
L2-MODULI SPACES OF SYMPLECTIC VORTICES ON RIEMANN SURFACES
WITH CYLINDRICAL END METRICS

BOHUI CHEN, BAI-LING WANG, AND RUI WANG

ABSTRACT. Let (X,ω) be a compact symplectic manifold with a Hamiltonian action of a com-
pact Lie group G and µ : X → g be its moment map. In this paper, we study the L2-moduli
spaces of symplectic vortices on Riemann surfaces with cylindrical ends (that is, a punctured
Riemann surface with a Riemannian metric of cylindrical type at each puncture). We studied a
circle-valued action functional whose gradient flow equation corresponds to the symplectic vor-
tex equations on a cylinder S1 × R. Assume that 0 is a regular value of the moment map µ,
we show that the functional is of Bott-Morse type and its critical points of the functional form
twisted sectors of the symplectic reduction (the symplecitc orbifold [µ−1(0)/G]). We show
that any gradient flow line approaches its limit point exponentially fast. Fredholm theory and
compactness property are then established for the L2-moduli spaces of symplectic vortices on
Riemann surfaces with cylindrical ends.

CONTENTS

1. Introduction and statements of main theorems 2
2. Review of symplectic vortices 6
2.1. Symplectic vortex equations 6
2.2. Moduli spaces of symplectic vortices on a closed Riemann surface 9
3. Symplectic vortices on a cylinder S1 × R 10
3.1. Action functional for symplectic vortices 10
3.2. Asymptotic behaviour of finite energy symplectic vortices on a cylinder 22
4. L2-moduli space of symplectic vortices on a cylindrical Riemann surface 24
4.1. Fredholm theory for L2-moduli space of symplectic vortices 27
4.2. L2-moduli space of symplectic vortices on punctured Riemann surface 31
5. Compactness of L2-moduli space of symplectic vortices 32
6. Outlook 39
References 41

2010 Mathematics Subject Classification. 53D20 57R57 57S25.
Key words and phrases. Symplectic vortice equations, L2-moduli spaces, Fredholm theory and compactness

property.
1



2 BOHUI CHEN, BAI-LING WANG, AND RUI WANG

1. INTRODUCTION AND STATEMENTS OF MAIN THEOREMS

The symplectic vortex equations on a Riemann surface Σ associated a principal G-bundle P
and a 2n-dimensional Hamiltonian G-manifold (X,ω) with a G-invariant ω-compatible almost
complex structure J , originally discovered by K. Cieliebak, A. R. Gaio, and D. A. Salamon
[12], and independently by I. Mundet i Riera [32], is a system of first order partial differential
equations

{
∂̄J,A(u) = 0

∗ΣFA + µ(u) = 0
(1.1)

for a connection A on P and a G-equivariant map u : P → X . See Section 2 for an explana-
tion of the notations involved. They are natural generalisations of the J-holomorphic equation
in a symplectic manifold for G = {e}, and of the well-known Ginzburg-Landau vortices in a
mathematical model of superconductors for Σ = C and X = Cn as the standard Hamiltonian
U(1)-space. Ginzburg-Landau vortices have been studied both from mathematicians and physi-
cists’ viewpoints. They are two-dimensional solitons, as time-independent solutions with finite
energy to certain classical field equations in the Abelian Higgs model, see [26] for a complete
account of Ginzburg-Landau vortices.

Since the inception of these symplectic vortices, there have been steady developments in
the study of the moduli spaces of symplectic vortices and their associated invariants, the so-
called Hamitonian Gromov-Witten (GW) invariants. Many fascinating conjectures have been
proposed, for example see [12], [23] and [41].

As in Gromov-Witten theory, there are several main technical issues in the definition of in-
variants from symplectic vortices such as compactification, gluing analysis and regularization
for the moduli spaces of symplectic vortices. There have been many works focused on the
compactification issue ([13],[32],[34],[41],[37]). On one hand, when Σ is closed, X is sym-
plectically aspherical and satisfies some convexity condition, A. R. Gaio, I. Mundet i Riera and
D. A. Salamon in [13] proved compactness of the moduli space of symplectic vortices with
compact support and bounded energy. On the other hand, when G = U(1) and X is closed,
with strong monotone conditions, I. Mundet i Riera in [32] compactified the moduli space of
bounded energy symplectic vortices over a fixed closed Riemann surface. When G = U(1) and
X is a general compact symplectic manifold, I. Mundet i Riera and G. Tian in [34] compactified
the moduli space of symplectic vortices with bounded energy over smooth Riemann surfaces
degenerating to nodal Riemann surfaces. In particular, they discovered a new feature in the
bubbling off phenomena near nodal points in the sense that energy may be lost and there are
gradient flows of the moment map appearing in the compactification instead. This is not present
in the usual Gromov-Witten theory, and was elegantly and carefully presented in [34]. Also,
there are some studies on special models such as on the affine vortices ([41]). Based on their
compactification, Mundet i Riera and Tian have a long project on defining Hamiltonian GW in-
variants ([35]). On the other hand, Woodward, following Mundet i Riera’s approach([33]), gave
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an algebraic geometry approach to define gauged Gromov-Witten invariants ([36]), and estab-
lished its relation to Gromov-Witten invariants of the symplectic reduction X �G via quantum
Kirwan morphisms ([36]).

In this paper, we study the moduli spaces of symplectic vortices on a Riemann surface with
a cylindrical end metric. In particular, for a genus g Riemann surface with n-marked points, we
will study the L2-moduli space of symplectic vortices on a Riemann surface Σ with a cylindrical
end metric near each marked points. Here the energy of (A, u), defined to be the Yang-Mills-
Higgs energy functional

E(A, u) =

∫
Σ

1

2
(|dAu|2 + |FA|2 + |µ ◦ u|2)νΣ,(1.2)

is finite. It turns out that the Hamiltonian GW type invariants are very sensitive to the volume
forms used near punctured points. Readers may refer to §6 for further discussions.

In Section 2, we briefly review the moduli spaces of symplectic vortices on a closed Rie-
mann surface as developed in [12], [13] and [34]. In Section 3, we investigate the asymptotic
behaviour of symplectic vortices on a half cylinder S1 × R≥0 with finite energy. For this we
adapt the action functional in [19] and [20] to get a circle-valued functional whose L2-gradient
flow equation realizes the symplectic vortex equations (1.1) on S1 × R≥0 in temporal gauge.
The critical point set of this functional modulo gauge transformations, denoted by Crit, can be
identified with (⊔

g∈G

(
µ−1(0)

)g)
/G,

as a topological space. Here that the action of G on
⊔
g∈G

(
µ−1(0)

)g is given by h · (x, g) =

(h · x, hgh−1). When 0 is a regular value of the moment map µ, the symplectic reduced space
is a symplectic orbifold

X0 = [µ−1(0)/G],

where we use the square bracket to denote the orbifold structure arising from the locally free
action of G on µ−1(0). Then Crit is diffeomorphic to the inertia orbifold of X0

IX0 =
⊔
(g)

X (g)
0

where (g) runs over the conjugacy class in G with non-empty fixed points in µ−1(0). Note
that for a non-trivial conjugacy class (g), X (g)

0 is often called a twisted sector of X0, which is
diffeomorphic to the orbifold arising from the action of C(g) on µ−1(0)g (the g-fixed points in
µ−1(0). Here C(g) is the centralizer of g in G for a representative g in the conjugacy class (g).

Throughout this paper, we assume that 0 is a regular value of the moment map µ. Then
we show that this circle-valued functional is actually of Bott-Morse type. We also establish
a crucial inequality (Proposition 3.12) near each critical point. This inequality enables us to
establish an exponential decay result for a symplectic vortex on S1 × R≥0 with finite energy,
Cf. Theorem 3.14.

In Section 4, we study the L2-moduli space NΣ(X,P ) of symplectic vortices on a Riemann
surface Σ with k-cylindrical ends, associated to a principal G-bundle and a closed Hamiltonian
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G-manifold (X,ω). Applying the asymptotic analysis in Section 3 to the cylindrical ends, we
get a continuous asymptotic limit map (Proposition 4.1 and Subsection 4.2)

∂∞ : NΣ(X,P ) −→ (Crit)k ∼= (IX0)k.

Note that the Yang-Mills-Higgs energy functional takes discrete values onNΣ(X,P ) depending
on homology classes in HG

2 (X,Z).
Fix a homology class B ∈ HG

2 (X,Z), denote by NΣ(X,P,B) the L2-moduli space of sym-
plectic vortices on a Riemann surface Σ with the topological type defined byB. Then in Section
4, we develop the Fredholm theory for NΣ(X,P,B) and calculate the expected dimension of
the L2-moduli space of symplectic vortices with prescribed asymptotic behaviours. The main
result in this paper is summarized in the following theorem. HereM is said to admit an orbifold
Fredhom system with its virtual dimension d, we mean that, there exists a triple,

(B, E , S)

consisting of an orbifold Banach manifold B, and an orbifold Banach bundle E over B with a
section S such that the zero set S−1(0) isM, and the vertical differentiation of S at any x ∈M

(DS)x : TxB −→ Ex

is a Fredholm operator of index d.

Theorem A (Theorem 4.3) Let NΣ(X,P,B; {(gi)}i=1,··· ,k) be the subset of NΣ(X,P,B) con-
sisting of symplectic vortices [(A, u)] such that

∂∞(A, u) ∈
(
X (g1)

0 × · · · × X (gk)
0

)
⊂ (Crit)k

ThenNΣ(X,P,B; {(gi)}i=1,··· ,k) admits an orbifold Fredhom system with its virtual dimension
given by

2〈cG1 (TX), B〉+ 2(n− dimG)(1− gΣ)− 2
k∑
i=1

ιCR(X (gi)
0 ,X0)

where gΣ is the genus of the Riemann surface Σ, and ιCR(X (gi)
0 ,X0) is the degree shift as

introduced in [11].

In Section 5, we also establish the compactness property for these L2-moduli spaces of sym-
plectic vortices on Σ with prescribed asymptotic behaviours. We show that there are two types
of limiting vortices appearing in the compactification. The first type occurs as the bubbling phe-
nomenon of pseudo-holomorphic spheres at interior points just as in the Gromov-Witten theory.
To describe this type of limiting vortices, we introduce the usual weighted trees to classify the
resulting topological type. The second type is due to the sliding-off of the Yang-Mills-Higgs
energy along the cylindrical ends as happened in the instanton Floer theory. The combination
of these two types of convergence sequences is called the weak chain convergence in instanton
Floer theory in [14]. The choice of cylindrical metric on Σ is crucial in our study the compact-
ness property in the sense that these are the only two types of limiting vortices appearing in
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the compactification of the L2-moduli spaces of symplectic vortices on a cylindrical Riemann
surface.

To describe the topological types appearing in the compactification, we introduce a notion of
web of stable weighted trees of the type (Σ;B) which consists of a principal tree Γ0 with k-tails
and a collections of ordered sequence of trees of finite length

Γi =
m⊔
j=1

Ti(j)

for each tail i = 1, · · · , k. See Definition 5.1 for a precise definition. Let SΣ;B be the set
of webs of stable weighted trees of the type (Σ;B), which is a partially ordered finite set.
For each Γ ∈ SΣ;B, we associate an L2-moduli space NΓ of symplectic vortices of type Γ. Let
NΓ((g1), · · · , (gk)) be the corresponding L2-moduli space of symplectic vortices of type Γ with
prescribed asymptotic data in

X (g1)
0 × · · · × X (gk)

0 ⊂ (Crit)k.

Then the second main theorem of this paper is to show that the coarse L2-moduli space of
symplectic vortices on Σ can be compactified into a stratified topological space whose strata
are labelled by a web of stable weighted trees in SΣ;B. In the following theorem, we use the
notation |N | to denote the coarse space of an orbifold topological space N .

Theorem B (Theorem 5.5) Let Σ be a Riemann surface of genus g with k-cylindrical ends. The
coarse L2-moduli space |NΣ(X,P,B)| can be compactified to a stratified topological space

|NΣ(X,P,B)| =
⊔

Γ∈SΣ;B

|NΓ|

such that the top stratum is |NΣ(X,P,B)|. Moreover, the coarse moduli space

|NΣ(X,P,B; {(gi)}i=1,··· ,k)|

with a specified asymptotic datum can be compactified to a stratified topological space

|NΣ(X,P,B; {(gi)}i=1,··· ,k)| =
⊔

Γ∈SΣ;B

|NΓ((g1), · · · , (gk))|.

Remark 1.1. Note that the evaluation map has its image in IX0, motivated by the definition of
the usual Gromov-Witten invariants, our invariants will be defined on H∗CR(X0) in the sequel
[9]. This is different from the Hamiltonian Gromov-Witten invariants defined earlier, as the
invariants are defined on H∗G(X) in [13] and [36] . Hence the invariants we will define in [9] is
essentially different from the usual HGW invariants. One may refer to §6 for further discussion.

We remark that the compactness properties of the moduli spaces of symplectic vortices have
been studied earlier in [34], [37], [41], [42] and [40]. Under the assumption that X is a Kähler
Hamiltonian G-manifold with semi-free action, the above compactness theorem has also been
obtained by Venugopalan in [40] using a different approach.

We finish this paper in section 6 about an outlook of the future work in the sequels.
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2. REVIEW OF SYMPLECTIC VORTICES

In this section, we review some of basic facts for the symplectic vortices following [13] [32]
and [34].

2.1. Symplectic vortex equations.
Let (X,ω) be a 2n-dimensional symplectic manifold with a Hamiltonian action of a con-

nected compact Lie group G

G×X −→ X, (g, x) 7→ gx,

and J is a G-invariant ω-compatible almost complex structure. Let g be the Lie algebra of G
with a G-invariant inner product 〈·, ·〉. Recall that an action of G on X is Hamiltonian if there
exists an equivariant map, called the moment map,

µ : X −→ g

satisfying the defining property

dµξ = ω(ξ̃, ·), for any ξ ∈ g.

