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ABSTRACT. Let (X, w) be a compact symplectic manifold with a Hamiltonian action of a com-
pact Lie group GG and i : X — g be its moment map. In this paper, we study the L?-moduli
spaces of symplectic vortices on Riemann surfaces with cylindrical ends (that is, a punctured
Riemann surface with a Riemannian metric of cylindrical type at each puncture). We studied a
circle-valued action functional whose gradient flow equation corresponds to the symplectic vor-
tex equations on a cylinder S x R. Assume that 0 is a regular value of the moment map i,
we show that the functional is of Bott-Morse type and its critical points of the functional form
twisted sectors of the symplectic reduction (the symplecitc orbifold [ ~1(0)/G]). We show
that any gradient flow line approaches its limit point exponentially fast. Fredholm theory and
compactness property are then established for the L?-moduli spaces of symplectic vortices on

Riemann surfaces with cylindrical ends.
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1. INTRODUCTION AND STATEMENTS OF MAIN THEOREMS

The symplectic vortex equations on a Riemann surface > associated a principal G-bundle P
and a 2n-dimensional Hamiltonian G-manifold (X, w) with a G-invariant w-compatible almost
complex structure .J, originally discovered by K. Cieliebak, A. R. Gaio, and D. A. Salamon
[12], and independently by I. Mundet i Riera [32], is a system of first order partial differential

equations

(1.1) { O(u) =0

*EFA +H(U) =0

for a connection A on P and a G-equivariant map v : P — X. See Section 2 for an explana-
tion of the notations involved. They are natural generalisations of the .J-holomorphic equation
in a symplectic manifold for G = {e}, and of the well-known Ginzburg-Landau vortices in a
mathematical model of superconductors for ¥ = C and X = C" as the standard Hamiltonian
U (1)-space. Ginzburg-Landau vortices have been studied both from mathematicians and physi-
cists’ viewpoints. They are two-dimensional solitons, as time-independent solutions with finite
energy to certain classical field equations in the Abelian Higgs model, see [26] for a complete
account of Ginzburg-Landau vortices.

Since the inception of these symplectic vortices, there have been steady developments in
the study of the moduli spaces of symplectic vortices and their associated invariants, the so-
called Hamitonian Gromov-Witten (GW) invariants. Many fascinating conjectures have been
proposed, for example see [12], [23] and [41].

As in Gromov-Witten theory, there are several main technical issues in the definition of in-
variants from symplectic vortices such as compactification, gluing analysis and regularization
for the moduli spaces of symplectic vortices. There have been many works focused on the
compactification issue ([13],[32],[34],[41],[37]). On one hand, when X is closed, X is sym-
plectically aspherical and satisfies some convexity condition, A. R. Gaio, I. Mundet i Riera and
D. A. Salamon in [13] proved compactness of the moduli space of symplectic vortices with
compact support and bounded energy. On the other hand, when G = U(1) and X is closed,
with strong monotone conditions, I. Mundet i Riera in [32] compactified the moduli space of
bounded energy symplectic vortices over a fixed closed Riemann surface. When G = U(1) and
X is a general compact symplectic manifold, I. Mundet i Riera and G. Tian in [34] compactified
the moduli space of symplectic vortices with bounded energy over smooth Riemann surfaces
degenerating to nodal Riemann surfaces. In particular, they discovered a new feature in the
bubbling off phenomena near nodal points in the sense that energy may be lost and there are
gradient flows of the moment map appearing in the compactification instead. This is not present
in the usual Gromov-Witten theory, and was elegantly and carefully presented in [34]. Also,
there are some studies on special models such as on the affine vortices ([41]). Based on their
compactification, Mundet i Riera and Tian have a long project on defining Hamiltonian GW in-

variants ([35]). On the other hand, Woodward, following Mundet i Riera’s approach([33]), gave
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an algebraic geometry approach to define gauged Gromov-Witten invariants ([36]), and estab-
lished its relation to Gromov-Witten invariants of the symplectic reduction X ;/ G via quantum
Kirwan morphisms ([36]).

In this paper, we study the moduli spaces of symplectic vortices on a Riemann surface with
a cylindrical end metric. In particular, for a genus g Riemann surface with n-marked points, we
will study the L2-moduli space of symplectic vortices on a Riemann surface X with a cylindrical
end metric near each marked points. Here the energy of (A, u), defined to be the Yang-Mills-
Higgs energy functional

1
(12 B(A ) = [ S(daul + [Eaf + nouPus,
¥

is finite. It turns out that the Hamiltonian GW type invariants are very sensitive to the volume
forms used near punctured points. Readers may refer to §6 for further discussions.

In Section 2, we briefly review the moduli spaces of symplectic vortices on a closed Rie-
mann surface as developed in [12], [13] and [34]. In Section 3, we investigate the asymptotic
behaviour of symplectic vortices on a half cylinder S* x R=° with finite energy. For this we
adapt the action functional in [19] and [20] to get a circle-valued functional whose L?-gradient
flow equation realizes the symplectic vortex equations (1.1) on S* x R=? in temporal gauge.

The critical point set of this functional modulo gauge transformations, denoted by Crit, can be

identified with
(I_I (u—1<0>)9> /G,

g€eG
as a topological space. Here that the action of G on | | e (/fl(O))g is given by h - (z,9) =
(h - x,hgh™'). When 0 is a regular value of the moment map i, the symplectic reduced space
is a symplectic orbifold

Xy = [n7(0)/G],
where we use the square bracket to denote the orbifold structure arising from the locally free

action of G on p~1(0). Then Crit is diffeomorphic to the inertia orbifold of Xj

Ix=| |y
(9)

where (g) runs over the conjugacy class in G with non-empty fixed points in ~!(0). Note
that for a non-trivial conjugacy class (g), Xo(g ) is often called a twisted sector of Xy, which is
diffeomorphic to the orbifold arising from the action of C'(¢g) on ~*(0)¢ (the g-fixed points in
1~ 1(0). Here C(g) is the centralizer of ¢ in G for a representative g in the conjugacy class (g).

Throughout this paper, we assume that O is a regular value of the moment map p. Then
we show that this circle-valued functional is actually of Bott-Morse type. We also establish
a crucial inequality (Proposition 3.12) near each critical point. This inequality enables us to
establish an exponential decay result for a symplectic vortex on S x R=? with finite energy,
Cf. Theorem 3.14.

In Section 4, we study the L2-moduli space N (X, P) of symplectic vortices on a Riemann

surface Y with k-cylindrical ends, associated to a principal G-bundle and a closed Hamiltonian
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G-manifold (X, w). Applying the asymptotic analysis in Section 3 to the cylindrical ends, we
get a continuous asymptotic limit map (Proposition 4.1 and Subsection 4.2)

Oso : N5s(X, P) — (Crit)" = (1X,)".

