z \in \mathbb{C} \mid |z - z_0| < r\}, \quad r > 0
\]

the open disk of radius \(r \) centered at \(z_0 \). (All open disks form a topology base of \(\mathbb{C} \).) A closed disk is defined as

\[
\overline{D}_r(z_0) := \{z \in \mathbb{C} \mid |z - z_0| \leq r\}, \quad r > 0.
\]

We use \(\mathbb{D} \) to denote the unit (open) disk center at the origin.

For a subset \(\Omega \subset \mathbb{C} \), a point \(z \in \Omega \) is called an interior point, if there is some \(D_r(z) \subset \Omega \). We use \(\Omega^o \) to denote the set of interior points of \(\Omega \) and \(\Omega^c \) the interior of \(\Omega \). The set \(\Omega \) is open if and only if \(\Omega = \Omega^o \). A set \(\Omega \) is closed if \(\Omega^c \) is open. A set is closed if and only if it contains all limit points. For any set \(\Omega \), its closure \(\overline{\Omega} \) is defined as the union of itself with its limit points. It is closed. The boundary \(\partial \Omega \) is defined as

\[
\partial \Omega := \overline{\Omega} \setminus \Omega^o.
\]

The closed disk \(\overline{D}_r(z_0) \) is the closure of the open disk \(D_r(z_0) \), and

\[
\partial \overline{D}_r(z_0) = \partial D_r(z_0) = C_r(z_0) := \{z \in \mathbb{C} \mid |z - z_0| = r_0\}
\]

the circle of radius \(r \) centered at \(z_0 \).

Lecture 1 stopped here.

A subset \(\Omega \) in \(\mathbb{C} \) is called bounded, if there exists some \(M > 0 \) so that \(|z| \leq M \) for any \(z \in \Omega \). For a bounded set \(\Omega \), define its diameter as

\[
\text{diam}(\Omega) := \sup_{z,w \in \Omega} |z - w|,
\]

which is a finite number. Then the following statements are equivalent for a subset \(\Omega \) of \(\mathbb{C} \):
• Ω is compact;
• Ω is both closed and bounded;
• Ω is sequentially compact, i.e., every sequence in Ω has a convergent subsequence.

The following proposition is useful in proving the Goursat’s theorem later.

Proposition 1.3. Assume \(\Omega_1 \supset \Omega_2 \supset \ldots \) is a sequence of nested subsets of \(\mathbb{C} \), with each one nonempty, compact and

\[
\lim_{n \to \infty} \text{diam}(\Omega_n) = 0.
\]

Then their intersection contains a unique point \(z_0 \in \mathbb{C} \).

Proof. We first prove that \(\cap_n \Omega_n \) is not empty, i.e., it contains some point \(z_0 \in \mathbb{C} \). For this, take \(z_n \in \Omega_n \) for each \(n = 1, 2, \ldots \) and we obtain a Cauchy sequence \(\{ z_n \} \) in \(\mathbb{C} \) since \(\lim_{n \to \infty} \text{diam}(\Omega_n) = 0 \).

By the completeness of \(\mathbb{C} \), the sequence \(\{ z_n \} \) converges to some point \(z_0 \in \mathbb{C} \). The limit \(z_0 \) lives in each \(\Omega_n \) since each \(\Omega_n \) is (sequentially) compact. This proves \(z_0 \in \cap_n \Omega_n \).

Next we show \(z_0 \) is the only point in \(\cap_n \Omega_n \). Assume there is another point \(z' \in \cap_n \Omega_n \). Then their distance

\[
|z_0 - z'| \leq \text{diam}(\Omega_n), \quad n = 1, 2, \ldots
\]

take \(n \to \infty \), there must be \(|z_0 - z'| = 0 \) and then \(z' = z_0 \).

An open subset \(\Omega \) of \(\mathbb{C} \) is called connected, if there is no way to write \(\Omega \) as a union of two disjoint nonempty open sets in \(\mathbb{C} \). This is equivalent to say \(\Omega \) is path-connected, i.e., for any two points \(z_0, z_1 \in \Omega \), there is a continuous path in \(\Omega \) which connects \(z_0 \) and \(z_1 \).

We call \(\Omega \) a region in \(\mathbb{C} \) if it is both open and connected.