Here the function µξ is given by µξ(x) = 〈µ(x), ξ〉, and ξ̃ is the vector field on X defined by
the infinitesimal action of ξ ∈ g on X

(ξ̃f)(x) =
d

dt

∣∣∣
t=0
f (exp(tξ)x) , for f ∈ C∞(X).

Note that under this definition, [̃ξ1, ξ2] = −[ξ̃1, ξ̃2], that is, the infinitesimal action of the Lie
bracket [ξ1, ξ2] in g is the negative of the Lie bracket of the vector fields ξ̃1 and ξ̃2. Note that the
moment map is unique up to a shift by an element in Z(g) (the centre Lie subalgebra of g). See
Chapter 2 in [25] for a detailed discussion on the geometry of moment maps.

Let P → Σ be a smooth (principal)G-bundle over a Riemann surface (Σ, jΣ) (not necessarily
compact). Let gΣ be a Riemannian metric on Σ, ∗Σ be the associated Hodge star operator and
νΣ be the volume form of (Σ, gΣ) . Denote by C∞G (P,X) be the space of smooth G-equivariant
maps u : P → X and by A(P ) the space of smooth connections on P which is an affine space
modelled Ω1(Σ, ad P ). Here ad P = P ×G g is the bundle of Lie algebras associated to the
adjoint representation ad : G→ GL(g).

Denote the fiber bundle of P associated to the action of G on X by

π : Y = P ×G X −→ Σ.

Then a smooth G-equivariant map u : P → X yields a section ũ : Σ → Y . Note that any
connection A on P induces splittings

TY ∼= π∗TΣ⊕ T vertY.(2.1)

Here T vertY is the vertical tangent bundle of Y . The covariant derivative dAũ ∈ Ω1(Σ, ũ∗T vertY )

is derived from dũ as follows:

dAũ : TΣ
dũ−→ TY

projection−−−−−−→ T vertY.
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For simplicity, we denote dAũ by dAu as well, so dAu is a 1-form over Σ with values in u∗T vertY .
The symplectic vortex equations on Σ are the following first order partial differential equa-

tions for pairs (A, u) ∈ A(P )× C∞G (P,X){
∂̄J,A(u) = 0

∗ΣFA + µ(u) = 0
(2.2)

where FA is the curvature of the connection A. The almost complex structures jΣ and J define
an almost complex structure JA on TY under the decomposition (2.1). The first equation in
(2.2) implies that u is a JA-holomorphic section, as ∂̄J,A(u) is the complex anti-linear part of
dAu,

∂̄J,A(u) =
1

2
(dAu+ J ◦ dAu ◦ jΣ) = 0(2.3)

in Ω0,1(Σ, u∗T vertY ). For the second equation in (2.2), we remark that µ ◦u is a section of ad P
and the Hodge star operator defines a map

∗Σ : Ω2(Σ, ad P ) −→ Ω0(Σ, ad P ).

Using the Riemannian volume νΣ, the second equation in (2.2) is equivalent to

FA + µ(u)νΣ = 0.(2.4)

A solution (A, u) to (2.2) is called a symplectic vortex on Σ associated to a principal G-
bundle P and a Hamiltonian G-space X . Two elements w = (P,A, u) and w′ = (P ′, A′, u′) are
called equivalent if there is a bundle isomorphism

Φ : P ′ → P

such that

Φ∗(A, u) = (Φ∗A, u ◦ Φ) = (A′, u′).

When P is evident in the context, we will omit P from the notation and simply call (A, u) for a
symplectic vortex on Σ. As the symplectic vortex equations (2.2) on Σ for a fixed P is invariant
under the action of gauge group G(P ) = Aut(P ), the moduli space of symplectic vortices on
Σ is the set of solutions to (2.2) modulo the gauge transformations. We remark that P is an
essential part of symplectic vortices, in particularly in the study of the compactifications of the
moduli spaces of vortices.

There is an equivariant map P → EG classifying the principal G-bundle P . Together with
the section u : Σ→ P ×G X , they define to a continuous map

uG : Σ→ XG := EG×G X,

which in turn determines a degree 2 equivariant homology class [uG] in HG
2 (X,Z) when Σ is

closed. Denote by M̃Σ(X,B) the space of symplectic vortices on Σ associated to (P,X) with
a fixed equivariant homology class in B ∈ HG

2 (X,Z), that means,

M̃Σ(X,B) = {(A, u)|[uG] = B, (A, u) satisfies the equations (2.2)}.
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The quotient of M̃Σ(X,B) under the gauge group G(P )-action

MΣ(X,B) = M̃Σ(X,B)/G(P )

is called the moduli space of symplectic vortices with a fixed homology class B.
A solution to (2.2) with a fixed B ∈ HG

2 (X,Z) is an absolute minimizer (hence, a critical
point) of the Yang-Mills-Higgs energy functional

E(A, u) =

∫
Σ

1

2
(|dAu|2 + |FA|2 + |µ ◦ u|2)νΣ.(2.5)

This is due to the fact (Proposition 3.1 in [12]) that for any (A, u) ∈ A(P )× C∞G (P,X),

(2.6) E(A, u) =

∫
Σ

(
|∂̄J,A(u)|2 +

1

2
| ∗Σ FA + µ(u)|2

)
νΣ +

∫
Σ

(u∗ω − d〈µ(u), A〉) .

Here, u∗ω − d〈µ(u), A〉 is a horizontal and G-equivaraint 2-form on P and descends to a 2-
form Σ, denoted by the same notation. On the other hand, [ω − µ] ∈ H2

G(X) is the equivariant
cohomology class defined by the equivariant closed 2-form ω − µ ∈ Ω2

G(X). The pairing
〈[ω − µ], [uG]〉 is computed by

〈[ω − µ], [uG]〉 =

∫
Σ

(
(dAu)∗ω − 〈µ(u), FA〉

)
=

∫
Σ

(u∗ω − d〈µ(u), A〉) .

Here dAu is a horizontal and G-equivaraint one-form on P with values in u∗TX and descends
to a u∗T vertY -valued one form on Σ, see Proposition 3.1 in [12].

Remark 2.1. We remark that (2.6) is true for any surface Σ. In particular, when (A, u) is a
symplectic vortex on Σ,

(2.7) E(A, u) =

∫
Σ

(u∗ω − d〈µ(u), A〉) .

This is the crucial identity for us to define the action functional L in Section 3.

Remark 2.2. (1) If G = U(1) the unit circle in C and X = (Cn,
i

2

∑
j dzj ∧ dz̄j) with the

moment map µ : Cn → iR given by

µ(z1, z2, · · · , zn) = − i
2

n∑
j=1

|zj|2 +
i

2
,

then symplectic vortex equation is a generalisation of the well-studied vortex equations
(Cf. [26]). In particular, when Σ is compact and X = C, Bradlow ([3]) showed that the
moduli space of vortices on Σ with vortex number

d = 〈c1(P ×U(1) C), [Σ]〉 > 0

is non-empty if and only if d < Vol(Σ)/4π, and is Symd(Σ) (the d-th symmetric prod-
uct of Σ).

(2) As observed in [12], the space A(P ) × C∞G (P,X) is an infinite dimensional Fréchet
manifold with a natural symplectic structure. The action of gauge group G(P ) is Hamil-
tonian with a moment map

A(P )× C∞G (P,X)→ C∞G (Σ, ad P )
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defined by (A, u) 7→ ∗FA + µ(u). Hence, the moduli space of symplectic vortices can
be thought as a symplectic quotient if the space

S = {(A, u)|∂̄J,A(u) = 0}

is a symplectic submanifold of A(P ) × C∞G (P,X). In practice, the space S is not
a smooth submanifold in general. It still provides a good guiding principle for the
development of Hamiltonian Gromov-Witten theory. See [1] [4] for some applications
of this principle in similar contexts.

When Σ = S1 × R with the flat metric (dt)2 + (dθ)2 and the standard complex structure
j(∂t) = ∂θ, with respect to a fixed trivialization of P , we can use the temporal gauge

A = d+ ξ(θ, t)dθ, for ξ : S1 × R→ g,

to write the symplectic vortex equations (2.2) as
∂u

∂t
+ J

(
∂u

∂θ
+ ξ̃(θ, t)(u(x))

)
= 0

∂ξ

∂t
+ µ(u) = 0.

(2.8)

This is the downward gradient flow equation for a particular function on C∞(S1, X×g) defined
in Section 3, where we will study this function in more details.

2.2. Moduli spaces of symplectic vortices on a closed Riemann surface.
In the study of the moduli space MΣ(X,B), we need to develop certain Fredholm theory.

This requires some Sobolev completion of the space

A(P )× C∞G,B(P,X)

where C∞G,B(P,X) = {u ∈ C∞G (P,X)|[uG] = B}. The Sobolev embedding theorem in dimen-
sion 2 leads to the W 1,p-Sobolev space for p > 2 so that the connections and maps involved are
continuous. We denote the resulting Banach manifold by B̃ and the W 2,p-gauge transformation
group by G(P ).

Let Ẽ → B̃ be the G(P )-equivariant vector bundle whose fiber over (A, u) is given by

Ẽ(A,u) = Ω0,1
Lp (Σ, u∗T vertY )⊕ Ω0

Lp(Σ, ad P ).

Then the symplectic vortex equations (2.2) define a G(P )-equivariant section

S(A, u) =
(
∂̄J,A(u), ∗ΣFA + µ(u)

)
such that M̃Σ(X,B) is the zero set of this section. The vertical differential of this section

DA,u : Ω1
W 1,p(Σ, ad P )⊕ Ω0

W 1,p(Σ, u∗T vertY )→ Ω0,1
Lp (Σ, u∗T vertY )⊕ Ω0

Lp(Σ, ad P )

is given by the linearization operator of the symplectic vortex equations (2.2) at (A, u). Note
that the linearization of the G(P )-action at (A, u) is

LA,u : Ω0
W 2,p(Σ, ad P )→ Ω1

W 1,p(Σ, ad P )⊕ Ω0
W 1,p(Σ, u∗T vertY )
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is given by LA,u(η) = (−dAη, η̃(u)). It was shown in [13] that the operator DA,u ⊕ L∗A,u is a
Fredholm operator with real index given by

(n− dimG)χ(Σ) + 2〈u∗ (c1(T vertY )) , [Σ]〉.

Hence the triple (B̃, Ẽ , S), modulo G(P ), defines a Fredholm system

(B, E , S)

in the sense of [6]. The zero set of S is the moduli space MΣ(X,B). The central issue in
extracting invariants fromMΣ(X,B) is to establish virtual fundamental cycles as in [21] or a
virtual system as in [8] for a compactified version of the moduli spaceMΣ(X,B). This will be
studied in [9].

3. SYMPLECTIC VORTICES ON A CYLINDER S1 × R

The symplectic vortex equations (2.8) on S1 × R in temporal gauge suggests that it is a
gradient flow equation for an action functional on an infinite dimensional space. This functional
has been studied in [12], [19] and [42]. After we describe the critical point set and the Hessian of
this functional at critical points, we establish an inequality (Proposition 3.12) for this functional
which plays a crucial role in analysing the asymptotic behaviour of an L2 symplectic vortex on
S1 × [0,∞). This crucial inequality is applied to show that a gradient flow line γ with a finite
energy condition

E(γ) =

∫ ∞
0

‖∂γ(t)

∂t
‖2dt <∞

has a well-defined limit point, and converges exponentially fast to the limit point. Similar
exponential decay estimates has also been obtained by in [34] and [42] using different methods.

3.1. Action functional for symplectic vortices. Let PS1 be a principalG-bundle over S1, and
AS1 be the space of smooth connections on PS1 which is an affine space over Ω1(S1, g). Since
C∞G (PS1 , X) ∼= C∞(S1, X), the set of connected components of C is identified with π1(X).
For each c ∈ π1(X) we denote the component by Cc.

Now choosing a trivialization PS1 → S1 × G and the standard metric from S1 ∼= R/Z, we
have the identification

C = C∞G (PS1 , X)×AS1
∼= C∞(S1, X × g).

We sometimes use the same notation to denote a map u in C∞G (PS1 , X) and in C∞(S1, X)

which should be clear in the context. We remark that the identification of AS1 with C∞(S1, g)

is with respect to the trivial connection on PS1 .
With respect to the Fréchet topology, C is a smooth manifold whose tangent space at (x, η) is

T(x,η)C = Ω0(S1, x∗TX × g),

the space of smooth sections of the bundle x∗TX×g. Under the identification C = C∞(S1, X×
g), the full gauge group LG = C∞(S1, G) acts on C by

g · (x, η) = (g−1x, g−1dg

dθ
+ Adg−1η).(3.1)
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Here we denote by Ad : G→ GL(g) the adjoint action of G on its Lie algebra g.
Let (x0, η0) and (x1, η1) be in a connected component of C and γ be a path

γ(t) = (x(t), η(t)) : I = [0, 1]→ C

connecting (x0, η0) and (x1, η1). Then γ determines a pair

(uγ, Aγ) ∈ C∞G (PS1 × I,X)×A(PS1 × I).

Define the energy functional for this path γ as

E(γ) =

∫
S1×I

(
(dAγuγ)

∗ω − 〈µ(uγ), FAγ〉
)
.(3.2)

Note that if the path γ satisfies the symplectic vortex equations (2.8) on [0, 1] × S1, then E(γ)

agrees with its Yang-Mills-Higgs energy. Using the coordinate (θ, t) for S1×I , we can compute
(cf. (2.7))

E(γ) =

∫
S1×I

(x(t))∗ω +

∫
S1

(〈µ(x0), η0〉 − 〈µ(x1), η1〉)dθ.

Lemma 3.1. Under the identification C∞G (PS1 × I,X)×A(PS1 × I) ∼= C∞(S1 × I,X × g),
the energy function defined in (3.2) enjoys the following properties.

(1) For any g ∈ LG, let g · γ be the path obtained from the action of g, then

E(γ) = E(g · γ).

(2) If γ1 and γ2 are homotopic paths relative to the boundary point (x0, η0) and (x1, η1),
then E(γ1) = E(γ2).