Note that the Yang-Mills-Higgs energy functional takes discrete values on Ny (X, P) depending
on homology classes in HS (X, Z).

Fix a homology class B € HS (X, 7Z), denote by N (X, P, B) the L*-moduli space of sym-
plectic vortices on a Riemann surface > with the topological type defined by B. Then in Section
4, we develop the Fredholm theory for N (X, P, B) and calculate the expected dimension of
the L2-moduli space of symplectic vortices with prescribed asymptotic behaviours. The main
result in this paper is summarized in the following theorem. Here M is said to admit an orbifold

Fredhom system with its virtual dimension d, we mean that, there exists a triple,
(B,E,9)

consisting of an orbifold Banach manifold B, and an orbifold Banach bundle £ over B with a
section S such that the zero set S~!(0) is M, and the vertical differentiation of S at any x € M

(DS), : T,B — &,

is a Fredholm operator of index d.

Theorem A (Theorem 4.3) Let Ns.(X, P, B;{(9:) }i=1... x) be the subset of Nx.(X, P, B) con-

sisting of symplectic vortices [(A, u)| such that
Oso(A,u) € (Xégl) X e X X()(gk)) C (Crit)*

Then Nx(X, P, B; {(g;) }i=1... ) admits an orbifold Fredhom system with its virtual dimension
given by

k
2(cH(TX), B) +2(n — dim G)(1 — gs) — 2 tor(X™, Xp)
i=1
where gs, is the genus of the Riemann surface Y., and LCR(X()(gi), Xo) is the degree shift as
introduced in [11].

In Section 5, we also establish the compactness property for these L2-moduli spaces of sym-
plectic vortices on X with prescribed asymptotic behaviours. We show that there are two types
of limiting vortices appearing in the compactification. The first type occurs as the bubbling phe-
nomenon of pseudo-holomorphic spheres at interior points just as in the Gromov-Witten theory.
To describe this type of limiting vortices, we introduce the usual weighted trees to classify the
resulting topological type. The second type is due to the sliding-off of the Yang-Mills-Higgs
energy along the cylindrical ends as happened in the instanton Floer theory. The combination
of these two types of convergence sequences is called the weak chain convergence in instanton
Floer theory in [14]. The choice of cylindrical metric on Y is crucial in our study the compact-

ness property in the sense that these are the only two types of limiting vortices appearing in
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the compactification of the L?-moduli spaces of symplectic vortices on a cylindrical Riemann
surface.

To describe the topological types appearing in the compactification, we introduce a notion of
web of stable weighted trees of the type (X; B) which consists of a principal tree 'y with k-tails
and a collections of ordered sequence of trees of finite length

R=Uﬂm

for each tail ¢ = 1,--- k. See Definition 5.1 for a precise definition. Let Sy.p be the set
of webs of stable weighted trees of the type (3; B), which is a partially ordered finite set.
For each T’ € Sy, we associate an L?-moduli space Nt of symplectic vortices of type I'. Let
Nr((g1),- -+, (gr)) be the corresponding L?-moduli space of symplectic vortices of type I" with
prescribed asymptotic data in

X o X9 (Cri)®

Then the second main theorem of this paper is to show that the coarse L?-moduli space of
symplectic vortices on Y can be compactified into a stratified topological space whose strata
are labelled by a web of stable weighted trees in Sy,5. In the following theorem, we use the

notation || to denote the coarse space of an orbifold topological space N.

Theorem B (Theorem 5.5) Let 3. be a Riemann surface of genus g with k-cylindrical ends. The
coarse L*-moduli space |Nx (X, P, B)| can be compactified to a stratified topological space
‘/T/-E<XJP7B)’: |_| |NF|

reSs:.s

such that the top stratum is |Nx(X, P, B)|. Moreover, the coarse moduli space
INs(X, P, B;i{(g) }iz1, )]

with a specified asymptotic datum can be compactified to a stratified topological space

Ns(X, P Bi (g 0)l = L] We((9),--+ (90))].
reSs.p
Remark 1.1. Note that the evaluation map has its image in /X,, motivated by the definition of
the usual Gromov-Witten invariants, our invariants will be defined on H{, (X)) in the sequel
[9]. This is different from the Hamiltonian Gromov-Witten invariants defined earlier, as the
invariants are defined on H(X) in [13] and [36] . Hence the invariants we will define in [9] is
essentially different from the usual HGW invariants. One may refer to §6 for further discussion.

We remark that the compactness properties of the moduli spaces of symplectic vortices have
been studied earlier in [34], [37], [41], [42] and [40]. Under the assumption that X is a Kéhler
Hamiltonian GG-manifold with semi-free action, the above compactness theorem has also been
obtained by Venugopalan in [40] using a different approach.

We finish this paper in section 6 about an outlook of the future work in the sequels.
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2. REVIEW OF SYMPLECTIC VORTICES

In this section, we review some of basic facts for the symplectic vortices following [13] [32]
and [34].

2.1. Symplectic vortex equations.
Let (X,w) be a 2n-dimensional symplectic manifold with a Hamiltonian action of a con-

nected compact Lie group G
GxX—X, (9,7) — gz,

and J is a G-invariant w-compatible almost complex structure. Let g be the Lie algebra of G
with a G-invariant inner product (-, -). Recall that an action of G on X is Hamiltonian if there

exists an equivariant map, called the moment map,

pw:X —g
satisfying the defining property

d/'LE - W(g7 ')» for an}’§ cg
Here the function i is given by pie(z) = (u(z), €), and € is the vector field on X defined by
the infinitesimal action of £ € g on X

€@ = 5| flew@n),  for feCH(x)

e~

Note that under this definition, [¢1,&)] = —[&, &), that is, the infinitesimal action of the Lie
bracket [£1, 5] in g is the negative of the Lie bracket of the vector fields &1 and &,. Note that the
moment map is unique up to a shift by an element in Z(g) (the centre Lie subalgebra of g). See
Chapter 2 in [25] for a detailed discussion on the geometry of moment maps.

Let P — X be a smooth (principal) G-bundle over a Riemann surface (¥, jx;) (not necessarily
compact). Let g5 be a Riemannian metric on Y., *y;, be the associated Hodge star operator and
vy, be the volume form of (X, g5;) . Denote by C2° (P, X)) be the space of smooth G-equivariant
maps u : P — X and by A(P) the space of smooth connections on P which is an affine space
modelled Q' (X, ad P). Here ad P = P X g is the bundle of Lie algebras associated to the
adjoint representation ad : G — G L(g).

Denote the fiber bundle of P associated to the action of G on X by

.Y =PXxXqgX — 2.