2. Functions on \(\mathbb{C} \)

2.1. Continuous functions.

Assume \(\Omega \) is a subset of \(\mathbb{C} \) and \(z_0 \in \Omega \). A function \(f : \Omega \to \mathbb{C} \) is called continuous at \(z_0 \), if for any \(\varepsilon > 0 \), there exists some \(\delta > 0 \) so that

\[
|f(z) - f(z_0)| < \varepsilon, \quad \text{for any } |z - z_0| < \delta, z \in \Omega.
\]

The following equivalence is left as a homework problem: \(f \) is continuous at \(z_0 \) if and only if

\[
f(z_n) \to f(z_0) \text{ for any sequence } z_n \to z_0 \text{ as } n \to \infty.
\]

Clearly, \(f \) is continuous at \(z_0 \) if and only if both \(\text{Re}(f) \) and \(\text{Im}(f) \) are continuous at \(z_0 \).

We write \(f \in C^0(\Omega) \) if \(f \) is continuous on every \(z_0 \in \Omega \).

The definition of continuity and be generalized to functions defined over any metric spaces, for example, over \(\mathbb{C} \times \mathbb{C} \). Then it is easy to check addition, subtraction, multiplication, division, norm are all continuous functions on the corresponding natural domains.

The following property for continuous function defined over a compact domain is very useful.

Theorem 2.1. If \(\Omega \) is a compact subset in \(\mathbb{C} \) and \(f \in C^0(\Omega) \), then \(f \) is bounded and can obtain its maximum and minimum on \(\Omega \).
2.2. Holomorphic functions. Now there comes the key concept in complex analysis.

Definition 2.2. Assume Ω is an open subset in \mathbb{C}. A function $f : \Omega \to \mathbb{C}$ is called holomorphic at $z_0 \in \Omega$, if the function

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

is convergent as $h \to 0$ (with $z_0 + h \in \Omega$). The limit is called the derivative of f at z_0 and is denoted by $f'(z_0)$.

If $f'(z_0)$ exists for every $z_0 \in \Omega$, then we say the function f is a holomorphic function over Ω. A holomorphic function f defines a derivative function $f' : \Omega \to \mathbb{C}$. We are going to prove it is also holomorphic over Ω in later sections. A holomorphic function over \mathbb{C} is called an entire function.

Example 2.3.

1. $f(z) = z$ is an entire function with $f'(z) = 1$.
2. Any polynomial $p(z) = a_0 + a_1 z + \cdots + a_n z^n$, $a_0, a_1, \ldots, a_n \in \mathbb{C}, a_n \neq 0$ is an entire function with
 $$p'(z) = a_1 + 2a_2 z + \cdots + na_n z^{n-1}.$$
3. $f(z) = \frac{1}{z}$ is holomorphic over \mathbb{C}^* with
 $$f'(z) = -\frac{1}{z^2}.$$
4. $f(z) = \bar{z}$ is NOT a holomorphic function.

 Consider $\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \frac{\bar{h}}{h}$. It has limit 1 if h converges to 0 along the real axis and has limit -1 if h converges to 0 along the imaginary axis. Hence $\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$ has no limit as $h \to 0$.

Assume f is holomorphic at $z_0 \in \Omega$, then we can write

$$f(z_0 + h) - f(z_0) = hf'(z_0) + \psi(h),$$

with $\psi(h) \to 0$ as $h \to 0$. Then it follows that f must be continuous at z_0.

Similar to real functions, derivatives of complex functions has the following properties.

Proposition 2.4.

1. Assume f, g are holomorphic functions over Ω. Then $f \pm g$, $f \cdot g$, f / g
 at $g(z) \neq 0$ are all holomorphic with
 (a) $(f + g)' = f' + g'$;
 (b) $(f \cdot g)' = f'g + fg'$;
 (c) $(f / g)' = \frac{f'g - fg'}{g^2}$.
2. Assume f is holomorphic over Ω and g is holomorphic over U with $U \supset f(\Omega)$. Then $g \circ f$ is
 holomorphic over Ω and
 $$\left(g \circ f\right)'(z) = g'(f(z)) \cdot f'(z), \quad z \in \Omega.$$