Proof. (1) is obvious. We explain (2). The path γ1](−γ2) defines a pair (u,A) on a bundle P
over S1 × S1, then

E(γ1)− E(γ2) = 〈[ω − µ], [uG]〉.

Since γ1 ∼ γ2, [uG] = 0. Hence E(γ1) = E(γ2). �

We now define a (circle-valued) function on C as follows. For each component Cc we fix a
based point (xc, ηc). Given a point (x, η) ∈ Cc, let γ : [0, 1]→ Cc be a path connecting (xc, ηc)

and (x, η). As above, this path can be written as a pair

(x̃, η̃) ∈ C∞G (PΣ, X)×AΣ,

where Σ = [0, 1] × S1 and AΣ is the space of connections on a principal G-bundle PΣ =

PS1 × [0, 1]. Then we define

LΣ(x̃, η̃) = −E(x̃, η̃).(3.3)

For a different extension (Σ, x̃′, η̃′), by the same argument in the proof of Lemma 3.1, we know
that

LΣ(x̃′, η̃′)− LΣ(x̃, η̃) = 〈[ω − µ], [uG]〉,
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for some [uG] ∈ HG
2 (X,Z) defined by (x̃](−x̃′), η](−η̃′)). Recall that 〈[ω− µ], ·〉 is the homo-

morphism

〈[ω − µ], ·〉 : HG
2 (X,Z) −→ R.

The image of 〈[ω − µ], ·〉 consists of integer multiples of a fixed positive real number N[ω−µ].
Hence, modulo ZN[ω−µ], LΣ(x̃, η̃) descends to a well-defined function

L(x, η) = LΣ(x̃, η̃) mod (ZN[ω−µ]).(3.4)

We denote by L : C → R/ZN[ω−µ] the resulting circle-valued function.
Lemma 3.1 implies that the following action functional on C is well-defined.

Definition 3.2. Given a collection of based points {(xc, ηc)|c ∈ π1(X)} for the connected
components C labelled by π1(X), let C̃uni be the associated universal cover of C defined by the
homotopy paths to the based point. The action functional on L̃ : C̃uni → R is defined by (3.3)
for a homotopy path from (x, η) ∈ C to the based point for the connected component. The
induced function

L : C −→ R/ZN[ω−µ]

is called the action functional on C.

Remark 3.3. There is a minimal covering space of C, denoted by C̃, such that the action func-
tional L can be lifted to a R-valued function L̃ on C̃ and the following diagram commutes

C̃uni
L̃ //

��

R

��
C̃ L̃ //

��

R

��
C L // R/ZN[ω−µ].

(3.5)

We write an element of C̃ in the fiber over (x, η) ∈ C as an equivalent class a path connecting
(x, η) to the based point of the connected component.

As the covering map C̃uni → C is a local diffeomorphism, the differential and the Hessian
operator ofL can be calculated by the Fréchet derivatives of L̃ on C̃uni or C̃. For this purpose, we
introduce an L2-inner product on the tangent bundle TC, that is, for (v1, ξ1), (v2, ξ2) ∈ T(x,η)C,

〈(v1, ξ1), (v2, ξ2)〉 =

∫
S1

(ω(v1, Jv2) + 〈ξ1, ξ2〉) dθ.(3.6)

Proposition 3.4. With respect to the L2-inner product, the L2-gradient of L is given by

∇L(x, η) =

(
J(
∂x

∂θ
+ η̃x), µ(x)

)
.(3.7)

Hence, the critical point set is define by the equations

∂x

∂θ
+ η̃x = 0, µ(x) = 0.(3.8)
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Proof. Let (DL)(x,η) be the first Fréchet derivative of L, that is, for any (v, ξ) ∈ T(x,η)C,

(DL)(x,η)(v, ξ) =
∂

∂s

∣∣∣
s=0
L(expx(sv), η + sξ)

= −
∫
S1

ω(v,
∂x

∂θ
)dθ +

∫
S1

(〈dµx(v), η〉+ 〈µ(x), ξ〉) dθ

=

∫
S1

(
ω(
∂x

∂θ
+ η̃x, v) + 〈µ(x), ξ〉

)
dθ

=

∫
S1

(
ω(J(

∂x

∂θ
+ η̃x), Jv) + 〈µ(x), ξ〉

)
dθ

= 〈(J(
∂x

∂θ
+ η̃x), µ(x)), (v, ξ)〉.

(3.9)

Hence, L2-gradient of L at (x, η) is given by (3.7). The proposition is proved. �

Remark 3.5. The gradient equation ∇L(x, η) = 0 can be thought as the Euler-Lagrange equa-
tion for the action functional L. Moreover, the downward gradient flow equation of L on C

∂

∂t
(x(t), η(t)) = −

(
J(
∂x

∂θ
+ η̃x), µ(x)

)
(3.10)

is exactly the symplectic vortex equation (2.8) on S1 × R in temporal gauge.

Before we proceed further, let us investigate the gauge invariance of the action functional L̃.

Lemma 3.6. The action functional L̃ on C̃ is invariant under the action of L0G, the connected
component of LG of the identity.

Proof. We show that L̃ is constant on any orbit of L0G, equivalently, for any path γ(t) in C̃
through γ(0) = [x, η, [x̃]] along the L0G-orbit, we need to prove

∂

∂t

∣∣∣
t=0
L̃(γ(t)) = 0.

We can assume that the tangent vector defined by γ(t) is (−ξ̃x,
∂ξ

∂θ
+ [η, ξ]) for ξ ∈ Lg =

C∞(S1, g). Then the calculation in (3.9) implies that

∂

∂t

∣∣∣
t=0
L̃(γ(t))

= 〈∇L̃(x, η), (−ξ̃x,
∂ξ

∂θ
+ [η, ξ])〉

=

∫
S1

(
ω(
∂x

∂θ
+ η̃x,−ξ̃x) + 〈µ(x),

∂ξ

∂θ
+ [η, ξ]〉

)
dθ

=

∫
S1

(
ω(
∂x

∂θ
,−ξ̃x)− ω(η̃x, ξ̃x) + 〈µ(x),

∂ξ

∂θ
〉+ ω(η̃x, ξ̃x)

)
dθ

=

∫
S1

(
〈dµx(

∂x

∂θ
), ξ〉+ 〈µ(x),

∂ξ

∂θ
〉
)
dθ

=

∫
S1

d〈µ(x), ξ〉 = 0.

Here we applied the equality: ω(η̃x, ξ̃x) = 〈µ(x), [η, ξ]〉. This completes the proof. �
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Given (x, η) ∈ Crit(L) and g ∈ LG, by property (1) in Lemma 3.1, g · (x, η) is also a critical
point. That means, the critical point set Crit(L) is LG-invariant. Note that the based gauge
group

ΩG = {g ∈ LG|g(1) = e, the identity element in G}

acts on C freely. In the next lemma, we provide a description of the critical point set modulo the
group ΩG on the set theoretical level. For this purpose, we consider C∞(S1, g) as the space of
connections on the trivial bundle S1 × G, where we treat ξ ∈ C∞(S1, g) as a g-valued 1-form
ξdθ on S1. Then there is a holonomy map

Hol : C∞(S1, g) −→ G.

Note that Hol : C∞(S1, g) −→ G is the universal principal ΩG-bundle with ΩG-action on
C∞(S1, g) given by the gauge transformation.

Lemma 3.7. Modulo the based gauge group ΩG, the holonomy map Hol : Crit(L)/ΩG −→ G

defines a fibration over G whose fiber over g ∈ G is (µ−1(0))g, the g-fixed point set in µ−1(0).
That is, we have

Crit(L)/ΩG =
⊔
g∈G

(µ−1(0))g.

Proof. Given (x(θ), η(θ)) ∈ Crit(L), then x(θ) ∈ C∞(S1, µ−1(0)) and

ẋ(θ) = −η̃x(θ).

Solving the above ordinary differential equation over the interval x : [0, 2π]→ X with an initial
condition x(0) = p ∈ µ−1(0), we get a unique solution. The condition of x being a loop in X
is that η satisfies the condition

x(2π) = Hol(η) · p = p.

Hence, we get

Crit(L) ∼= {(p, η)|p ∈ µ−1(0), η ∈ C∞(S1, g), Hol(η) · p = p}.

The action of ΩG on the right hand side is given by the gauge transformation on the second
component. Note that the holonomy map Hol : C∞(S1, g) → G is a principal ΩG-bundle.
Any ΩG-orbit at η is determined by Hol(η). So we get the first identification,

Crit(L)/ΩG ∼= {(p, g)|p ∈ µ−1(0), g ∈ Gp}.

Now it is easy to see that the holonomy map on {(p, g)|p ∈ µ−1(0), g ∈ Gp} is just the projec-
tion to the second factor, whose fiber at g is (µ−1(0))g. So the lemma is established. �

Remark 3.8. Set-theoretically, the critical point set Crit(L)/LG can be identified with

I[µ−1(0)/G] ∼=
(
µ−1(0)/G

)
t

⊔
(e) 6=(g)∈C(G)

(µ−1(0))g/C(g),

the inertia groupoid arising from the action groupoid [µ−1(0)/G] = µ−1(0) oG. Here C(G) is
the set of conjugacy class in G with a fixed function C(G) → G sending (g) to g ∈ (g), and
C(g) is the centralizer of g in G.
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(1) If G acts on µ−1(0) freely, then Crit(L)/LG ∼= µ−1(0)/G is the symplectic quotient
(also called the reduced space) of (X,ω).

(2) If G-action on µ−1(0) is only locally free, then Crit(L)/LG has an orbifold structure
which is the inertia orbifold of the symplectic orbifold X0 = [µ−1(0)/G].

(3) If 0 is not a regular value of µ, then µ−1(0)/G admits a symplectic orbifold stratified
space, labelled by orbit types ([38]).

For the rest of the paper, we assume that 0 is a regular value of µ so the critical point set
Crit(L)/LG can be endowed with a symplectic orbifold structure, the inertia orbifold of X0 =

[µ−1(0)/G]. We shall write the inertia orbifold of X0 as

IX0 =
⊔
(g)

X (g)
0

where (g) runs over the conjugacy class in G with non-empty fixed points in µ−1(0). Note
that for a non-trivial conjugacy class (g), X (g)

0 is often called a twisted sector of X0, which is
diffeomorphic to the orbifold arising from the action of C(g) on µ−1(0)g for a representative g
in the conjugacy class (g). Here C(g) denotes the centralizer of g in G.

Now we introduce the standard Banach completion of C. This Banach set-up is also crucial
for the Fredholm analysis of the gradient flow lines of L, equivalently, the symplectic vortices
on S1 × R.

Consider the Banach manifold

C1,p = {(x, η) ∈ W 1,p(S1, X × g)}.

Here p ≥ 2, so (x, η) is a continuous map. The tangent space of C1,p at (x, η) is

T(x,η)C1,p = W 1,p(S1, x∗TX × g),

consisting ofW 1,p-sections of the bundle x∗TX×g. The gauge group for this Banach manifold
is the W 2,p-loop group

G2,p = W 2,p(S1, G)

acting on C1,p in the way as in (3.1). Denote by G0
2,p the based W 2,p-loop group. Then the action

of G0
2,p on C1,p is free.

By the Sobolev embedding theorem, T(x,η)C1,p is contained in the L2-tangent space

TL
2

(x,η)C1,p = L2(S1, x∗TX × g),

the space of L2-section of the bundle x∗TX × g on which the L2-inner product (3.6) is well-
defined and the L2-gradient ∇L is a L2-tangent vector field on C1,p. Modulo W 2,p gauge trans-
formation, the equations (3.8) is a first order elliptic equation. By the standard elliptic regular-
ity, we know that modulo gauge transformation, the critical point set Crit(L) consists of smooth
loops in C1,p. By the same argument, a solution to the L2 gradient flow equation (3.10) of L on
C1,p for

(x(t), η(t)) : R −→ C1,p
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is gauge equivalent to a symplectic vortex on S1 × R with finite energy. For simplicity, we
assume that p = 2.

We can choose a representative for any critical point in Crit(L) according to its holonomy.
If a critical point has a trivial holonomy, then using a based gauge transformation, it is gauge
equivalent to a critical point of the form

(x, 0) ∈ µ−1(0)× g.

If a critical point has a non-trivial holonomy g = exp(−2πη) for η ∈ g, then it is gauge
equivalent to a critical point of the form

(exp(−θη)x, η)

for θ ∈ [0, 2π] and x ∈ (µ−1(0))g.
Let (x, η) ∈ Crit(L), the Hessian operator of L at (x, η)

Q(x,η) : W 1,2(S1, x∗TX × g) −→ L2(S1, x∗TX × g)

is defined by the second Fréchet derivative

〈(v1, ξ1),Q(x,η)(v2, ξ2)〉 = D2L(x,η)((v1, ξ1), (v2, ξ2))

for (v1, ξ1), (v2, ξ2) ∈ W 1,2(S1, x∗TX × g).

Proposition 3.9. At the critical point of the form (x, η) = (exp(−θη)x0, η) for η ∈ g and
x0 ∈ (µ−1(0))g with g = exp(−2πη), the Hessian operator is given by

Q(x,η)(v, ξ) 7→
(
J(L−η̃v + ξ̃x), dµx(v)

)
.

Here L−η̃v is the Lie derivative of v along the vector field −η̃. In particular, if x0 ∈ µ−1(0), the
Hessian operator

Q(x0,0)(v, ξ) =

(
J(
∂v

∂θ
+ ξ̃x0), dµx0(v)

)
.

Proof. For (v1, ξ1), (v2, ξ2) ∈ T(x,η)C = ΓC∞(S1, x∗TX×g), denote by v̄1 the parallel transport
of v1 along a path expx(sv2).

D2L(x,η)((v1, ξ1), (v2, ξ2))

=
d

ds

∣∣∣
s=0

(
(DL)expx(sv2),η+sξ2(v̄1, ξ1)

)
=

∫
S1

d

ds

∣∣∣
s=0

(
ωexpx(sv2)(

∂(expx(sv2))

∂θ
+ ˜(η + sξ2)expx(sv2), v̄1) + 〈µ(expx(sv2)), ξ1〉

)
dθ.