Then a smooth G-equivariant map v : P — X yields a section @ : > — Y. Note that any

connection A on P induces splittings
(2.1) TY = 7T @ T'"Y.

Here TV"Y is the vertical tangent bundle of Y. The covariant derivative dat € Q' (X, a*TV"Y)
is derived from du as follows:

projection

daii TS 2 7Y ety
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For simplicity, we denote d 4% by d 4u as well, so d su is a 1-form over ¥ with values in ©*TV"Y",
The symplectic vortex equations on X are the following first order partial differential equa-
tions for pairs (A, u) € A(P) x CF (P, X)

2.2) Os(u) =0
ks Fa+ p(u) =0

where F4 is the curvature of the connection A. The almost complex structures jy, and .J define
an almost complex structure J4 on 7Y under the decomposition (2.1). The first equation in
(2.2) implies that u is a .J4-holomorphic section, as 9 4(u) is the complex anti-linear part of

dAu,
= 1
(2.3) 8J,A(u)=§(dAu+JodAuojg) =0

in Q%1(3, w*TVY"). For the second equation in (2.2), we remark that ;o u is a section of ad P

and the Hodge star operator defines a map

*xy 1 Q*(2, ad P) — Q°(%, ad P).
Using the Riemannian volume vy, the second equation in (2.2) is equivalent to
(2.4) Fi+ p(u)vs = 0.

A solution (A, u) to (2.2) is called a symplectic vortex on Y associated to a principal G-
bundle P and a Hamiltonian G-space X. Two elements w = (P, A, u) and w’ = (P’, A’,u’) are

called equivalent if there is a bundle isomorphism
o: P - P

such that
P*(A,u) = (P*A,uo @) = (A, u).

When P is evident in the context, we will omit P from the notation and simply call (A, u) for a
symplectic vortex on >.. As the symplectic vortex equations (2.2) on X for a fixed P is invariant
under the action of gauge group G(P) = Aut(P), the moduli space of symplectic vortices on
>’ is the set of solutions to (2.2) modulo the gauge transformations. We remark that P is an
essential part of symplectic vortices, in particularly in the study of the compactifications of the
moduli spaces of vortices.

There is an equivariant map P — EG classifying the principal G-bundle P. Together with
the section u : X — P X X, they define to a continuous map

ug 2 — Xg Z:EGXGX,

which in turn determines a degree 2 equivariant homology class [u¢] in HS' (X, Z) when X is
closed. Denote by My (X, B) the space of symplectic vortices on ¥ associated to (P, X') with
a fixed equivariant homology class in B € HS (X, Z), that means,

Ms(X, B) = {(4,u)|[uc] = B, (A, u) satisfies the equations (2.2)}.
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The quotient of ME(X , B) under the gauge group G(P)-action
Ms(X, B) = Ms(X, B)/G(P)

is called the moduli space of symplectic vortices with a fixed homology class B.
A solution to (2.2) with a fixed B € H$(X,Z) is an absolute minimizer (hence, a critical
point) of the Yang-Mills-Higgs energy functional

1
(2.5) E(A u) = / Fdaul® + [Faf* + g o uf)vs.
Y

This is due to the fact (Proposition 3.1 in [12]) that for any (A, u) € A(P) x CZ (P, X),

26 B0 = [ (101 + 555 Pt ) os+ [ dlu(u), 4.

Here, u*w — d(u(u), A) is a horizontal and G-equivaraint 2-form on P and descends to a 2-
form ¥, denoted by the same notation. On the other hand, [w — p] € HZ(X) is the equivariant
cohomology class defined by the equivariant closed 2-form w — pu € Q%(X). The pairing
([w — pl, [ug]) is computed by

(1o = o ucl) = [

by

((daw)*w — (u(u), Fa)) = / (u'w — d{ju(u), A)).

)
Here d4u is a horizontal and GG-equivaraint one-form on P with values in v*7'X and descends

to a u*TV*"Y -valued one form on ¥, see Proposition 3.1 in [12].

Remark 2.1. We remark that (2.6) is true for any surface ¥. In particular, when (A, u) is a

symplectic vortex on 3.,

(2.7) E(Aju) = /2 (v'w—d{u(u), A)).

This is the crucial identity for us to define the action functional £ in Section 3.

Remark 2.2. (1) If G = U(1) the unit circle in C and X = (C", % >_;dz; A dz;) with the
moment map x : C* — R given by

i i
M(zhz%'” ’Zn) = _52 |Zj’2 + 5’
j:

then symplectic vortex equation is a generalisation of the well-studied vortex equations
(Cf. [26]). In particular, when ¥ is compact and X = C, Bradlow ([3]) showed that the

moduli space of vortices on X with vortex number
d= <61(P XU(1) C), [ED >0

is non-empty if and only if d < Vol(X) /4, and is Sym?(X) (the d-th symmetric prod-
uct of X).

(2) As observed in [12], the space A(P) x CZ (P, X) is an infinite dimensional Fréchet
manifold with a natural symplectic structure. The action of gauge group G(P) is Hamil-

tonian with a moment map

A(P) x CX(P,X) — CX(X, ad P)
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defined by (A, u) — xF4 + p(u). Hence, the moduli space of symplectic vortices can
be thought as a symplectic quotient if the space

S = {(A )94 (u) = 0}

is a symplectic submanifold of A(P) x CZ(P, X). In practice, the space S is not
a smooth submanifold in general. It still provides a good guiding principle for the
development of Hamiltonian Gromov-Witten theory. See [1] [4] for some applications

of this principle in similar contexts.

When ¥ = S' x R with the flat metric (dt)? + (df)? and the standard complex structure
j(0;) = Oy, with respect to a fixed trivialization of P, we can use the temporal gauge

A=d+&(0,t)do, foré:S' xR — g,

to write the symplectic vortex equations (2.2) as

ou g (@ + g(ﬁ,t)(u(x))> =0

2.8) gg 09
a + ,u(u) = 0.

This is the downward gradient flow equation for a particular function on C*°(S*, X x g) defined

in Section 3, where we will study this function in more details.

2.2. Moduli spaces of symplectic vortices on a closed Riemann surface.
In the study of the moduli space My (X, B), we need to develop certain Fredholm theory.
This requires some Sobolev completion of the space

A(P) x Cgp(P, X)

where CZ’5(P, X) = {u € CF (P, X)|[ug] = B}. The Sobolev embedding theorem in dimen-
sion 2 leads to the W1P-Sobolev space for p > 2 so that the connections and maps involved are
continuous. We denote the resulting Banach manifold by B and the W?2P-gauge transformation
group by G(P).