Lecture 2 stopped here.
2.3. Complex-valued functions as mappings. Any complex valued function

\[f : \Omega \to \mathbb{C} \]

is equivalent to a pair of real valued functions

\[u : \Omega \to \mathbb{R}, \quad v : \Omega \to \mathbb{R} \]

with

\[u = \text{Re}(f), \quad v = \text{Im}(f), \quad \text{i.e., } f = u + iv. \]

Equivalently, we can regard \(u, v \) as real-valued functions defined over the open subset \(\Omega \) in \(\mathbb{R}^2 \), and consider the mapping

\[F = (u, v) : \mathbb{R}^2 \supset \Omega \to \mathbb{R}^2. \]

We can ask what properties \(F \) has if \(f \) is a holomorphic function.

Theorem 2.5. Assume \(\Omega \) is an open subset of \(\mathbb{C} \). The function \(f \) is holomorphic over \(\Omega \) if and only if \(F \) is differentiable over \(\Omega \) and the partial derivatives

\[
\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}
\]

satisfy the Cauchy–Riemann equations (C–R equations)

\[
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.
\]

Recall from real analysis (e.g., Rudin Definition 9.11) that, the function \(F \) is differentiable over \(\Omega \subset \mathbb{R}^2 \) if for every \((x_0, y_0) \in \Omega\), there is a \(2 \times 2 \) matrix \(J_F \) so that

\[
\lim_{h= (h_1, h_2) \to (0,0)} \frac{|F(x_0 + h_1, y_0 + h_2) - F(x_0, y_0) - J \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}|}{|h|} = 0.
\]

It is not hard to check that the matrix \(J_F \) must be of the form

\[
J_F := \begin{bmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{bmatrix}
\]

if it exists. (Why?) It is called the Jacobian matrix of the map \(F \).

The Jacobian matrix \(J_F : \mathbb{R}^2 \to \mathbb{R}^2 \) is the linearization of the map \(F \) (assuming \(F \) is differentiable) and the Cauchy–Riemann equations force the determinant of the Jacobian matrix is nonnegative for holomorphic function since

\[
\text{det } J_F = \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \geq 0.
\]

Example 2.6. We know the function \(f(z) = \bar{z} \) is not holomorphic, and its Jacobian matrix is

\[
J_F := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]

with determinant \(-1\).

Now let’s prove Theorem 2.5.
PROOF. (1) "⇒". Take any \((x_0, y_0) \in \Omega\) and denote by \(z_0 = x_0 + iy_0\). Since \(f\) is holomorphic at \(z_0\), the limit
\[
\frac{f(z_0 + h) - f(z_0)}{h} = \frac{(u(z_0 + h) - u(z_0)) + i(v(z_0 + h) - v(z_0))}{h}
\]
eexists as \(h \to 0\). In particular, take \(h \in \mathbb{R}\), and look at the real part only, we obtain that
\[
\lim_{h \to 0, h \in \mathbb{R}} \frac{u(z_0 + h) - u(z_0)}{h}
\]
eexists and this shows \(\frac{du}{dx}(x_0, y_0)\) exists. Similarly, the other three partial derivatives also exist.

At the same time, above calculation also shows that
\[
f' = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{1}{i} \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right).
\]
Hence it follows
\[
\text{Re}(f') = \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \text{Im}(f') = \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x},
\]
which are the Cauchy–Riemann equations.

To see \(F\) is differentiable at \(z_0\), we rewrite
\[
|F(x_0 + h_1, y_0 + h_2) - F(x_0, y_0) - J(x_0, y_0) \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}| \leq |h|
\]
\[
= \frac{|f(z_0 + h) - f(z_0) - f'(z_0)h|}{|h|}
\]
using the Cauchy–Riemann equations, which converges to zero as \(h \to 0\) and we are done.

"⇐". This follows from (2.1) under the assumption of differentiability.

\(\square\)

We remark that the assumption \(\Omega\) is open in \(\mathbb{C}\) is crucial. (See HW1 problem 12 from the book.)