At the critical point (x0, 0) for x0 ∈ µ−1(0), we have (v1, ξ1), (v2, ξ2) ∈ C∞(S1, Tx0X × g),

and
D2L(x0,0)((v1, ξ1), (v2, ξ2))

=

∫
S1

(ω(
∂v2

∂θ
+ ξ̃2, v1

)
+ 〈dµx(v2), ξ1〉)dθ

= 〈(v1, ξ1), (J(
∂v2

∂θ
+ ξ̃2), dµx0(v)〉.
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So the Hessian operator

Q(x0,0)(v, ξ) =

(
J(
∂v

∂θ
+ ξ̃x0), dµx0(v)

)
.

When the critical point (x, η) has non-vanishing ẋ(θ), we can continue the calculation as follows

D2L(x,η)((v1, ξ1), (v2, ξ2))

=

∫
S1

(
ω(∇ẋ(θ)v2, v1)dθ + ωx(∇v2 η̃ + ξ̃2, v1)dθ + 〈dµx(v2), ξ1〉

)
=

∫
S1

(
ω
(
∇ẋ(θ)v2 + ξ̃2 +∇v2 η̃, v1

)
+ 〈dµx(v2), ξ1〉

)
dθ.

At the critical point (x, η) = (exp(−θη)x0, η), the vector field ẋ(θ) along the loop x =

exp(−θη)x0 agrees with −η̃, then

∇ẋ(θ)v2 +∇v2 η̃ = L−η̃v2

as vector fields along the loop exp(−θη)x0. Hence,

D2L(x,η)((v1, ξ1), (v2, ξ2)) = 〈(v1, ξ1), (J(L−η̃v2 + ξ̃2), dµx0(v))〉.

The Hessian operator at this critical point as given by (v, ξ) 7→
(
J(L−η̃v + ξ̃x), dµx(v)

)
.

�

Denote by C#
1,2 the submanifold of C1,2 consisting of elements with finite stabilisers under the

gauge group G2,2. Then

B#
1,2 = C#

1,2/G2,2

is a smooth Banach orbifold. Let (x, η) ∈ C#
1,2 and let

G(x,η) = {g ∈ G2,2|g · (x, η) = (x, η)}

be the stabiliser group of (x, η), a finite group in G2,2. Then the tangent space at γ = [x, η] ∈
B#

1,2 in orbifold sense is a G(x,η)-quotient of the Banach space

{(v, ξ) ∈ T(x,η)C1,2|dµx(Jv) +
∂ξ

∂θ
+ [η, ξ] = 0}.

The action function L descends locally to a circle-valued function on the Banach orbifold B#
1,2.

The L2-gradient vector field ∇L defines an orbifold L2-gradient vector field on B#
1,2. As 0 is a

regular value of the moment map µ, the critical point set

Crit = Crit(L)/G2,2 ⊂ B#
1,2

is a smooth orbifold, diffeomorphic to the inertia orbifold of the symplectic reduction

X0 = [µ−1(0)/G].

Each component (called a twisted sector) is a finite dimensional suborbifold of B#
1,2. The next

proposition implies that t the functional L satisfies the Morse-Bott property.
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Proposition 3.10. Assume that 0 is a regular value of the moment map µ. Let (x, η) be a critical
point of Crit(L) which is gauge equivalent to (exp(−θη)x0, η) for x0 ∈ µ−1(0) and η ∈ g such
that x0 is a fixed point of g = exp(−2πη) , then the kernel of Hessian operator Hess(L)(x,η) of
L at (x, η)

Q(x,η) : W 1,2(S1, x∗TX × g) −→ L2(S1, x∗TX × g),

modulo the image of infinitesimal action of W 2,2-gauge group action at (x, η), is isomorphic to

Tx0(µ−1(0))g/Tx0(C(g) · x0),

where C(g) · x0 is the orbit space of the centralizer of g in G.

Proof. The Hessian operator Q(x,η) of L at (x, η)

Q(x,η) : W 1,2(S1, x∗TX × g) −→ L2(S1, x∗TX × g),

is given by (v, ξ) 7→
(
J(L−η̃v + ξ̃x), dµx(v)

)
. By a direct calculation, we have for any ζ ∈

L2(S1, g),

(Lη̃ ζ̃)(x(θ)) = ˜̇ζ(θ)x(θ) + ˜[η, ζ(θ)]x(θ).(3.11)

where ζ̇(θ) =
dζ

dθ
, and ˜[η, ζ(θ)]x(θ) is the infinitesimal action of [η, ζ(θ)] ∈ g at x(θ). So

Q(x,η)(ζ̃x, ζ̇ + [η, ζ(θ)]) = 0,

which means, the tangent space of W 2,2-gauge orbit at (x, η),

T(x,η)(G2,2 · (x, η)) = {(ζ̃x, ζ̇ + [η, ζ(θ)])|ζ ∈ L2(S1, g)}

is contained the kernel of Q(x,η). This implies that the Hessian operator Q(x,η) is well-defined
on the quotient space of W 1,2(S1, x∗TX × g) by the the tangent space of W 2,2-gauge orbit at
(x, η). Let (v, ξ) ∈ W 1,2(S1, x∗TX × g) be in the kernel ofQ(x,η). Then we have the following
two equations for (v, ξ)

(1) −Lη̃v + ξ̃ = 0.

(2) dµx(θ)(v) = 0.

We can take the following gauge fixing condition

dµx(θ) ◦ J(v) = 0,

which is equivalent to the condition that v(θ) ∈ Tx(θ)X is orthogonal to the infinitesimal action
of G at x(θ) with respect to the Riemannian metric on X defined by ω and J . Note that second
equation implies that v(θ) ∈ Tx(θ)(µ

−1(0)). So v(θ) is orthogonal to the infinitesimal action of
G at x(θ). With this gauge fixing condition, the first equation becomes

Lη̃v = 0, ξ̃(θ)x(θ) = 0,

as the metric on X is invariant under the action of G. The G-action on µ−1(0) is locally free
means ξ = 0. Then the equation Lη̃v = 0 says that v is invariant under the flow Φη

t generated
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by −η̃. Therefore v is determined by the value of v(0) ∈ Tx0(µ−1(0)). As the flow Φη
t is given

by the action of exp(−tη) on X , we get

v(0) = v(2π) = (Φη
2π)∗v(0).

This implies that v(0) ∈ Tx0(µ−1(0))g. Notice that v(0) ∈ Tx0µ
−1(0) is orthogonal to the infin-

itesimal action of G at x(0). Therefore v(0) ∈ Tx0(µ−1(0))g is orthogonal to the infinitesimal
action of C(g) at x(0) as (µ−1(0))g is only invariant under the action of C(g). This completes
the proof of the proposition. �

Remark 3.11. Proposition 3.10 can be also proved using the gauge fixing condition for (v, ξ) ∈
W 1,2(S1, x∗TX × g) given by

dµx(Jv) +
∂ξ

∂θ
+ [η, ξ] = 0,(3.12)

that is, (v, ξ) is L2-orthogonal to the tangent space of the gauge orbit at the critical point (x, η).
Denote by T(x,η) the L2-completion of the subspace of the space of smooth section of x∗TX×g

satisfying the gauge fixing condition (3.12). Then the Hessian operator

Q(x,η) : T(x,η) −→ T(x,η)

is a closed, essentially self-adjoint, Fredholm operator with discrete real spectrum of finite
multiplicity. The domain of Q(x,η) is the W 1,2-completion of T(x,η), which is the subspace
of W 1,2(S1, x∗TX × g) with the gauge fixing condition (3.12). This is due to the fact that
Q(x,η) on T(x,η) is equivalent to a first order elliptic differential operator (called the extended
Hessian operator). This operator on L2(S1, g × x∗TX × g) is obtained by combining the
infinitesimal action of gauge transformations and the gauging fixing into the Hessian opeator,

sending (ζ, v, ξ) to (dµx(Jv) +
∂ξ

∂θ
+ [η, ξ], (−ζ̃x,

dζ

dθ
+ [η, ζ]) +Q(x,η)(v, ξ)).

In the next proposition, we establish the inequality for L̃ which is important in analyzing
gradient flow lines near any critical point.

Proposition 3.12. For any x in a critical manifold Crit(L̃) ⊂ C̃1,2, there exist a constant δ and
a small W 1,2 ε-ball neighborhood Bε(x) of x in C̃1,2 such that

‖∇L̃(y)‖2
L2 ≥ δ|L̃(y)− L̃(x)|

for any y ∈ Bε(x). Here ε and δ are independent of x (as µ−1(0) is compact).

We remark that though the above inequality is written in a small ε-ball of a critical point of
L̃ on C̃1,2, in fact the inequality still holds in a sufficiently small ε-ball of a critical point of L
on C1,2. This is due to the local diffeomorphism between C̃1,2 and C1,2. That is, the difference
function L(y)− L(x) makes sense for y ∈ Bε(x) when ε is small.

Proof. By the gauge invariance, we only need to verify the inequality at critical points of the
form

(exp(−θη)x0, η)
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for x0 ∈ µ−1(0) and η ∈ g such that exp(2πη) ∈ Gx0 (a finite group). Assume that the
holonomy Hol(η) = exp(2πη) is trivial, then (exp(−θη)x0, η) is gauge equivalent to (x0, 0).
A small neighborhood of (x0, 0) in C̃1,2 can be identified with a small ball in

T(x0,0)C1,2 = W 1,2(S1, Tx0X × g)

centred at the origin with radius ε for a sufficiently small ε. Let (u, ξ) ∈ W 1,2(S1, Tx0X × g)

satisfying ‖(u, ξ)‖W 1,2 < ε . The corresponding point in C̃1,2 is

(ũ(θ), ξ(θ)) = (expx0
(u(θ)), ξ(θ)).

With respect to the canonical metric defined by ω(·, J(·)), we have the following orthogonal
decomposition

Tx0X
∼= Tx0µ

−1(0)⊕ νx0

where νx0 = {J(ζ̃x0)|ζ ∈ g}. This decomposition provides a local coordinate of X at x0,
denoted by (u0, uµ). Under this coordinate, vector fields will be parallel transported to the origin
along the geodesic rays, and then be treated as vectors in Tx0X . In particular, ξ̃ũ(θ) ∈ TũX will
be considered as a tangent vector in Tx0X .

Write
du

dθ
= (u̇0, u̇µ). With a choice of gauge transformation, we can assume that

〈u̇0(θ), ξ̃x0(θ)〉 = 0

for any θ ∈ S1 by gauging away the component of u0(θ) along the infinitesimal action of the
gauge group. Now we calculate

‖∇L̃(ũ, ξ)‖2
L2 =

∫
S1

(∥∥∥∥J (dudθ + ξ̃ũ

)∥∥∥∥2

+ ‖µ(ũ)‖2

)
dθ

as follows. Note that∫
S1

∥∥∥∥J (dudθ + ξ̃ũ

)∥∥∥∥2

dθ

=

∫
S1

‖(u̇0 + ξ̃x0) + u̇µ + (ξ̃ũ − ξ̃x0)‖2dθ

≥
∫
S1

(
1

2
‖(u̇0 + ξ̃x0)‖2 +

1

2
‖u̇µ‖2 − ‖ξ̃ũ − ξ̃x0‖2

)
dθ

=

∫
S1

(
1

2
‖(u̇0‖2 +

1

2
‖ξ̃x0)‖2 +

1

2
‖u̇µ‖2 − ‖ξ̃ũ − ξ̃x0‖2

)
dθ

≥ 1

2
‖u̇‖2

L2 + (
1

2
− εC)

∫
S1

‖ξ̃x0‖2dθ

for some constant C > 0, and

‖ξ̃x0‖2 = ω(ξ̃x0 , Jx0 ξ̃x0) > C0|ξ|2

for some constant C0 > 0 due to the locally free action ofG on µ−1(0). Hence, for a sufficiently
small ε, we obtain

‖∇L̃(ũ, ξ)‖2
L2 ≥

1

2
‖u̇‖2

L2 + ‖µ(ũ)‖2
L2 + (

1

2
− εC)C0‖ξ‖2

L2 .
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On the other hand, let (ũ(θ, t), ξ̃) = (expx0
(tu(θ)), tξ) for t ∈ [0, 1] be a path connecting (ũ, ξ)

and (x0, 0), then

L̃(u, ξ)− L̃(x0, 0) = −
∫
S1×[0,1]

ũ∗ω +

∫
S1

〈µ(ũ), ξ〉dθ.

A direct calculation gives

|
∫
S1×[0,1]

ũ∗ω| = |1
2

∫
S1

ωx0(u, u̇)|dθ ≤ C1(‖u0‖2
L2 + ‖u̇‖2

L2)

for some constants C1. Assume that
∫
S1 u0dθ = 0 ∈ Tx0µ

−1(0), the Wirtinger’s inequality
implies that there exists a constant C2 depending only ωx0 and J(x0) such that

‖u0‖2
L2 ≤ C2‖u̇0‖2

L2 .

Therefore, we have

|L̃(ũ, ξ)− L̃(x0, 0)| ≤ C3‖u0‖2
L2 +

1

2
(‖µ(ũ)‖2

L2 + ‖ξ‖2
L2‖)

for some constant C3 > 0. For a properly chosen δ > 0 and sufficiently small ε, we have

‖∇L̃(ũ, ξ)‖2
L2 ≥ δ|L̃(ũ, ξ)− L̃(x0, 0)|.

If
∫
S1 u0dθ 6= 0, we can replace x0 and x′0 = x0 +

∫
S1 u0dθ. Then we have

L̃(x0, 0) = L̃(x′0, 0).

The above calculation applied to (x′0, 0) implies∥∥∥∇L̃(ũ, ξ)
∥∥∥2

L2
≥ δ|L̃(ũ, ξ)− L̃(x′0, 0)|.