Let £ — BB be the G(P)-equivariant vector bundle whose fiber over (A, u) is given by

Enw = U (S, uw' T "Y) ® (5, ad P).
Then the symplectic vortex equations (2.2) define a G(P)-equivariant section
S(A,u) = (95,4(u), x5 Fa + p(w))
such that My, (X, B) is the zero set of this section. The vertical differential of this section
Dpw: Qrn(B,ad P) @ QU (B, 0 TYY) — Q0 (2, 0" TYY) @ Q9 (8, ad P)

is given by the linearization operator of the symplectic vortex equations (2.2) at (A, u). Note
that the linearization of the G(P)-action at (A, u) is

Law: Byen(E,ad P) — Qyrp (S, ad P) @ Qi (3, w*TVY)
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is given by L (1) = (—dan,7(u)). It was shown in [13] that the operator Dy, & L7, is a
Fredholm operator with real index given by

(n —dim G)x(2) + 2(u* (1 (T*"Y)) , [X]).
Hence the triple (B, £, S), modulo G(P), defines a Fredholm system
(B,E&,S)

in the sense of [6]. The zero set of S is the moduli space My (X, B). The central issue in
extracting invariants from My (X, B) is to establish virtual fundamental cycles as in [21] or a
virtual system as in [8] for a compactified version of the moduli space My (X, B). This will be
studied in [9].

3. SYMPLECTIC VORTICES ON A CYLINDER S x R

The symplectic vortex equations (2.8) on S' x R in temporal gauge suggests that it is a
gradient flow equation for an action functional on an infinite dimensional space. This functional
has been studied in [12], [19] and [42]. After we describe the critical point set and the Hessian of
this functional at critical points, we establish an inequality (Proposition 3.12) for this functional
which plays a crucial role in analysing the asymptotic behaviour of an L? symplectic vortex on

St x [0,00). This crucial inequality is applied to show that a gradient flow line  with a finite

001
E = _— dt < X
has a well-defined limit point, and converges exponentially fast to the limit point. Similar

energy condition

exponential decay estimates has also been obtained by in [34] and [42] using different methods.

3.1. Action functional for symplectic vortices. Let Ps: be a principal G-bundle over S*, and
Ag: be the space of smooth connections on Pg1 which is an affine space over Q'(S?, g). Since
CF(Psi, X) = C>(S', X), the set of connected components of C is identified with 7 (X).
For each ¢ € m;(X) we denote the component by C°.

Now choosing a trivialization Ps1 — S X G and the standard metric from S' = R/Z, we

have the identification
C=CF(Psi,X)x At = C®(S', X x g).

We sometimes use the same notation to denote a map u in CF(Psi, X) and in C*°(S!, X)
which should be clear in the context. We remark that the identification of Ag: with C>(S!, g)
is with respect to the trivial connection on Pks:.

With respect to the Fréchet topology, C is a smooth manifold whose tangent space at (xz,7) is
Tiz)C = QO(Sl, r*TX X g),
the space of smooth sections of the bundle z*T'X x g. Under the identification C = C*°(S!, X x

g), the full gauge group LG = C*(S!, G) acts on C by

o, _d
3.1 g-(z,n) = (9779 1d—g+Ad94n)-
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Here we denote by Ad : G — G L(g) the adjoint action of GG on its Lie algebra g.
Let (xo,10) and (z1,7;) be in a connected component of C and y be a path

V() = (2(t),n(t) - I = [0,1] = C
connecting (o, 7o) and (x1,7;). Then 7 determines a pair
(u’Y7A’Y) S Cg«O<P51 X [,X) X A(Psl X [)

Define the energy functional for this path ~y as
(32) BO) = [ ()~ (ula,), Fa ).
StxI

Note that if the path v satisfies the symplectic vortex equations (2.8) on [0, 1] x S*, then E(~)
agrees with its Yang-Mills-Higgs energy. Using the coordinate (6, ¢) for S x I, we can compute
(cf. (2.7))

BO) = [ G)ye+ [ (el m) = ntar)m)ao,

Lemma 3.1. Under the identification C&(Ps1 x I, X) X A(Ps1 x I) 2 C®(S' x I, X x g),
the energy function defined in (3.2) enjoys the following properties.

(1) For any g € LG, let g - vy be the path obtained from the action of g, then

(2) If v1 and ~, are homotopic paths relative to the boundary point (xy, 1) and (z1,m1),
then E(v,) = E(72).

Proof. (1) is obvious. We explain (2). The path v,£(—") defines a pair (u, A) on a bundle P
over S' x S!, then

E(m) = E(72) = (w -y, [ug]).

Since 1 ~ 79, [ug] = 0. Hence E(7y1) = E(72). O

We now define a (circle-valued) function on C as follows. For each component C¢ we fix a
based point (z.,7.). Given a point (x,n) € C¢ let v : [0, 1] — C° be a path connecting (., 7.)

and (x,n). As above, this path can be written as a pair
(z,7) € CF (Pg, X) X As,

where ¥ = [0,1] x S! and Ay is the space of connections on a principal G-bundle Py =
Ps1 x [0, 1]. Then we define

For a different extension (3, 7, 7’), by the same argument in the proof of Lemma 3.1, we know
that

Lo(@, 1) = Le(E,0) = ([w — 4, [uc)),
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for some [ug| € HS (X, 7Z) defined by (7f(—a'), nf(—77')). Recall that {[w — p], ) is the homo-
morphism

(lw—p),-): HS(X,Z) — R.
The image of ([w — p,-) consists of integer multiples of a fixed positive real number Np,_,;.
Hence, modulo ZNy,_,, Lx(Z, 1) descends to a well-defined function

(3.4) ,C({L’, 77) = »CE(ja 77) mod (ZN[w—u])‘

We denote by £ : C — R/ZN},_, the resulting circle-valued function.
Lemma 3.1 implies that the following action functional on C is well-defined.

Definition 3.2. Given a collection of based points {(z.,7.)|c € m(X)} for the connected
components C labelled by 71 (X), let C~um be the associated universal cover of C defined by the
homotopy paths to the based point. The action functional on £ : C,,,; — R is defined by (3.3)
for a homotopy path from (x,7) € C to the based point for the connected component. The
induced function

L:C— R/ZN[W_M]

is called the action functional on C.

Remark 3.3. There is a minimal covering space of C, denoted by CN such that the action func-

tional £ can be lifted to a R-valued function £ on C and the following diagram commutes

(3.5) Cons £ R
C £ R
C L R/ZN_,.

We write an element of C in the fiber over (z,7) € C as an equivalent class a path connecting
(x,n) to the based point of the connected component.