EXAMPLE 2.7. Assume \(f = u + iv\) is holomorphic over \(\Omega\) (with \(u, v\) smooth). Then \(u, v\) must be harmonic function, i.e., \(\Delta u = 0 = \Delta v\). This follows from the C–R equations and the equality of mixed partial derivatives:
\[
\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial}{\partial y} \frac{\partial v}{\partial x} = 0.
\]

We can introduce some useful notations. Define
\[
\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).
\]
Then the C–R equations are equivalent to
\[
\frac{\partial f}{\partial \bar{z}} = 0,
\]
and when \(f\) is holomorphic,
\[
f' = \frac{\partial f}{\partial z}.
\]

Lecture 3 stopped here.
3. Power series

We have seen that any polynomial
\[p(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n, \quad a_0, a_1, a_2, \ldots, a_n \in \mathbb{C}, a_n \neq 0 \]
is an entire function, i.e., a holomorphic function over \(\mathbb{C} \).

A power series can be considered as a generalization of a polynomial by allowing infinitely many nonzero terms, i.e.,
\[\sum_{n=0}^{\infty} a_n z^n, \quad a_n \in \mathbb{C}, n = 0, 1, 2, \ldots. \]

Then we have to answer the question that when a power series is convergent, and further, if it is holomorphic over its convergent domain.

Example 3.1.

(1) Consider the power series
\[\sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + z + \frac{z^2}{2} + \frac{z^3}{3!} + \cdots. \]
The same as the real variable case, this series is convergent everywhere and this defines the exponential function
\[e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad z \in \mathbb{C}. \]
We will see later it is holomorphic over \(\mathbb{C} \).

(2) Consider the following power series which is called the geometric series
\[\sum_{n=0}^{\infty} z^n = 1 + z + z^2 + z^3 + \cdots. \]
It can be explicitly calculated out as follows: Look at partial sums
\[S_N(z) = \sum_{n=0}^{N} z^n = 1 + z + z^2 + z^3 + \cdots + z^N. \]
By multiplying \(z \), we get
\[zS_N(z) = z \sum_{n=0}^{N} z^n = z + z^2 + z^3 + \cdots + z^{N+1}, \]
and so
\[zS_N(z) - S_N(z) = z^{N+1} - 1, \quad S_N = \frac{1 - z^{N+1}}{1 - z} \]
whenever \(z \neq 1 \). (Obviously, the series is divergent at \(z = 1 \).)

From the explicit expression of the partial sum, it becomes apparent that this series is convergent (and also holomorphic) if \(|z| < 1 \) and it is divergent if \(|z| > 1 \).

Now we give a complete answer for the convergence question which works for any power series.
First, define
\[R := \limsup_{n \to \infty} \sqrt[n]{|a_n|}. \]
It is a real number in \([0, +\infty] \) and is called the convergence radius of the power series \(\sum_{n=0}^{\infty} a_n z^n \).

Example 3.2.

(1) The exponential function \(\sum_{n=0}^{\infty} \frac{z^n}{n!} \) has convergent radius \(R = +\infty \).

(2) The geometric series \(\sum_{n=0}^{\infty} z^n \) has convergent radius \(R = 1 \).

The open disk \(D_R \) is called the convergent disk and the reason is the following theorem.

Theorem 3.3. The power series \(\sum_{n=0}^{\infty} a_n z^n \)

(1) is absolutely convergent if \(|z| < R \);
(2) It is divergent if $|z| > R$.

Proof. $R = 0$ or $+\infty$ cases are left to you and we assume here $0 < R < +\infty$.

(1) Take any z_0 with $|z_0| < R$, we prove now the series is convergent at z_0.

First, $|z_0| < R$ implies that $|z_0| \limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$. We insert some r so that

$$|z_0| \limsup_{n \to \infty} \sqrt[n]{|a_n|} < r < 1,$$

and further some small $\varepsilon > 0$ so that

$$|z_0| \limsup_{n \to \infty} \sqrt[n]{|a_n|} + \varepsilon < r < 1,$$

Then there exists some N (may depend on ε) so that every $n > N$,

$$\sqrt[n]{|a_n|} < \limsup_{n \to \infty} \sqrt[n]{|a_n|} + \varepsilon.$$

It follows

$$|z_0| \sqrt[n]{|a_n|} < |z_0| \limsup_{n \to \infty} \sqrt[n]{|a_n|} + \varepsilon < |z_0| \sqrt[n]{|a_n|} + \varepsilon < r < 1$$

and

$$|a_n| |z_0|^n < r^n.$$

The series $\sum n^r$ is convergent since $0 < r < 1$. Then the comparison theorem implies that $\sum a_n z_0^n$ must be absolutely convergent.