So the inequality has been proved for any critical point which is gauge equivalent to (x0, 0).
The above argument can be adapted for a critical point gauge equivalent to (exp(−θη)x0, η) by
lifting technique: since Hol(η) is of finite order, say k, then we consider a k covering S1 → S1,
then the pull-back of connection has a trivial holonomy. Then we can use the above argument
to get the required estimate. �

At the end of this subsection, we discuss the energy of the gradient flow line. Let γ = (x̃, η̃) :

[a, b]→ C1,p be a path connecting (x1, η1) and (x2, η2). Let (x̃1, η̃1) be a path γ1 connecting the
based point to (x1, η1); then we set (x̃2, η̃2) be the path γ2 = γ1]γ. As in Remark 3.3, we treat
(x̃1, η̃1) and (x̃2, η̃2) as elements in C̃.

Lemma 3.13. Suppose that γ = γ(t) : [a, b] → C1,p is a gradient flowline of L. Then the
following quantities are equal:

(1) L̃(x̃1, η̃1)− L̃(x̃2, η̃2)

(2) −
∫
S1×[a,b]

x̃∗ω +

∫
S1

(〈µ(x1), η1〉 − 〈µ(x2), η2〉)dθ

(3) the Yang-Mills-Higgs energy E(x̃, η̃);

(4)
∫ b

a

∥∥∥∥∂γ(t)

∂t

∥∥∥∥2

L2

dt.
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Proof. Recall that a path γ = (x, η) is a gradient flow line of∇L if it satisfies the equations

∂

∂t
(x(t), η(t)) = −

(
J(
∂x

∂θ
+ η̃x), µ(x)

)
.

Since (x̃, η̃) solves the symplectic vortex equation,

E(x̃, η̃) = −
∫
S1×[a,b]

x̃∗ω + d〈µ(x̃), η̃〉.

This implies that (1)=(2)=(3). Now we show that (1)=(4).

L̃(x̃2, η̃2)− L̃(x̃1, η̃1) =

∫ b

a

d

dt
L(x̃(t), η̃(t))dt =

∫ b

a

〈∇L, dγ
dt
〉dt =

∫ b

a

∥∥∥∥∂γ(t)

∂t

∥∥∥∥2

L2

dt.

�

3.2. Asymptotic behaviour of finite energy symplectic vortices on a cylinder.
In this subsection, we establish the existence of a limit point for any gradient flow line

γ : [0,∞)→ C1,p

with finite energy E(γ). Then by Lemma 3.13, we have∫ ∞
0

∥∥∥∥∂γ(t)

∂t

∥∥∥∥2

L2

dt =

∫ ∞
0

‖∇L(γ(t))‖2
L2dt = E(γ) <∞.(3.13)

Theorem 3.14. Let γ : [0,∞) → C1,p be a gradient flow line of L with finite energy. Then
there exists a unique critical point (x∞, η∞) ∈ Crit(L) and constants δ, C > 0 such that the
L2-distance

distL2

(
γ(T ), (x∞, η∞)

)
≤ Ce−δT

for any sufficient large T . Here the constant δ is the half of the constant δ in Proposition 3.12.

Proof. Step 1. For any sequence {γ(ti)| limi→∞ ti = ∞}, we show that there exists a conver-
gent subsequence, still denoted by {γ(ti)}, such that up to gauge transformations in G2,p, the
sequence {γ(ti)} converges to a critical point y∞ of L in the C∞-topology.

Let (ui, Ai) = γ(t) be the symplectic vortex on S1 × [−1, 1] in temporal gauge, obtained
from γ : [ti − 1, ti + 1]→ C1,p. Then we have

lim
i→∞

E(ui, Ai) = 0,

where the energy E(ui, Ai) agrees with the Yang-Mills-Higgs energy

E(ui, Ai) =

∫
S1×[−1,1]

1

2

(
|dAiui|2 + |FAi |2 + |µ(ui)|2

)
dθdt.

Applying the standard regularity result and Uhlenbeck compactness, see Theorem 3.2 in [13],
there exists a sequence ofW 2,p-gauge transformations gi of PS1× [−1, 1] such that the sequence

gi · (ui, Ai)

has a C∞-convergent subsequence. Let (u∞, A∞) be the limit, then (u∞, A∞) satisfies the
following equations

FA∞ = 0, dA∞u∞ = 0, µ(u∞) = 0.(3.14)
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We can find a smooth gauge transformation h of PS1 × [−1, 1] such that h · (u∞, A∞) is in
temporal gauge. So we can write

h · (u∞, A∞) = (x∞(θ, t), η∞(θ, t)dθ)

as a path in C1,p. Then the equations (3.14) become
∂η∞(θ, t)

∂t
= 0,

∂x∞(θ, t)

∂t
= 0

∂x∞
∂θ

+ η̃∞(x∞) = 0, µ(x∞) = 0.

These equations imply that (x∞, η∞) = h · (u∞, A∞) ∈ Crit(L) and

lim
i→∞

(hgi) · (ui, Ai) = (x∞, η∞)

in the C∞-topology. Hence, up to gauge transformations in G2,p, the subsequence {γ(ti)} con-
verges to a critical point (x∞, η∞) of L in the C∞-topology. We denote it by y∞.

Step 2. Set γi = giγ. We claim that there exists ti such that γi(t) ∈ Bε(y∞) for t ≥ ti. Here
ε and the δ below ara the same constants given in Proposition 3.12.

If not, for each i there exists si > ti such that the path γi(t), ti ≤ t ≤ si locates in Bε(y∞)

and γi(si) ∈ ∂Bε(y∞). Applying Proposition 3.12, we have

d
(
L(γ(t))− L(y∞)

)1/2

dt
= −

‖∇(L(γ(t))‖2
L2

2
(
L(γ(t))− L(y∞)

)1/2
≤ −δ

1/2

2
‖∇(L(γ(t)− L(y∞))‖L2 .

Therefore,

distL2(γi(ti), γ
i(si)) ≤

∫ si

ti

‖∂γ
i(t)

∂t
‖L2dt =

∫ si

ti

‖∇(L(γi(t)− L(y∞))‖L2dt

≤ −2δ−1/2

∫ si

ti

d

dt
((L(γi(t)− L(y∞))1/2)dt

≤ 2δ−1/2((L(γi(ti)− L(y∞))1/2 − (L(γi(si)− L(y∞))1/2).

As i → ∞, this goes to 0. On the other hand, by Step 1, there exists hi such that hiγi(si)
uniform converges to some critical point y′∞. Since γi(si) ∈ Bε(y∞) and hiγi(si) uniformly
converges to y′∞, hi is uniformly bounded at least in C1,α for some α > 0. This means that
there exists a subsequence of hi that converges. We may relabel the sequence and assume that
hi converges to h. We conclude that γi(si) converges to h−1y′∞. Therefore,

distL2(γi(ti), γ
i(si))→ distL2(y∞, h

−1y′∞) = 0.

This implies that y∞ = h−1y′∞. However, γi(si) is on the boundary of the ball Bε(y∞), this is
impossible. The contradiction implies that γi(t) ∈ Bε(y∞) for t ≥ ti.

Step 3: From Step 2, suppose that γi(t) locates in Bε(y∞) when t sufficiently large. Reset
y∞ to be g−1

i y∞. Then we may assume that γ(t) locates in Bε(y∞) when t large. Now we show
that

distL2(γ(t), y∞) ≤ Ce−δt

for t large.
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We can assume that for t > T0, γ(t) ∈ Bε(y∞) so that the crucial inequality in Proposition
3.12 can be applied to get

d
(
L(γ(t))− L(y∞)

)1/2

dt
= −

‖∇(L(γ(t))‖2
L2

2
(
L(γ(t))− L(y∞)

)1/2
≤ −δ

2

(
L(γ(t))− L(y∞)

)1/2
.

Hence, for any t > T0, we have(
L(γ(t))− L(y∞)

)1/2 ≤ e−
δ
2

(t−T0)
(
L(γ(T0))− L(y∞)

)1/2
.

That is, for t > T0

distL2

(
γ(t), y∞

)
≤ 2δ−1/2e−

δ
2

(t−T0)
(
L(γ(T0))− L(y∞)

)1/2
.

With C = 2δ−1/2e
δ
2
T0
(
L(γ(T0)) − L(y∞)

)1/2, we get the exponential decay estimate for
distL2

(
γ(t), y∞

)
.

�

Remark 3.15. By a similar calculation as in the above proof, one can establish the following
exponential decay for the Yang-Mills-Higgs energy of a finite energy gradient flow line γ :

[0,∞)→ C1,p, that is, there exist constants δ, C > 0 such that∫ ∞
T

‖∇L(γ(t))‖2
L2dt ≤ Ce−δT

for a sufficiently large T . Moreover, let y∞ be the limit of γ(t) at infinity, by a gauge trans-
formation, we may assume that y∞ ∈ Crit, then for any k ∈ N, there exist C, δ > 0 such
that

|∇kγ(t)| ≤ Ce−δt(3.15)

for t sufficiently large. To get the above point-wise estimate, we apply the elliptic regularity to
the symplectic vortex γ|[T−2,T+2]×S1 for a sufficiently large T to get a Ck-estimate

‖g · γ‖Ck ≤ C.

for some constant C > 0 and any k ∈ N. Write γ = (α, u), then the curvature Fα and µ(u)

are gauge invariant and hence bounded. Then (3.15) follows from applying the standard elliptic
estimates to the gradient flow equations. We also remark that the decay rate δ can be chosen
such that δ is smaller than the minimum absolute value of non-zero eigenvalues of the Hessian
operator of L at y∞.

4. L2-MODULI SPACE OF SYMPLECTIC VORTICES ON A CYLINDRICAL RIEMANN SURFACE

In this section, we consider the symplectic vortices of finite energy on a Riemann surface Σ

with cylindrical end. For simplicity, Σ is assumed to have just one end, isometrically diffeomor-
phic to a half cylinder S1× [0,∞). Let K be a compact set of Σ such that Σ\K is isometrically
diffeomorphic to S1 × (1,∞) with the flat metric dθ2 + dt2. Let P be a principal G-bundle
over Σ with a fixed trivialization over the cylindrical end S1 × [0,∞). Let NΣ(X,P ) be the
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moduli space of symplectic vortices with finite energy associated to P and a closed Hamilton-
ian G-manifold (X,ω) with an ω-compatible G-invariant almost complex structure J . It is the
space of gauge equivalence classes of

(A, u) ∈ A(P )× C∞G (P,X)

satisfying the symplectic vortex equations (2.2) and with the property that the Yang-Mills-Higgs
energy (Cf. (2.5)) is finite. For any p > 2, by the elliptic regularity, NΣ(X,P ) is the moduli
space of the symplectic vortex equations (2.2) for

(A, u) ∈ B̃W 1,p
loc

= AW 1,2
loc

(P )×W 1,p
loc,G(P,X),

the space of W 1,p
loc -connections on P and W 1,p

loc -equivariant maps from P to X such that

E(A, u) =

∫
Σ

1

2
(|dAu|2 + |FA|2 + |µ ◦ u|2)νΣ <∞

modulo the the action of the group GW 2,p
loc

(P ) of all W 2,p
loc gauge transformations on P .

Given a finite energy symplectic vertex (u,A), restricted to the cylindrical end S1 × [0,∞),
(u,A) is gauge equivalent to a gradient flow line of L with finite energy. Then by Theorem
3.14, we know that there is a unique asymptotic limit (A∞, u∞) ∈ Crit(L). Modulo a gauge
transformation in W 2,p(S1, G), (A∞, u∞) is gauge equivalent to

(η, exp(−θη) · x∞) ∈ Crit(L)

where η ∈ g is treated as a connection d + ηdθ on the principal G-bundle over S1 with respect
to a fixed trivialization, x∞ ∈

(
µ−1(0)

)g for g = exp(2πη) ∈ G of finite order m. Therefore,
there is an asymptotic limit map

∂∞ : NΣ(X,P ) −→ Crit,(4.1)

where Crit is the critical point set modulo the gauge transformations as Section 3. We remark
that Crit is diffeomorphic to the inertia orbifold IX0 associated to the reduced symplectic orb-
ifold X0 = [µ−1(0)/G], as we assume that 0 is a regular value of the moment map µ.

We first prove the continuity for the asymptotic limit map (4.1).

Proposition 4.1. Let Σ be a Riemann surface Σ with one cylindrical end, P be a principal
G-bundle over Σ and NΣ(X,P ) be the moduli space of symplectic vortices with finite energy
associated to P and a closed Hamiltonian manifold (X,ω). Then the asymptotic limit of sym-
plectic vortices in NΣ(X,P ) define a continuous map

∂∞ : NΣ(X,P ) −→ Crit ∼= IX0.

Proof. Let [(u,A)] ∈ NΣ(X,P ) and ∂∞([(u,A)]) = [x0] ∈ (µ−1(0))g/C(g) for an element
g = exp(2πη0) of finite order. Fix an open neighborhood V of [x0] in (µ−1(0))g/C(g). We
need to find an open neighborhood U ⊂ NΣ(X,P ) of [(u,A)] such that

∂∞(U) ⊂ V.
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Let Ṽ be a G2,p(S
1)-invariant open neighborhood of (exp(−θη0)x0, η0) in C1,p such that Ṽ ∩

Crit(L) is mapped to a subset of V under the identification

Crit(L)/G2,p(S
1) ∼= IX0.