As the covering map C~um — C is a local diffeomorphism, the differential and the Hessian
operator of £ can be calculated by the Fréchet derivatives of L on Cy; or C. For this purpose, we
introduce an L?-inner product on the tangent bundle 7'C, that is, for (v1,&;), (v2, &2) € T4, C,

(36) (00 60) (2,00 = [ (lon, Juz) + (61,62 0
s
Proposition 3.4. With respect to the L*-inner product, the L*-gradient of L is given by
or
Hence, the critical point set is define by the equations
0
(3.8) Cpi=0,  p(z) =0,

00



L?-MODULI SPACES OF SYMPLECTIC VORTICES ON RIEMANN SURFACES WITH CYLINDRICAL END METRIAS

Proof. Let (DL) (. be the first Fréchet derivative of £, that is, for any (v,&) € T(,,)C,

(DL) @y (v, §) = 9

L(exp,(sv),1 + s€)

0s 1s=0
— [ wtw §9>d0+/ (i (0). 1) + {p(x) ) do
(3.9) = / ( (ge—i—nx, do
Ox
- /é( (O ). )+ (o x>,§>)d9
= (G + ), p(a)). (0,€)).
Hence, L*-gradient of £ at (x,n) is given by (3.7). The proposition is proved. U

Remark 3.5. The gradient equation VL (z,n) = 0 can be thought as the Euler-Lagrange equa-
tion for the action functional £. Moreover, the downward gradient flow equation of £ on C

310 g7 @(O) = = (955 + .00

is exactly the symplectic vortex equation (2.8) on S* x R in temporal gauge.
Before we proceed further, let us investigate the gauge invariance of the action functional L.

Lemma 3.6. The action functional L on C is invariant under the action of LoG, the connected
component of LG of the identity.

Proof. We show that £ is constant on any orbit of LG, equivalently, for any path v(t) in C
through v(0) = [z, n, [Z]] along the LoG-orbit, we need to prove

91 Exm) =0

> 0
We can assume that the tangent vector defined by ~(t) is (—&,, a—g
C>(S*, g). Then the calculation in (3.9) implies that

91 £
v, (e, 2 4 . €))
wgﬁ;w, )+ (o) G + €D ) a9

E
( 8$ o8
o

+[n,€]) for & € Lg =

G- ) 4 (ulo). o) + (i) )
a5 €0+ (o). 550 ) o
d{p(z), &) =

Here we applied the equality: w(7,, &) = (u(x), [, €]). This completes the proof. O
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Given (x,n) € Crit(£) and g € LG, by property (1) in Lemma 3.1, g - (z, ) is also a critical
point. That means, the critical point set Crit(£) is LG-invariant. Note that the based gauge
group

QG = {g € LG|g(1) = e, the identity element in G}
acts on C freely. In the next lemma, we provide a description of the critical point set modulo the
group QG on the set theoretical level. For this purpose, we consider C*°(S', g) as the space of
connections on the trivial bundle S' x G, where we treat £ € C*°(S!, g) as a g-valued 1-form
£df on S'. Then there is a holonomy map

Hol : C*(S',g) — G.
Note that Hol : C*(S',g) — G is the universal principal QG-bundle with Q2G-action on

C°>(S1, g) given by the gauge transformation.

Lemma 3.7. Modulo the based gauge group QG, the holonomy map Hol : Crit(L)/QG — G
defines a fibration over G whose fiber over g € G is (1=1(0))9, the g-fixed point set in u=1(0).

That is, we have

Crit(£)/QG = | |(n7(0))”.

geG
Proof. Given (x(0),n(0)) € Crit(L), then z(0) € C>(S*, n=1(0)) and
(0) = —Tw(0)-
Solving the above ordinary differential equation over the interval z : [0, 27r] — X with an initial

condition z(0) = p € p'(0), we get a unique solution. The condition of = being a loop in X

is that 7 satisfies the condition

x(2m) = Hol(n) - p = p.

Hence, we get

Crit(£) = {(p,n)lp € p~1(0),n € C=(S", ), Hol(n) - p = p}.

The action of (G on the right hand side is given by the gauge transformation on the second
component. Note that the holonomy map Hol : C*(S', g) — G is a principal QG-bundle.
Any QG-orbit at 7 is determined by Hol(n). So we get the first identification,

Crit(£)/QG = {(p,9)lp € 1~ '(0),g € G, }.

Now it is easy to see that the holonomy map on {(p, g)|p € p~'(0),g € G,} is just the projec-

tion to the second factor, whose fiber at g is (1 ~'(0))?. So the lemma is established. O

Remark 3.8. Set-theoretically, the critical point set Crit(£)/LG can be identified with
I (0)/G1 = (p1(0)/G) u || H0)y/Cly),
(e)#(9)eC(@)
the inertia groupoid arising from the action groupoid [z~1(0)/G] = p=1(0) x G. Here C(G) is
the set of conjugacy class in G with a fixed function C(G) — G sending (g) to g € (g), and
C(g) is the centralizer of g in G.
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(1) If G acts on p~1(0) freely, then Crit(£)/LG = p~1(0)/G is the symplectic quotient
(also called the reduced space) of (X, w).

(2) If G-action on 1~1(0) is only locally free, then Crit(£)/LG has an orbifold structure
which is the inertia orbifold of the symplectic orbifold Xy = [~ 1(0)/G].

(3) If 0 is not a regular value of u, then 1~*(0)/G admits a symplectic orbifold stratified
space, labelled by orbit types ([38]).

For the rest of the paper, we assume that 0 is a regular value of y so the critical point set
Crit(£)/LG can be endowed with a symplectic orbifold structure, the inertia orbifold of Xy =
[1171(0)/G]. We shall write the inertia orbifold of X as

X, =| |
(9)

where (g) runs over the conjugacy class in G with non-empty fixed points in x~*(0). Note
that for a non-trivial conjugacy class (g), Xo(g) is often called a twisted sector of &}, which is
diffeomorphic to the orbifold arising from the action of C(g) on p~*(0)¢ for a representative g
in the conjugacy class (g). Here C'(g) denotes the centralizer of g in G.

Now we introduce the standard Banach completion of C. This Banach set-up is also crucial
for the Fredholm analysis of the gradient flow lines of £, equivalently, the symplectic vortices
on St x R.

Consider the Banach manifold
Crp={(z,n) e WP(S1, X x g)}.
Here p > 2, so (x,n) is a continuous map. The tangent space of C; ,, at (x,7) is
Tom)Crp = WH(S', 2" TX x g),

consisting of W 1P-sections of the bundle z*T'X x g. The gauge group for this Banach manifold
is the W2P-loop group

Gop = W>P(S',G)

acting on C; ,, in the way as in (3.1). Denote by ng the based W?%P-loop group. Then the action
of gg,p on Cy , is free.