(2) This is assigned as a homework problem.

Over the boundary $|z| = R$, the series can be either convergent or divergent.

Example 3.4. (Homework problem). Consider the following there series with convergent radius $R = 1$

1. $\sum n z^n$. It is divergent on $|z| = 1$.
2. $\sum \frac{n^r}{n!}$. It is convergent on $|z| = 1$.
3. $\sum \frac{z^n}{n}$. It is convergent on $|z| = 1$ except at $z = 1$.

Next, we answer the question about if the power series is holomorphic.

Assume the power series $\sum_{n=0}^{\infty} a_n z^n$ has convergent radius R, and denote by

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad z \in D_R.$$

By differentiate it term by term, we obtain another power series $\sum_{n=1}^{\infty} a_n n z^{n-1}$. It is easy to check this power series also has R as its convergent radius, hence defines a function

$$g(z) = \sum_{n=1}^{\infty} a_n n z^{n-1}, \quad z \in D_R.$$

We have the following theorem.

Theorem 3.5. The function f is holomorphic over D_R with $f' = g$.

Lecture 4 stopped here.
PROOF. We assume $0 < R < \infty$. The cases $R = 0$ and $R = +\infty$ are left you to handle.

Denote by
\[S_N(z) := \sum_{n=0}^{N} a_n z^n, \quad E_N(z) := \sum_{n=N+1}^{\infty} a_n z^n; \]
and
\[\tilde{S}_N(z) := \sum_{n=1}^{N} a_n nz^{n-1}, \quad \tilde{E}_N(z) := \sum_{n=N+1}^{\infty} a_n nz^{n-1}. \]

Obviously from definition,
\[f = S_N + E_N, \quad g = \tilde{S}_N + \tilde{E}_N, \quad S'_N = \tilde{S}_N. \]

We show now for any $z_0 \in D_R$, $f'(z_0)$ exists and it is $g(z_0)$.

For this, we first pick some fix some $0 < r < R$ so that $z_0, z_0 + h \in D_r$, and write
\[
\frac{f(z_0 + h) - f(z_0)}{h} = \frac{S_N(z_0 + h) - S_N(z_0)}{h} - \tilde{S}_N
\]
\[
+ \frac{E_N(z_0 + h) - E_N(z_0)}{h}
\]
\[
+ (-\tilde{E}_N).
\]

For each fixed N, the term $|(3.1)|$ is small as h is close to 0; the term $|(3.3)|$ is small for large N. We focus on estimating $|(3.2)|$.

For it, we look at an estimate of the general term as
\[
\left| \frac{a_n(z_0 + h)^n - a_n z_0^n}{h} \right| = \left| \frac{a_n(z_0 + h - z_0)((z_0 + h)^n - z_0^n + (z_0 + h - z_0)z_0^{n-1} + \cdots + (z_0 + h - z_0)z_0^{n-2} + z_0^{n-1})}{h} \right|
\]
\[
\leq |a_n|nr^{n-1}.
\]

Then since the series $\sum |a_n|nr^{n-1}$ is convergent, the term $|(3.2)|$ converges to zero as $N \to \infty$.

Now we wrap up the proof using $\epsilon - \delta$ arguments: For any $\epsilon > 0$, there we can pick N large enough so that
\[|(3.2)| < \frac{\epsilon}{3}, \quad |(3.3)| < \frac{\epsilon}{3}, \]
and then for such N, take $\delta > 0$ small so that
\[|(3.1)| < \frac{\epsilon}{3} \quad \text{for any } 0 < |h| < \delta. \]

By this way, for any $0 < |h| < \delta$, $\left| \frac{f(z_0 + h) - f(z_0)}{h} - g(z_0) \right| \leq \epsilon$, and this shows
\[\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = g(z_0). \]

An immediate corollary from this theorem as

Corollary 3.6. Assume the power series $\sum_{n=0}^{\infty} a_n z^n$ has R as its convergence radius. Then it is infinitely order complex differentiable in the convergence disk D_R, and the complex derivatives can be calculated term by term.
The power series can be generalized to ones with any \(z_0 \in \mathbb{C} \) as center. To be more precise, a power series with \(z_0 \in \mathbb{C} \) as center is defined as
\[
\sum_{n=0}^{\infty} a_n (z - z_0)^n.
\]
Then the above results can be stated for this case by shifting the convergence disk from \(D_R \) to \(D_R(z_0) \).