Denote by Ũ the solutions (u,A) ∈ B̃W 1,p
loc (Σ) to the symplectic vortex equations with finite

energy such that for sufficiently large T , the restriction of (u,A) to S1 × [T,∞) is gauge
equivalent to an element in Ṽ . Then U = Ũ/GW 2,p(Σ) is an open neighborhood of [(u,A)]

in NΣ(X,P ) and ∂∞(U) ⊂ V . �

For any [(u,A)] ∈ NΣ(X,P ), there is a canonical degree 2 equivariant homology class
in HG

2 (X,Z) described as follows. Assume that ∂∞([(u,A)]) ∈ X (g)
0 , the twisted sector of X0

defined by the conjugacy class of g inG. So ∂∞([(u,A)]) can be represented by (exp(−θη) ·x0)

for x0 ∈
(
µ−1(0)

)g, and g = exp(2πη) is of order m. We can identify the cylinder S1 × [0,∞)

with a unit disc D∗ = D − {0} in C using the biholomorphic coordinate change (iθ, t) 7→
e−(t+iθ). Then the cylindrical surface Σ become a punctured Riemann surface. Denote this
punctured Riemann surface by Σ∗. Let P ∗ be the associated principal G-bundle over Σ∗. Note
that P ∗ has a fixed trivialization near the puncture. As the connection A∞ has a non-trivial
holonomy g of order m, we can construct an orbifold principal G-bundle Porbi over the orbifold
Riemann surface Σorbi such that A can be extended to a connection on Porbi. The orbifold
Riemann surface Σorbi is obtained by gluing Σ∗ and the orbifold disc D/Zm, so Σorbi is the
closure of Σ∗ with one orbifold singular point of order m at the puncture. Note that over the
punctured disc D∗, there is a Zm-equivariant map

ϕ : D∗ ×G −→ D∗ ×G

sending (z, h) to (zm, exp(−2πη)h). Over D∗, the map ϕ identifies the Zm-equivariant principal
G-bundle on the left hand side D×G −→ D where Zm-action on D×G is given by

e2πi/m(z, h) = (e2πi/mz, exp(2πη)h)

with the trivial G-bundle on the right hand side. The orbifold principal G-bundle Porbi is ob-
tained by gluing P ∗ over Σ∗ with the Zm-equivariant principal G-bundle by the gluing map
ϕ. The trivial connection with the constant section x0 define a symplectic vortex on the Zm-
equivariant G-bundle over D. We can extend the symplectic vortex (A, u) on (Σ, P,X) to a
pair (Ã, ũ) on (Σorbi, Porbi, X) where Ã is a connection on Porbi and ũ : Porbi → X is a smooth
G-equivariant map. Hence, with the classifying map Porbi → EG, ũ gives rise to a degree
2 equivariant homology class in H2(XG,Z). For simplicity, we still denote this class by [uG]

which is called the homology class of (A, u). Then by a direct calculation, the energy of (A, u)

is

E(A, u) = 〈[ω − µ], [uG]〉.

Fix an equivariant homology class B ∈ H2(XG,Z) such that 〈[ω − µ], B〉 > 0. Let
NΣ(X,P,B) be the moduli space of symplectic vortices on Σ associated to (P,X) with the
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homology class B. Then NΣ(X,P,B) ⊂ NΣ(X,P ) and there is a continuous asymptotic limit
map

∂∞ : NΣ(X,P,B) −→ Crit ∼= IX0.

4.1. Fredholm theory for L2-moduli space of symplectic vortices. To understand the mod-
uli space NΣ(X,P,B), we need to introduce the weighted Sobolev space for the fiber of the
asymptotic limit map

∂∞ : NΣ(X,P,B) −→ Crit ∼= IX0.

Any symplectic vortex [(u,A)] ∈ NΣ(X,P,B) decays exponentially to its asymptotic limit at a
rate δ > 0 for some δ as Theorem 3.14. Note that Crit is compact, so we can choose a constant δ
such that restricted to the cylindrical end [S1× [0,∞), [(u,A)] ∈ ∂−1

∞ (y∞) decays exponentially
to its limit at the rate δ for any y∞ ∈ Crit. We fix such a δ throughout this section.

Fix a smooth function β : Σ→ [0,∞) such that the follow conditions hold:

(1) On S1 × [1,∞), β(θ, t) = t is the coordinate function on the cylinder.
(2) β = 0 on Σ \ {S1 × [0,∞)}.
(3) β|S1×[0,1] is an increasing function.

The weighted W k,p-norm on a compact support section ξ of an Euclidean vector bundle V over
Σ with a covariant derivative∇ is defined by

‖ξ‖Wk,p
δ

=

(∫
Σ

eδβ
(
|ξ|p + |∇(ξ)|p + · · ·+ |∇p(ξ)|p

)
dνΣ

)1/p

.

We denote W k,p
δ (Σ, E) the completion of all compact support sections of E with respect to

the weighted W k,p-norm, which is also called the Banach space of W k,p
δ -sections of E. When

k = 0, we simply denote by Lpδ(Σ, E) the W 0,p-sections of E.
Let X (g)

0 be a twisted sector corresponding to the locally free action of C(g) on (µ−1(0))g

for g = exp(2πη) ∈ G with finite order. Let NΣ(X,P,B; (g)) be the subset of NΣ(X,P,B)

consisting of symplectic vortices [(A, u)] such that

∂∞([A, u]) ∈ X (g)
0 ⊂ Crit.

Note that the critical manifold corresponding to X (g)
0 is diffeomorphic to the orbifold defined

by the action of constant C(g)-valued gauge transformations on the space

{(d+ ηdθ, exp(−θη)x)|x ∈ (µ−1(0))g} ∼= (µ−1(0))g.

Define B̃δ(P,B, (g)) be the subspace of B̃W 1,p
loc

consisting of elements (A, u) with the follow-
ing property:

(1) on S1 × [1,∞), A− d− ηdθ ∈ W 1,p
δ (S1 × [1,∞),Λ1 ⊗ ad P ),

(2) there exist x ∈ (µ−1(0))g and a sufficiently large T such that u|S1×[T,∞) = expux(v).

Here ux(θ, t) = exp(−θη)x and v ∈ W 1,p
δ (S1 × [T,∞), u∗xTX).

(3) the canonical class of u in HG
2 (X,Z) is B.



28 BOHUI CHEN, BAI-LING WANG, AND RUI WANG

Then B̃δ(P,B, (g)) is a Banach manifold whose tangent space at (A, u) is given by

T(A,u)B̃δ(P,B, (g)) = W 1,p
δ (Σ,Λ1 ⊗ ad P ⊕ u∗T vertY )⊕ (µ−1(0))g

with Y = P ×G X . There is an obvious smooth submersion (a locally trivial fibration)

B̃δ(P,B, (g)) −→ (µ−1(0))g(4.2)

defined by the asymptotic limit of (A, u) over the end. The fiber over x ∈ (µ−1(0))g consists
of those (A, u) satisfying the above three conditions for a fixed x in (2). This is the product of
an affine Banach manifold modelled on W 1,p

δ (Σ,Λ1 ⊗ ad P ) and a Banach manifold of W 1,p-
sections of P over Σ with prescribed asymptotics over S1 × [T,∞). Then the local triviality
of the submersion (4.2) can be obtained by the parallel transport along geodesics in (µ−1(0))g

with respect to the Levi-Civita connection on TX .
Let G̃δ be the gauge group of W 2,p

loc gauge transformations that converge in W 2,p
δ to constant

C(g)-valued gauge transformations over the cylindrical end S1 × [1,∞). There is a subgroup
Gδ of G̃δ consisting of those gauge transformations that converge in W 2,p

δ to the trivial gauge
transformation. Then the Lie algebra of Gδ is W 2,p

δ (Σ, ad P ). There is an exact sequence of
group homomorphisms

1→ Gδ −→ G̃δ −→ C(g)→ 1

where C(g) is thought as the constant gauge transformations.
The symplectic vortex equation (2.2) on Σ defines a smooth G̃δ-invariant section S̃ of the
G̃δ-equivariant Banach bundle Ẽδ(P,B, (g)) over B̃δ(P,B, (g)) whose fiber at (A, u) is given
by

Lpδ(Σ,Λ
0,1 ⊗ u∗T vertY ⊕ ad P ).

Then the moduli space NΣ(X,P,B; (g)) can be identified with the zero set S̃−1(0) modulo the
gauge group G̃δ.

Note that Gδ acts freely on B̃δ(P,B, (g)) and does not change the asymptotic behaviour of
(A, u) over the end. The fibration (4.2) defines a smooth C(g)-equivariant fibration

B̃δ(P,B, (g))/Gδ −→ (µ−1(0))g.(4.3)

The G̃δ-invariant section S defines a section of Banach bundle Ẽδ(P,B, (g))/Gδ over the Banach
manifold B̃δ(P,B, (g))/Gδ. As in the case of moduli space of symplectic vortices over a closed
Riemann surface, the deformation complex associated to a symplectic vortex [A, u] in the fiber
of (4.3) is given by

W 2,p
δ (Σ, ad P )

LA,u
// W 1,p

δ (Σ,Λ1 ⊗ ad P ⊕ u∗T vertY )
DA,u

// Lpδ(Σ,Λ
0,1 ⊗ u∗T vertY ⊕ ad P ),

which is elliptic in the sense that the cohomology groups are finite dimensional. The proof of
this statement using the Atiyah-Singer-Singer boudnary condition is quite standard nowadays
so we omit it here. This ensures that(

B̃δ(P,B, (g))/Gδ, Ẽδ(P,B, (g))/Gδ, S̃
)

is a family of Fredholm systems over (µ−1(0))g.
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Note that the twisted sector X (g)
0 is defined by the locally free C(g)-action on (µ−1(0))g.

From the C(g)-equivariant fibration (4.3), we obtain a Banach orbifold structure on

B̃δ(P,B, (g))/G̃δ,

denoted by Bδ(P,B, (g)). Denote Eδ(P,B, (g)) = Ẽδ(P,B, (g))/G̃δ. Then Eδ(P,B, (g)) is a
Banach orbifold bundler over Bδ(P,B, (g)) and the G̃δ-invariant section S̃ defines a section of
Eδ(P,B, (g)). Therefore, we obtain an orbifold Fredholm system(

Bδ(P,B, (g)), Eδ(P,B, (g)), S
)

for the moduli space NΣ(X,P,B; (g)). It is a family of orbifold Fredholm systems over X (g)
0

realising the asymptotic limit map

∂∞ : NΣ(X,P,B; (g)) −→ X (g)
0

in the sense that the fiber ∂−1
∞ (x, (g)) can be identified with the zero set of the section S restricted

to the fiber of the orbifold fibration

Bδ(P,B, (g)) −→ X (g)
0

over the point (x, (g)) ∈ X (g)
0 .

To calculate the expected dimension of components in NΣ(X,P,B, (g)), we introduce a
degree shift as in [11]. We first define the degree shift of an element g in G of order m acting
linearly on Cn. Let the complex eigenvalues of g on Cn be

e2πim1/m, e2πim2/m, · · · , e2πimn/m

for an n-tuple of integers (m1,m2, · · · ,mn) with 0 ≤ mj < m for j = 1, 2, · · · , n. Then the
degree shift of an element g on Cn, denoted by ι(g,Cn), is given by

ι(g,Cn) =
n∑
j=1

mj

m
.

From the definition, we have

ι(g,Cn) + ι(g−1,Cn) = n.

For the orbifold X0 = [µ−1(0)/G], if g ∈ G has a non-empty fixed point set (µ−1(0))g, then the
Chen-Ruan degree shift of g on X0, denoted by ιCR(g,X0) at x ∈ (µ−1(0))g, is defined to be

ιCR(g,X0) = ι(g, T[x](X0)).

For a twisted sector X (g)
0 of X0, the corresponding degree shift as in [11] is defined to

ιCR(X (g)
0 ,X0) = ιCR(g,X0)

for any g such that X (g)
0 is diffeomorphic to the orbifold defined by the action of C(g) on the

fixed point manifold (µ−1(0))g.
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Theorem 4.2. Let NΣ(X,P,B; (g)) be the subset of NΣ(X,P,B) consisting of symplectic
vortices [(A, u)] such that

∂∞(A, u) ∈ X (g)
0

Then NΣ(X,P,B; (g)) admits a Fredhom system with its virtual dimension given by

2〈cG1 (TX), B〉+ 2(n− dimG)(1− gΣ)− 2ιCR(X (g)
0 ,X0)

where gΣ is the genus of the Riemann surface Σ.

Proof. With the Fredholm set-up and the orbifold model discussed above, we know that (A, u)

has a unique extension to an orbifold symplectic vortex (Ã, ũ) on the principal G-bundle Porbi
over Σorib = (|Σorbi|, (p,m)), an orbifold Riemann surface with one orbifold point p of order m
(the order of g). So by the excision property, we only need to calculate the index of the lineari-
sation operator for the orbifold symplectic vortex (Ã, ũ) modulo based gauge transformations.
Note that the remaining gauge transformations consist of constant ones taking values in C(g),
the centralizer of g in G, as we require that ũ(p) ∈

(
µ−1(0)

)g.
The underlying Fredholm operator is the a compact perturbation of the direct sum of the

operator (−d∗A, ∗dA)

Ω1
δ(Σ, ad P )→ Ω0

δ(Σ, ad P )⊕ Ω0
δ(Σ, ad P )

in the original cylindrical model, with its index given by − dimG(1 − 2gΣ), and the Cauchy-
Riemann operator ∂̄Ã,ũ on the orbifold Σorbi with values in the complex vector bundle ũ∗T vertY .
Hence, the virtual dimension is given by

Index∂̄Ã,ũ − dimG(1− 2gΣ)− dimC(g).(4.4)

By the orbifold index theorem, we have

Index∂̄Ã,ũ = 2〈c1(u∗T vertY ), [|Σorbi|]〉+ 2n(1− gΣ)− 2ιCR(g, Tũ(p̃)X).(4.5)

By the definition of cG1 (u∗T vertY ) and [uG], we have

〈c1(u∗T vertY ), [|Σorbi|]〉 = 〈cG1 (TX), B〉.

To calculate the degree shift for the g-action on Tũ(p̃)X , we apply the following decomposi-
tion

Tũ(p̃)X ∼= g⊕ g∗ ⊕ T[x∞]X0.

Here the actions of g on g and g∗ are adjoint to each other and the zero eigenspace of the g-action
on g is the Lie algebra of C(g). By the definition of degree shift, this implies that

2ιCR(g, Tũ(p̃)X)

= 2ιCR(g,X0) + 2 dimCG/C(g)

= 2ιCR(g,X0) + dimRG/C(g).