By the Sobolev embedding theorem, T, ,C1 , is contained in the L?-tangent space

Tk Cip = LA(S', 2" TX x g),

(zm

the space of L2-section of the bundle 2*7T'X x g on which the L?-inner product (3.6) is well-
defined and the L?-gradient V£ is a L*-tangent vector field on C; ,. Modulo 1¥?? gauge trans-
formation, the equations (3.8) is a first order elliptic equation. By the standard elliptic regular-
ity, we know that modulo gauge transformation, the critical point set Crit(L£) consists of smooth
loops in C; ,. By the same argument, a solution to the L? gradient flow equation (3.10) of £ on
Cy, for

((t),n(t)) : R — Cyp
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is gauge equivalent to a symplectic vortex on S x R with finite energy. For simplicity, we
assume that p = 2.

We can choose a representative for any critical point in Crit(L£) according to its holonomy.
If a critical point has a trivial holonomy, then using a based gauge transformation, it is gauge

equivalent to a critical point of the form

(x,0) € p~1(0) x g.

If a critical point has a non-trivial holonomy g = exp(—27n) for n € g, then it is gauge

equivalent to a critical point of the form

(exp(—6n)z,n)

for 6 € [0,2n] and = € (u=*(0))9.
Let (z,n) € Crit(L), the Hessian operator of L at (z,7)

Qe : WH(S1,2*TX x g) — L*(S",2"TX x g)
is defined by the second Fréchet derivative

<(U17 51)7 Q(m,n)(v% 52» = Dzﬁ(m,n)((vh €1>7 (U27 52))
for (v, &), (v2, &) € WHA(SY 2*TX X g).

Proposition 3.9. At the critical point of the form (x,n) = (exp(—0n)xo,n) for n € g and
zo € (1™1(0))? with g = exp(—2mn), the Hessian operator is given by

Qo (0:6) = (J(Logv + &), dua(v))

Here L_zv is the Lie derivative of v along the vector field —1. In particular, if v € u~*(0), the

Hessian operator

0 ~
Q(xo,0)<vaf) = (J(a_; + 510)7 d:uﬂfo (U)) :

Proof. For (v1,£&1), (v2,&) € T(z;C = Feee (ST, 2*TX X g), denote by 7 the parallel transport

of vy along a path exp, (svy).

DQ/J(z,n) ((v1,&1), (v2,&2))

d
((Dﬁ)esz(svz),n—&-S& (7717 fl))

% s=0
d J(exp,(sv2)) —_— ~
[l (e PO 0580 0 g 0) + e 60 )

At the critical point (zg,0) for zo € p~'(0), we have (vy,&;), (ve, &) € C*(SY, T, X X g),
and

s=0

D2£(x070) ((v1,&1), (v2,£2))

= [ 2 )+t e

= {06, (G2 + o) ()



L?-MODULI SPACES OF SYMPLECTIC VORTICES ON RIEMANN SURFACES WITH CYLINDRICAL END METRIQS

So the Hessian operator

v

Qi (0:6) = (G + €t 1))
When the critical point (x, 77) has non-vanishing (), we can continue the calculation as follows

DQﬁ(x,n)((Uh 1), (v2,&2))
= / (w(vi(e)v%vl)de+wx(vv2ﬁ+£2avl)d0+ <d,ux(1)2)a§1>>
Sl

= / (w(er)w + &+ Vil 0) + <dux(vz),§1>> do.
Sl

At the critical point (z,7) = (exp(—6n)x,n), the vector field #(6) along the loop x =
exp(—0n)xy agrees with —7, then

Vi(g)vg + V1= L_ﬁUQ
as vector fields along the loop exp(—6n)xo. Hence,

D*L 5 (01, €1), (v2,€2)) = {(v1, €0), (T (Logoz + &), dpizy (0)))-

The Hessian operator at this critical point as given by (v, £) +— <J (L_zv+ &), dui(v)> :
O

Denote by Cff , the submanifold of C; , consisting of elements with finite stabilisers under the
gauge group Gs 5. Then

B?; = Cfg/gzz
is a smooth Banach orbifold. Let (x,7) € Cf , and let
Gwn) = {9 € Ga2lg - (z,n) = (v,7)}

be the stabiliser group of (z,7), a finite group in G, 5. Then the tangent space at v = [z, 7] €

Bf , in orbifold sense is a G, ,)-quotient of the Banach space

0
{(0,) € Tl Cosldpe(J0) + o5 + [n,€] = 0},

The action function £ descends locally to a circle-valued function on the Banach orbifold Bfg.
The L?-gradient vector field V£ defines an orbifold L?-gradient vector field on Bfg. AsOisa

regular value of the moment map i, the critical point set
Crit = Crit(£) /G2 C BT,
is a smooth orbifold, diffeomorphic to the inertia orbifold of the symplectic reduction
X = [ (0)/G.

Each component (called a twisted sector) is a finite dimensional suborbifold of B#Q. The next

proposition implies that t the functional £ satisfies the Morse-Bott property.
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Proposition 3.10. Assume that 0 is a regular value of the moment map . Let (x,n) be a critical
point of Crit(L) which is gauge equivalent to (exp(—0n)zq,n) for o € u~1(0) and n € g such
that xy is a fixed point of g = exp(—27n) , then the kernel of Hessian operator Hess(L) (., of
L at (z,n)

Quuy : WH(Sh, 2*TX x g) — L*(S", 2*TX x g),

modulo the image of infinitesimal action of W*?-gauge group action at (x,n), is isomorphic to

Tio (17(0))? /Ty (Cg) - o),

where C(g) - xq is the orbit space of the centralizer of g in G.

Proof. The Hessian operator Q, ,y of £ at (z,n)
Qe : WH(S!, 2" TX x g) — L*(S",2°TX x g),

is given by (v,§) — <J(L_ﬁv + &), d,ux(v)>. By a direct calculation, we have for any ¢ €
L2(S'. g),

(3.11) (LaC)(2(0)) = C(O)aig) + [0, C(O)]ago)-
where ((0) = Z—g and [m]x(e) is the infinitesimal action of [n, ((#)] € g at z(f). So
Q(z,n)(gm C + [777 C(@)D =0,

which means, the tangent space of W?2-gauge orbit at (z, 1),

Tiam)(Gap - (2,1)) = {(Cor € + [0, CODIC € L(S, 0)}

is contained the kernel of Q(xm). This implies that the Hessian operator Q(m) is well-defined
on the quotient space of W2(S! 2*T'X x g) by the the tangent space of W?2-gauge orbit at
x . Let (v S ’ X X € 1n the kernel o 2. en we have the followin

(x,m). Let (v,&) € WH2(S1 2*T X x g) be in the k lof Q.- Th h he following

two equations for (v, &)

(1) —Liv+£=0.

(2) d,ux(g)(v) = 0.