We end this section by introducing the following definition.

Definition 3.7. Assume \(\Omega \) is an open subset in \(\mathbb{C} \). A function \(f : \Omega \to \mathbb{C} \) is called analytic at \(z_0 \in \Omega \), if there exists an open disk \(D_R(z_0) \subseteq \Omega \) so that \(f \) can be written as a power series centered at \(z_0 \) over \(D_R(z_0) \). If \(f \) is analytic at every point \(z_0 \in \Omega \), we call \(f \) is analytic over \(\Omega \).

We just proved that if \(f \) is analytic over \(\Omega \), then \(f \) must be holomorphic over \(\Omega \). In fact, the reverse statement is also true which will be proved next chapter.

4. Integration along a curve

By a parametrized curve, we mean a map
\[
z : [a, b] \to \mathbb{C}.
\]
We need the following terminology for parametrized curves:

A parametrized curve \(z : [a, b] \to \mathbb{C} \)
- is called smooth, if
 1. derivative \(z' \) exists and continuous on \([a, b]\), i.e., \(z \in C^1([a, b])\);
 2. \(z'(t) \) is nowhere vanishing;
- is called piecewise smooth, if there exists a splitting
 \[
a = a_0 < a_1 < a_2 < \cdots < a_n = b
\]
 so that \(z_{[a_i, a_{i+1}]} : [a_i, a_{i+1}] \to \mathbb{C} \) is smooth, \(i = 0, 1, \cdots, n - 1 \);
- is called simple, if it is injective over \((a, b)\);
- is called a loop, if \(z(a) = a(b) \).

Two parametrized smooth curves
\[
z_k : [a_k, b_k] \to \mathbb{C}, \quad k = 1, 2,
\]
are called equivalent, if there exists a \(C^1 \) bijective map \(\phi : [a_1, b_1] \to [a_2, b_2] \) so that
\[
z_2 \circ \phi = z_1, \quad \text{and} \quad \phi'(t) > 0.
\]
It is an equivalence relation on the set of smooth parametrized curves. A smooth curve is an equivalence class of smooth parametrized curves.

Example 4.1. The circle \(C_R(z_0) \) can be parametrized by
\[
z : [0, 2\pi] \to \mathbb{C}, \quad z(t) = z_0 + R e^{it}
\]
and can be also parametrized by
\[
z^- : [0, 2\pi] \to \mathbb{C}, \quad z(t) = z_0 + R e^{-it}.
\]
These two parametrized curves are NOT equivalent. The first one has positive orientation and the second one has negative orientation. We use \(C_R^+(z_0) \) to describe the equivalence class of positive oriented
smooth parametrizations and use $C^\infty_R(z_0)$ to describe the equivalence class of negative oriented smooth parametrizations.

Now assume $\gamma \subset \mathbb{C}$ is a curve with a smooth parametrization $z : [a, b] \to \mathbb{C}$. f is a continuous function defined over an open set Ω which contains γ. The integration of f over γ is defined as

$$\int_\gamma f(z) dz := \int_a^b f(z(t)) \cdot z'(t) dt.$$

Lemma 4.2. The integration $\int_\gamma f(z) dz$ is independent of smooth parametrization.

Proof. This immediately follows from substitution rule for definition integrations. \qed

Example 4.3.

1. $\int_{C^+} \frac{dz}{z} = \int_0^{2\pi} \frac{d(Re^{it})}{Re^{it}} = \int_0^{2\pi} \frac{Re^{it}}{Re^{it}} dt = 0$;
2. $\int_{C^+} -z \frac{dz}{z} = \int_0^{2\pi} \frac{1}{Re^{it}} d(Re^{it}) = \int_0^{2\pi} idt = 2\pi i$.

Lecture 5 stopped here.