(4.6)

Put these formula (4.4), (4.5) and (4.6) together, we get the virtual dimension as claimed in the
theorem. �
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4.2. L2-moduli space of symplectic vortices on punctured Riemann surface.
Let C = (Σ, p1, . . . , pk) be a Riemann surface with k marked points. We assume that C is

stable, i.e, 2− 2g(Σ)−k < 0 where gΣ is the genus of the Riemann surface Σ. It is well known
that there is a canonical hyperbolic metric on the punctured Riemann surface Σ \ {p1, . . . , pk}.
This hyperbolic metric provides a disjoint union of horodiscs centred at each punctured point.
We may deform the metric on the disc such that the metric becomes cylindrical. For simplicity,
we use the same notation Σ for this Riemann surface with k cylindrical ends. Denote the metric
and the corresponding volume form by ρΣ and νΣ respectively.

Let P be a principal G-bundle over Σ. Let NΣ(X,P ) be the moduli space of symplectic
vortices with finite energy on Σ associated to P and a 2n-dimensional Hamiltonian G-space
(X,ω). ThenNΣ(X,P ) is the space of gauge equivalence classes of solutions to the symplectic
vortex equations (2.2) for

(A, u) ∈ B̃W 1,p
loc (Σ) = AW 1,p

loc (Σ) ×W
1,p
loc,G(P,X)

such that

E(A, u) =

∫
Σ

1

2
(|dAu|2 + |FA|2 + |µ ◦ u|2)νΣ <∞.

Then the asymptotic limit map

∂∞ : NΣ(X,P ) −→
(
Crit
)k

is continuous. Let δ be a positive real number which is smaller than the minimum absolute
value of eigenvalues of the Hessian operators of L along the compact critical manifold Crit,
then [u,A] ∈ NΣ(X,P ) decays exponentially to its asymptotic limit along each end. Moreover,
the energy function on NΣ(X,P ) takes values in a discrete set

{〈[ω − µ], B〉|B ∈ HG
2 (X,Z)}.

Fix an equivariant homology classB ∈ HG
2 (X,Z) such that 〈[ω−µ], B〉 > 0. LetNΣ(X,P,B)

be the moduli space of symplectic vortices on Σ associated to (P,X) with the homology class
B. We remark that the homology class of (u,A) is defined by the associated orbifold model as
in the previous section for one cylindrical end case.

Then the Fredholm analysis for the one cylindrical end case in the previous section can be
adapted to establish the following theorem.

Theorem 4.3. Let NΣ(X,P,B; {(gi)}i=1,··· ,k) be the subset of NΣ(X,P,B) consisting of sym-
plectic vortices [(A, u)] such that

∂∞(A, u) ∈
(
X (g1)

0 × · · · × X (gk)
0

)
⊂ (Crit)k

Then NΣ(X,P,B; {gi}i=1,··· ,k) admits an orbifold Fredhom system with its virtual dimension
given by

2〈cG1 (TX), B〉+ 2(n− dimG)(1− gΣ)− 2
k∑
i=1

ιCR(X (gi)
0 ,X0)

where gΣ is the genus of the Riemann surface Σ.
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5. COMPACTNESS OF L2-MODULI SPACE OF SYMPLECTIC VORTICES

In this section, we establish a compactness result for the underlying topological space of the
moduli space NΣ(X,P,B) of symplectic vortices on a Riemann surface Σ with k cylindrical
ends. We assume that k > 0. By reversing the orientation on S1 if necessarily, we can assume
that all these ends are modelled on S1 × [0,∞).

Given an orbifold topological space N , the underlying topological space (also called the
coarse space of N ) will be denoted by |N |. We will provide a compactification of the coarse
moduli space |NΣ(X,P,B)| by adding certain limiting data consisting of bubbling off J-
holomorphic spheres in (X,ω, J) in the interior of Σ and chains of symplectic vortices on
cylinders. When X is Kähler, the compactness theorem for the L2-moduli spaces of symplectic
vortices on a Riemann surface with cylindrical end have been studied in [40]. The compactified
space is a stratified topological space over a partially order finite index set, whose topology is
inductively induced by the convergence properties for sequences of symplectic vortices on Σ.

To describe the limiting data for a sequence of symplectic vortices on Σ, we first introduce
an index set for the topological type of the domain. Let g be the topological genus of Σ and
B ∈ HG

2 (X,Z) such that 〈[ω − µ], B〉 > 0. Recall that a tree is a connected graph without any
closed cycle of edges.

Definition 5.1. A web of stable weighted trees of the type (Σ;B) is a finite disjoint union of
trees

Γ = Γ0 t Γ1 t · · · t Γk

consisting of a principal tree Γ0 with ordered k tails and a collection of chains (ordered se-
quences) of trees

Γi =

mi⊔
j=1

Ti(j)

for each tail i = 1, · · · , k, together with the following additional conditions.

(1) The principal tree Γ0 has a distinguished vertex (called the principal vertex) with a
weight (g,B0) and ordered k tails labelled by {1, 2, · · · , k}. Here g0 is a non-negative
integer and B0 ∈ HG

2 (X,Z) satisfying the following positivity condition

〈[ω − µ], B0〉 ≥ 0.

(2) For the i-th tail in Γ0, there is a chain of trees of length mi

Γi = Ti(1) t Ti(2) t · · · t Ti(mi)

such that each Ti(j) has a distinguished vertex (called a branch vertex) with a weight
given by a class Bi,j ∈ HG

2 (X,Z) such that

〈[ω − µ], Bi,j〉 ≥ 0.

If Bi,j = 0, the tree Ti(j) is non-trivial in the sense that the branch vertex is not the only
vertex.
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(3) Any undistinguished vertex v in Γ has its weight given by a class Bv ∈ H2(X,Z), such
that

〈[ω], Bv〉 ≥ 0.

If Bv = 0, the number of edges at v is at least 3, two of which connect to vertices of
non-zero weights.

(4) Under the natural homomorphism H2(X,Z)→ HG
2 (X,Z),

B0 +
k∑
i=1

mi∑
j=1

Bi,j +
k∑
i=0

∑
v∈V (Γi)

Bv = B(5.1)

holds in HG
2 (X,Z). Here V (Γi) is the set of undistinguished vertices in Γi.

Two webs of stable weighted trees are called equivalent if there is a weight preserving iso-
morphism between them. Denote by SΣ;B be the set of equivalence classes of webs of stable
weighted trees of the type (Σ;B).

Given two element [Γ] and [Γ′] in SΣ;B, we say [Γ] ≺ [Γ′] if any representative Γ′ in [Γ′] can
be obtained, up to equivalence, from any representative Γ in [Γ] by performing finitely many
steps of the following three operations.

(1) Contracting an edge connecting two undistinguished vertices, say v1 and v2, in Γ to
obtain a web with a replaced undistinguished vertex of a combined weight Bv1 +Bv2 .

(2) Identifying two branch vertices of adjacent trees in a chain Γi of lengthmi to get a chain
of trees of length mi − 1 with a weight given by the sum of the two assigned weights.

(3) Identifying the principal vertex in Γ with a first branch vertex in a chain (say Γi), such
that the new principal vertex is endowed with a new weight B0 +Bi,1 and the i-th chain
becomes Ti(2) t · · · t Ti(mi).

Lemma 5.2. (SΣ;B,≺) is a partially ordered finite set.

Proof. It is easy to see that the order ≺ is a partial order. By the condition (5.1), we see that
there are only finitely many collections of

{(B0, Bi,j, Bv)|〈[ω − µ], Bi,j〉 > 0, 〈[ω − µ], Bv〉 > 0}.

The stability conditions for branch vertices or undistinguished vertices with zero weight implies
that there are only finitely many possibilities. This ensures that SΣ;B is a finite set. �

Given an element Γ = tki=0Γi in SΣ;B, we can associate a bubbled Riemann surface of genus
g and k cylindrical ends, and a collection of chains of bubbled cylinders as follows. Associated
to Γ0, we assign a bubbled Riemann surface Σ0 which is the nodal Riemann surface obtained
by attaching trees of CP1’s to Σ. Associated to an i-th chain of trees Γi = tmij=1Ti(j) we assign
a chain of bubbled cylinders

Ci = {Ci(1), · · · , Ci(mi)}

where each Ci(j) is a nodal cylinder with trees of CP1’s attached according to the tree.
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Now we construct a moduli space of stable symplectic vortices with the domain curve being
the bubbled Riemann surface Σ0 or one of the bubbled cylinders in {Ci(j)|i = 1, · · · , k; j =

1, · · · ,mi} as follows.
Let Γ̃0 be the new weighted graph obtained by severing all edges in Γ0 which are attached to

the principal vertex. Assume that Γ0 has l0 trees attached to the principal vertex. Then Γ̃0 con-
sists a single vertex (the principal vertex) with l0 half-edges and k ordered tails. The remaining
part of Γ0, denoted by Γ̂0, becomes a disjoint union of l0 trees, each of which has a half-edge
attached one particular vertex (the adjacent vertex to the principal vertex). Equivalently,

Γ0 =
(
Γ̃0 t Γ̂0

)
/ ∼

where the equivalence relation is given by the identification of l0-tuple half-edges in Γ̃0 with the
l0-tuple half-edges in Γ̂0.

Denote byNΓ̃0
by the moduli space of symplectic vortices of homology class B0 over Σ with

l0 marked points and k cylindrical ends. Then there is a continuous map

ẽv0 : NΓ̃0
−→ X l0

given by the evaluations at the l0 marked points. Moreover, there is a continuous asymptotic
limit map along each of the k cylindrical ends

∂0 : NΓ̃0
−→ (Crit)k.

Associated to Γ̂0, as a disjoint union of l0 trees, there is a moduli space of the Gromov-Witten
moduli space of unparametrized stable pseudo-holomorphic spheres with l0-marked points and
the weighted dual graph given by Γ̂0, see Chapter 5 in [31]. We denote this moduli space by
MGW

Γ̂0
. Then there is a continuous map

êv0 :MGW
Γ̂0
−→ X l0

given by the evaluations at the l0 marked points. The moduli space of bubbled symplectic
vortices of type Γ0, denoted by NΓ0 , is defined to be the orbifold topological space generated
by the fiber product

NΓ̃0
×Xl0 MGW

Γ̂0

with respect to the maps ẽv0 and êv0. Then the coarse moduli space |NΓ0 | inherits a continuous
asymptotic limit map

∂Γ0 : |NΓ0| −→ (Crit)k.

Remark 5.3. We remark that there is an ambiguity here with regarding the orbifold structure on
NΓ0 . A proper way to make this precise is to employ the language of proper étale groupoids to
describe the spaces of objects and arrows on NΓ̃0

×Xl0 MGW
Γ̂0

, and then add further arrows to
include all equivalences relations to get an orbifold structure onNΓ0 . As we are dealing with the
compactification of the coarse moduli space, there is no ambiguity for the coarse space |NΓ0 |.
We will return to this issue when we discuss weak Freholm systems for these moduli spaces in
[9] and [10].
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Similarly, for the i-th chain of trees Γi =
⊔mi
j=1 Ti(j) , we define a chain of moduli spaces

of stable symplectic vortices of type Γi as follows. Associated to the tree Ti(j), we excise the
branch vertex away to get a graph consisting of a single vertex with li,j half-edges and li,j trees
with one half-edge for each tree. Let T̃i(j) and T̂i(j) be these two graphs respectively.

Denote by NT̃i(j) be the moduli space of symplectic vortices of homology class Bi,j over the
cylinder Ci(j) ∼= S1 × R with li,j-marked points. Then there are a continuous evaluation map

ẽvT̃i(j) : NT̃i(j) −→ X li,j

and continuous asymptotic value maps

∂±
T̃i(j)

: NT̃i(j) −→ Crit

associated to the two ends at ±∞ respectively. Denote byMGW
T̂i(j)

the Gromov-Witten moduli
space of unparametrized stable pseudo-holomorphic spheres with li,j-marked points and the
weighted dual graph given by T̂i(j). Note thatMGW

T̂i(j)
is equipped with a continuous evaluation

map

ẽvT̂i(j) :MGW
T̂i(j)
−→ X li,j .

Then forming the fiber product

NT̃i(j) ×Xli,j MGW
T̂i(j)

,

we get the moduli space N̂Ti(j) of stable symplectic vortices of type Ti(j). In particular, |N̂Ti(j)|
inherits continuous asymptotic limit maps

∂̂±Ti(j) : |N̂Ti(j)| −→ Crit(5.2)

along the two ends. Note that the group of rotations and translations S1 × R on the cylinder
induces a free action of S1×R on the moduli space N̂Ti(j) which preserves the asymptotic limit
maps ∂̂±Ti(j). We quotient the moduli space N̂Ti(j) by the group R×S1, and denote the resulting
moduli space by

NTi(j) = N̂Ti(j)/(R× S1).

The induced asymptotic limit maps on the coarse moduli space is denoted by

∂±Ti(j) : |NTi(j)| −→ Crit.

By taking the consecutive fiber products with respect to maps ∂+
Ti(j)

and ∂−Ti(j+1) for j =

1, · · · ,mi, we get the coarse moduli spaces of chains of stable symplectic vortices of type Γi,
that is,

|NΓi | = |NTi(1)| ×Crit |NTi(2)| ×Crit · · · ×Crit |NTi(mi)|.

Then there are two asymptotic limit maps given by ∂−Ti(1) and ∂+
Ti(mi)

, simply denoted by ∂−i and
∂+
i ,

∂±i : |NΓi | −→ Crit.
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Definition 5.4. Given Γ = Γ0tΓ1t · · · tΓk a web of stable weighted trees in SΣ;B, the coarse
moduli space of stable symplectic vortices of type Γ, denoted by |NΓ|, is defined to be the fiber
product

|NΓ| = |NΓ0| ×(Crit)k

k∏
i=1

|NΓi |,

where
∏k

i=1 |NΓi | = |NΓ1| × |NΓ2| × · · · × |NΓk |, and the fiber product is defined via the maps
∂Γ0 : |NΓ0 | → (Crit)k and

k∏
i=1

∂−i :
k∏
i=1

|NΓi | → (Crit)k.