We can take the following gauge fixing condition
dpta(s) © J(0) = 0,

which is equivalent to the condition that v(0) € T}, X is orthogonal to the infinitesimal action
of G at z(#) with respect to the Riemannian metric on X defined by w and .J. Note that second
equation implies that v(0) € Ty (11 (0)). So v(#) is orthogonal to the infinitesimal action of
G at z(0). With this gauge fixing condition, the first equation becomes

—_—

L;]U — 0, g(e)x(e) - 0,

as the metric on X is invariant under the action of G. The G-action on p~'(0) is locally free

means { = 0. Then the equation L;v = 0 says that v is invariant under the flow ®; generated
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by —7). Therefore v is determined by the value of v(0) € Ty, (1 (0)). As the flow ®} is given
by the action of exp(—tn) on X, we get

v(0) = v(27) = (P1_).v(0).

This implies that v(0) € T, (1 ~1(0))¢. Notice that v(0) € T}, *(0) is orthogonal to the infin-
itesimal action of G at z(0). Therefore v(0) € Ty, (1 (0))¢ is orthogonal to the infinitesimal
action of C'(g) at 2(0) as (u~'(0))¢ is only invariant under the action of C(g). This completes
the proof of the proposition. U

Remark 3.11. Proposition 3.10 can be also proved using the gauge fixing condition for (v, ) €
Wh2(St 2*TX x g) given by

23
(3.12) Apia(J0) + 55+ [0,€] =0,
that is, (v, £) is L*-orthogonal to the tangent space of the gauge orbit at the critical point (z, 7).
Denote by 7, the L*-completion of the subspace of the space of smooth section of z*T'X x g
satisfying the gauge fixing condition (3.12). Then the Hessian operator

Qe * Twmy — Twm)

is a closed, essentially self-adjoint, Fredholm operator with discrete real spectrum of finite
multiplicity. The domain of Q) is the W'2-completion of 7, ), which is the subspace
of Wh2(S1 2*TX x g) with the gauge fixing condition (3.12). This is due to the fact that
Q(e,y) on Ty is equivalent to a first order elliptic differential operator (called the extended
Hessian operator). This operator on L?(S', g x #*TX X g) is obtained by combining the

infinitesimal action of gauge transformations and the gauging fixing into the Hessian opeator,

sending (0. ) 0 (dta(0) + o+ [1,€], (o, e 4 [1,C) + Qo (0, €)).

In the next proposition, we establish the inequality for £ which is important in analyzing

gradient flow lines near any critical point.

Proposition 3.12. For any x in a critical manifold Cril(ﬁ) C C~172, there exist a constant 6 and
a small W2 e-ball neighborhood B, () of x in Cy 5 such that

IVL()IIZ: = 81L(y) — L(z)]
forany y € B.(x). Here ¢ and § are independent of x (as u=*(0) is compact).
We remark that though the above inequality is written in a small e-ball of a critical point of
L on (,;172, in fact the inequality still holds in a sufficiently small e-ball of a critical point of £

on Cy ». This is due to the local diffeomorphism between (,7172 and C, . That is, the difference

function L£(y) — L£(x) makes sense for y € B.(x) when € is small.

Proof. By the gauge invariance, we only need to verify the inequality at critical points of the

form

(exp(—0n)xo,7)
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for ryp € p'(0) and n € g such that exp(27n) € G, (a finite group). Assume that the
holonomy Hol(n) = exp(2mn) is trivial, then (exp(—6n)zo,n) is gauge equivalent to (xg,0).
A small neighborhood of (¢, 0) in C~1,2 can be identified with a small ball in

T(xm())CLQ = Wl’z(Sl,Ton X g)

centred at the origin with radius ¢ for a sufficiently small e. Let (u,&) € WH(S1, T, X x g)
satisfying ||(u, €)||w12 < €. The corresponding point in C; 5 is

(@(0),£(0)) = (exp,, (u(f)),£(0)).

With respect to the canonical metric defined by w(-, J(-)), we have the following orthogonal
decomposition

T X = Ty (0) & 14

where v,, = {J(()|¢ € g}. This decomposition provides a local coordinate of X at z,
denoted by (uo, u,,). Under this coordinate, vector fields will be parallel transported to the origin
along the geodesic rays, and then be treated as vectors in 7},, X . In particular, éu (0) € Tz X will
be considered as a tangent vector in T, X .

. odu : . :
Write — = (1, 0, ). With a choice of gauge transformation, we can assume that

db

for any § € S! by gauging away the component of u,(6) along the infinitesimal action of the

gauge group. Now we calculate

IVEGOI: - [ (H (%a)|

as follows. Note that
( + éu)

(it 4 Eap) + Ty + (Ea — Exo)||?dB

+ |u(a )H2> df

2

> ( o + &P + Gl = 165~ &) a
= [ (N0l + SIEIE + il ~ s~ &) a
g \ 20 T gl 2! S
1. 1 ~
> glills + (= <C) [ a9

Sl

for some constant C' > 0, and

||€960||2 = w(gxw ‘]Iogxo) > CO|€’2

for some constant Cy > 0 due to the locally free action of G on 1 ~1(0). Hence, for a sufficiently

small €, we obtain

. 1
IVL (@ &)z = IIUIILz + @7z + (5 = €C)Coll¢] 7
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On the other hand, let (@(6,t),£) = (exp,, (tu(f)),t€) for t € [0, 1] be a path connecting (@, £)
and (o, 0), then

L(u, &) — L(o,0) = _/51 [Ol]a*er/Slw(a),@de.

A direct calculation gives

. 1 . .

| W] = |§/ Wy (4, )| d0 < Cr([luollZ + [[72)
51x[0,1] 51

for some constants C;. Assume that f g1 Uodl = 0 € T, p~1(0), the Wirtinger’s inequality

implies that there exists a constant Cy depending only w,,, and .J(z) such that

luollZ2 < Calldiol |72

Therefore, we have

£, €) = L(0,0)] < ClluolZe + 5 (Ilu( Mzz + €11 1)

for some constant C's > 0. For a properly chosen ¢ > 0 and sufficiently small ¢, we have
IVL(@,€)lI72 = 01L(a, &) — L(xo,0)].
If f51 uodf # 0, we can replace z( and xj, = z¢ + fsl uodf. Then we have
L(z9,0) = L(z},0).
The above calculation applied to (z{, 0) implies
|vi.o > a1ame ~ £ 0

So the inequality has been proved for any critical point which is gauge equivalent to (zg,0).
The above argument can be adapted for a critical point gauge equivalent to (exp(—6n)zq,n) by
lifting technique: since Hol(n) is of finite order, say k, then we consider a k covering S* — S*,
then the pull-back of connection has a trivial holonomy. Then we can use the above argument

to get the required estimate. 0

At the end of this subsection, we discuss the energy of the gradient flow line. Let v = (Z,7) :
[a,b] — Cy, be a path connecting (x1, 1) and (z2,72). Let (Z1,7;) be a path ; connecting the
based point to (z1,7); then we set (Z, 72) be the path v9 = 1. As in Remark 3.3, we treat

(1, 71) and (&5, 7j) as elements in C.