There exists a continuous map

∂Γ : |NΓ| −→ (Crit)k

given by
∏k

i=1 ∂
+
i .

For any k-tuple ((g1), · · · , (gk)) conjugacy classes in G such that each representative gi in
(gi) has a non-empty fixed point set in µ−1(0), then we define

|NΓ((g1), · · · , (gk))| = ∂−1
Γ

(
|X (g1)

0 | × · · · × |X (gk)
0 |

)
.

Now we can state the compactness theorem for the coarse L2-moduli space |NΣ(X,P,B)| of
symplectic vortices on Σ.

Theorem 5.5. Let Σ be a Riemann surface of genus g with k-cylindrical ends. The coarse
L2-moduli space |NΣ(X,P,B)| can be compactified to a stratified topological space

|NΣ(X,P,B)| =
⊔

Γ∈SΣ;B

|NΓ|

indexed by the set SΣ;B of webs of stable weighted trees, such that the top stratum is |NΣ(X,P,B)|.
Moreover, the coarse moduli space

|NΣ(X,P,B; {(gi)}i=1,··· ,k)|

of the moduli space NΣ(X,P,B; {(gi)}i=1,··· ,k) in Theorem 4.3 can be compactified to a strati-
fied topological space

|NΣ(X,P,B; {(gi)}i=1,··· ,k)| =
⊔

Γ∈SΣ;B

|NΓ((g1), · · · , (gk))|.

Proof. For simplicity, we assume that the Riemann surface Σ has only one outgoing cylindrical
end, that is, diffeomorphic to S1× [0,∞). The proof for the general case is essentially the same.
Under this assumption, any web of stable weighted trees of the type (Σ;B) has only one chain
of trees denoted by {T (1), T (2), · · · , T (m)}.

Given any sequence [Ai, ui] ∈ NΣ(X,P,B), we shall show that there exists a subsequence
with a limiting datum in NΓ for some Γ ∈ SΣ;B. The strategy to prove this claim is quite
standard now, for example see [17], [14] and [34].
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Note that the energy function on this sequence

E(Ai, ui) =

∫
Σ

1

2
(|dAiui|2 + |FAi |2 + |µ ◦ ui|2)νΣ

is constant given by 〈[ω−µ], B〉. For any non-constant pseudo-holomorphic map from a closed
Riemann surface, the energy is bounded from below by a positive number

min{〈[ω], β〉|β ∈ H2(X,Z), 〈[ω], β〉 > 0},

which is greater than the minimal energy of non-trivial symplectic vortices on Σ associated to
(P,X, ω)

~ = min{〈[ω − µ], β〉|β ∈ HG
2 (X,Z), 〈[ω − µ], β〉 > 0},

Step 1. (Convergence for the sequence with bounded derivative) Without loss of generality,
we suppose that {(Ai, ui)} is a sequence of symplectic vortices inNΣ(X,P,B) with a uniform
bound

‖dAiui‖L∞ < C

for a constant C. Then there exists a sequence of gauge transformations {gi} such that {gi ·
(Ai, ui)} has a C∞ convergent subsequence.

This claims follows from Theorem 3.2 in [13].
Step 2. (Bubbling phenomenon at interior points) Assume that the sequence ‖dAiui‖L∞ is
unbounded over a compact set in Σ, then the rescaling technics in the proof of Theorem 3.4 in
[13] can be applied here to get the standard pseudo-holomorphic sphere at the point in Σ where
a sphere is attached to Σ.

Hence, combining Steps 1-2, we know that there may exist a subset of finite points, say
{q1, · · · , ql0}, of Σ such that for any compact set Z ⊂ Σ′ = Σ − {q1, · · · , ql0}, there exists a
subsequence of (Ai, ui) and gauge transformation gi such that gi(Ai, ui) uniformly converge in
Z. As Z exhausts Σ′, we get a symplectic vortex (A∞, u∞) on Σ′. By the removable singularity
theorem, this symplectic vortex (A∞, u∞) can be defined on Σ.

Moreover, at each point qj , we get a bubble tree of holomorphic sphere attached to qi. As in
the Gromov-Witten theory, there is certain energy bounded from below lost when the bubbling
phenomenon happens at interior points. This gives rise to a principal tree Γ0 in a web of stable
weighted trees in SΣ;B.
Step 3. (Bubbling phenomenon at the infinite end) Assuming that for a sufficiently large T , the
sequence {(Ai, ui)} converges to (A∞, u∞) on Σ − (S1 × [T,∞)), where (A∞, u∞) is of the
type Γ0, a principal tree in Definition 5.1. Now we study the sequence over the cylindrical end.
We may further assume that the Yang-Mills-Higgs energy∫

S1×[T,∞)

1

2
(|dAiui|2 + |FAi |2 + |µ ◦ ui|2)

is greater than the minimum energy ~ defined as above. Otherwise, the limit of the sequence is
in NΓ0 .

We replace the sequence {(Ai, ui)|(S1×[T,∞)} by their translations to the left by {δi} such that
the Yang-Mills-Higgs energy of the translate for (Ai, ui) over [T − δi, 0] is ~/4. Then δi →∞
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as i → ∞. Applying the above standard convergence theorem to the translated sequence with
or without the bounded derivative condition on ‖dAiui‖L∞ , there exists a subsequence which
converges to a bubbled symplectic vertex (A′∞, u

′
∞) on any compact subset of S1 × R. This

gives rise to a stable symplectic vortex of type Γ(1), where Γ(1) is a tree with a branch vertex
as in Definition 5.1.
Step 5. (No energy loss in between) Now we show that there is no energy loss on the connect-
ing neck between (A′∞, u

′
∞) and (A∞, u∞). Equivalently, associated to the subsequence (still

denoted by {(Ai, ui)}, for each i, there exist

Ni < Ni +Ki < N ′i −Ki < N ′i

such that Ni, Ki and N ′i −Ni − 2Ki →∞ as i→∞, and under the temporal gauge,

(1) the sequence (Ai, ui) on S1 × [Ni, Ni + Ki] coneverges to (A∞, u∞) on any compact
set after translation;

(2) (Ai, ui) on S1 × [N ′i −Ki, Ni] coneverges to (A′∞, u
′
∞) on any compact set after trans-

lation.

We shall show that the Yang-Mills-Higgs energy of (Ai, ui) on S1 × [Ni + Ki, N
′
i −Ki] tends

to 0 as i→∞.
Let y∞ and y′−∞ be the limit of (A∞, u∞) as t→∞ and (A′∞, u

′
∞) as t→ −∞ respectively.

Let ȳ′−∞ be the pair obtained from y′−∞ by reversing the orientation of S1. Suppose that

y∞ = (a, α), ȳ′−∞ = (b, β).

Then (Ai(t), ui(t)), t ∈ [Ni, Ni + Ki] is arbitrary close to y∞ and (Ai(t
′), ui(t

′)), t′ ∈ [N ′i −
Ki, N

′
i ] is arbitrary close to ȳ′−∞ as i→∞.

We claim that L̃(y∞) = L̃(ȳ′−∞). Otherwise, the difference would be larger than ~. However
the Yang-Mills-Higgs energy of (Ai, ui) on [Ni, N

′
i ] is less than ~/2. This is impossible.

Now we explain the Yang-Mills-Higgs energy of (Ai, ui) at [Ni + t, N ′i − t] decays expo-
nentially with respect to t. We normalize the band by translation such that [Ni + Ki, N

′
i −Ki]

becomes [−d, d] where d =
N ′i−Ni

2
−Ki.

Denote the Yang-Mills-Higgs energy of yi = (Ai, ui) on S1 × [−t, t] by

Ei(t) =

∫
S1×[−t,t]

1

2
(|dAiui|2 + |FAi |2 + |µ ◦ ui|2)dvol

for 0 ≤ t ≤ d. Then
dEi(t)

dt
= ‖∇L̃yi(t)‖2 + ‖∇L̃yi(−t)‖2

Replace L̃ by L̃ − L̃(y∞), then by the crucial inequality (Proposition 3.12), we obtain the
following differential inequality

dEi(t)

dt
≥ δ(|L̃(yi(t))|+ |L̃(yi(−t))|) ≥ δEi(t).(5.3)

Here we use the fact that

Ei(t) = |L̃(yi(t))− L̃(yi(−t))|.
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Then the differential inequality (5.3) gives rise to

e−δtEi(t) ≤ e−δdEi(d),

for any t < d. Apply to our case, this implies

(5.4) E(Ai, ui)|[Ni+Ki,N ′i−Ki] ≤ e−δKiE(Ai, ui)|[Ni,N ′i ].

As i→∞, the Yang-Mills-Higgs energy goes to 0.
This ensures that

∂Γ0([A∞, u∞]) = ∂−Γ1
([A′∞, u

′
∞]) ∈ Crit.

If the sum of Yang-Mills-Higgs energies of (A∞, u∞) and (A′∞, u
′
∞) agrees with 〈[ω − µ], B〉,

the limit of the sequence is in NΓ for Γ = Γ0 t Γ1.
Step 6. (Energy loss at the +∞ end in the limit) If the sum of Yang-Mills-Higgs energies of
(A∞, u∞) and (A′∞, u

′
∞) is less than 〈[ω − µ], B〉, then

ν = 〈[ω − µ], B〉 − E(A∞, u∞)− E(A′∞, u
′
∞) ≥ ~.

In this case, we loss some energy at the +∞ end in the limit, we repeat Steps 3-4 to get a limit
in NΓ with a chain of trees of length m ≥ 2. This same process will stop after a finitely many
steps due to the fact that each tree in the chain carries at least ~ energy. Put all these limiting
data together, we get ⊔

Γ∈SΣ;B

|NΓ|,

with each NΓ admitting an orbifold Fredholm system. The topology on this disjoint union
can be defined in a similar way as for Gromov-Witten moduli spaces. The compactness and
Hausdorff properties of this topology can be established in the same way as in [21], [28] and
[35]. This completes the compactification of |NΣ(X,P,B)|.

The compactification of |NΣp(X,P,B; {(gi)}i=1,··· ,k)| can be obtained in the similar manner.
�

6. OUTLOOK

In this paper, we mainly discuss the L2-moduli space of symplectic vortices on a Riemann
surface with cylindrical end. The analysis can be generalised to the case of a family of Riemann
surfaces with cylindrical end. Then we get a moduli space of L2-symplectic vortices fibered
over Deligne-Mumford moduli spaces. In particular, for a Riemann surface

Σg,k = (Σ, (z1, · · · , zk), j)

of genus g and with k-marked points, when 2− 2g− k < 0, we can consider Σg,k as a Riemann
surface of genus g and with n-punctures. By the uniformization theorem, for each complex
structure on Σg,k, there is a unique complete hyperbolic metric on the corresponding punctured
surface. This defines a canonical horodisc structure at each puncture, see [7]. This horodisc
structure at each puncture is also called a hyperbolic cusp. Using the canonical horodisc struc-
ture at each point defined by the complete hyperbolic metric on the punctured Σg,k, we can
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identify the moduli spaceMg,k with the moduli space of hyperbolic metrics with a canonical
horodisc structure at each punctured disc. Each horodisc can be equipped with a canonical
cylindrical metric on the punctured disc. In particular, we get a smooth universal family of
Riemann surface with k cylindrical ends over the moduli spaceMg,k. Then the analysis in this
paper on the L2-moduli space of symplectic vortices can be carried over to get a continuous
family of Fredholm system defined by the symplectic vortex equations. The corresponding L2-
moduli spaces of symplectic vortices without and with prescribed asymptotic data will denoted
by

Ng,k(X,P,B) and Ng,k(X,P,B; {(gi)}i=1,··· ,k)

respectively. Then we have the similar compactness result for this L2-muduli space where the
index set SΣ;B is replaced by Sg,k;B where the principal vertex of each web is replaced a dual
graph as in the Gromov-Witten moduli space with weights in HG

2 (X,Z) at each vertex, each
vertex carries bubbling trees (with weights in H2(X,Z)) and each tail is assigned a chain of
trees.

In the subsequence paper, we shall also establish a weak orbifold Fredholm system and a
gluing principle for the compactified moduli space N g,k(X,P,B; {(gi)}i=1,··· ,k) so that the
virtual neighborhood technique developed in [8] can be applied to define a Gromov-Witten
type invariant from these moduli spaces. We will show that the compactified moduli space
N g,k(X,P,B; {gi}i=1,··· ,k) admits an oriented orbifold virtual system and the virtual integra-
tion ∫ vir

N g,k(X,P,B;{(gi)}i=1,··· ,k)

: H∗(IX0,R)k → R

is well-defined. Here IX0 is the inertial orbifold of the symplectic reduction X0 = µ−1(0)/G.
The Gromov-Witten type invariant is defined to be

〈α1, · · · , αk〉`HGWg,k,B =

∫ vir

N g,k(X,P,B;{(gi)}i=1,··· ,k)

∂∗∞(π∗1α1 ∧ · · · π∗k ∧ αk)

for any k-tuple of cohomology classes

(α1, · · · , αk) ∈ H∗(X (g1)
0 ,R)× · · · ×H∗(X (gk)

0 ,R).

Here πi : Critk → Crit = IX0 denotes the projection to the i-the component. We emphasize that
this is an invariants on H∗CR(X0) rather than on H∗G(X). It is different from usual HGW invari-
ants. We call the invariant L2-Hamiltonian GW invariants (abbreviated as `HGW). In particular,
when (g, k) = (0,≥ 3), the above invariant can be assembled to get a new (big) quantum prod-
uct ∗HR on H∗(IX0,R). Here HR stands for Hamiltonian reduction. In a separate paper ([10]),
we will introduce an augmented symplectic vortex equation to define an equivariant version of
this invariant on H∗G(X) when G is abelian. This enables us to define a quantum product ∗G
on H∗G(X). In a sequel work, we will investigate its relation to ∗HR, in particular, we combine
symplectic vortex equation with the augmented one to define the quantum Kirwan map Qκ and
show that Qκ is a ring morphism with respect to ∗G and ∗HR.
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