Lemma 3.13. Suppose that v = ~(t) : [a,b] — Ci, is a gradient flowline of L. Then the
following quantities are equal:
(1) L(@1,m) = L(i2,72)

@ [ Fos [ (n)m) — Gt m)ad

(3) the Yang-Mills-Higgs energy E(Z,7);

L2
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Proof. Recall that a path v = (x, n) is a gradient flow line of V L if it satisfies the equations

% (x(t),n(t) = — (J(% +11z), u(as)) :

Since (Z,77) solves the symplectic vortex equation,

B == [ Furdp@

This implies that (1)=(2)=(3). Now we show that (1)=(4).

b b b
Blani) ~ Barin) = [ L@@, = [ ve Ta = [

2

I (t)

dt.
ot

dt

L2

3.2. Asymptotic behaviour of finite energy symplectic vortices on a cylinder.
In this subsection, we establish the existence of a limit point for any gradient flow line
v :[0,00) = Cip

with finite energy £(). Then by Lemma 3.13, we have

(3.13) /OOO Ha”—(t)

2 00
22 = [T IVLO@) Bt = BG) < oo,
L? 0

Theorem 3.14. Let v : [0,00) — Cy,, be a gradient flow line of L with finite energy. Then
there exists a unique critical point (X, ) € Crit(L) and constants 6,C > 0 such that the
L?-distance

disty2 (W(T)u (xooa noo)) < 067671
for any sufficient large T. Here the constant ) is the half of the constant § in Proposition 3.12.

Proof. Step 1. For any sequence {(;)|lim;_,o t; = oo}, we show that there exists a conver-
gent subsequence, still denoted by {7(¢;)}, such that up to gauge transformations in G, ,, the
sequence {7(¢;)} converges to a critical point y, of £ in the C'*°-topology.

Let (u;, A;) = ~(t) be the symplectic vortex on S' x [—1,1] in temporal gauge, obtained
from~y : [t; — 1,t; + 1] — C;,. Then we have

lim E(u;, A;) =0,

1—00
where the energy F'(u;, A;) agrees with the Yang-Mills-Higgs energy

1
E(u;, A;) = / 3 (|da,uil” + | Fa,
Stx[-1,1]

Applying the standard regularity result and Uhlenbeck compactness, see Theorem 3.2 in [13],

there exists a sequence of TW%?-gauge transformations g; of Ps: x [—1, 1] such that the sequence
i - (ui, Ay)

has a C°-convergent subsequence. Let (uo, As) be the limit, then (us, As) satisfies the

? + |p(u;)[?) dodt.

following equations

(3.14) Fa.=0, daiue=0,  plus)=0.

o0
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We can find a smooth gauge transformation h of Pg:1 x [—1,1] such that & - (us, Aso) is in

temporal gauge. So we can write
b (tooy Aoo) = (T00(0,1), N0 (0, 1)d)

as a path in C, ,,. Then the equations (3.14) become

Ono(0,)  Oroc(0,1)
ot =0, ot =0
Ol | 5 () = 0, jlaa) = 0
89 /r/OOxOO_ 7/"[/',1;00_ .

These equations imply that (o, s0) = I+ (Uso, Ax) € Crit(L£) and

lim (hgl) . (Ui, Az) - (Ioovnoo)

1—00

in the C'*°-topology. Hence, up to gauge transformations in G, ,, the subsequence {~(¢;)} con-
verges to a critical point (., 7)) of £ in the C'*°-topology. We denote it by y..

Step 2. Set~’ = g;v. We claim that there exists ¢; such that () € B.(ys) fort > t;. Here
e and the 0 below ara the same constants given in Proposition 3.12.

If not, for each i there exists s; > t; such that the path v'(¢),¢; < t < s; locates in B.(ys)
and 7'(s;) € OB.(yso ). Applying Proposition 3.12, we have

A(LG1) ~ £(y0) " IV (LGB v

J
dt B _2(£(7(t)) B £(yoo))1/2 < - 5 IV (L(y(t) = L(Yso)) | 12

Therefore,

dista(r'0),60) < [ ITE e = [ IGO0 - L lisct

t;

< -2 [0 0 - L)

< 267 (LY (1) — L)) = (L(V (s1) — L{yoo))?)-

As i — oo, this goes to 0. On the other hand, by Step 1, there exists h; such that h;y(s;)
uniform converges to some critical point y. . Since 7'(s;) € B.(ys) and h;y'(s;) uniformly
converges to y._, h; is uniformly bounded at least in C'1 for some o > 0. This means that
there exists a subsequence of h; that converges. We may relabel the sequence and assume that

h; converges to h. We conclude that v(s;) converges to h~'y/_. Therefore,
distz2 (7' (t:), 7' (s:)) — distz2 (Yoo, B 9,) = 0.

This implies that y,, = h~'y/_. However, 7'(s;) is on the boundary of the ball B, (ys,), this is
impossible. The contradiction implies that () € B.(yso) for t > ;.

Step 3: From Step 2, suppose that v*(¢) locates in B.(y.,) when ¢ sufficiently large. Reset
Yoo to be g; 7. Then we may assume that () locates in B, (y.) when ¢ large. Now we show
that

dist 2 (Y(t), yeo) < Ce™

for ¢ large.
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We can assume that for ¢ > Tp, 7(f) € Bc(yx) so that the crucial inequality in Proposition

1/2

d(L(y(t) — L) ™ _ R T
dt 2(£(’y(t)) —£<yoo))1/2 = ( (v(t)) (yoo))

Hence, for any ¢t > T}, we have

(L(¥(1) = Lys)) > < e 5D (L(1(Th)) — Llys)) .

That is, for t > Tj

3.12 can be applied to get
IV(L(y()]]72 9
2

distz2 ((1), yoo) < 207267500 (L(4(Th)) — L{yso))*.

With C = 2§ 1/2¢570 (L(v(Tp)) — L(yoo))l/Q, we get the exponential decay estimate for

distz2 (Y(t), Yoo)-
U

Remark 3.15. By a similar calculation as in the above proof, one can establish the following
exponential decay for the Yang-Mills-Higgs energy of a finite energy gradient flow line v :
[0, 00) — Cy,, that is, there exist constants 0, C' > 0 such that

| Ivea@)da < ce
T

for a sufficiently large 7. Moreover, let y,, be the limit of ~(¢) at infinity, by a gauge trans-
formation, we may assume that y,, € Crit, then for any £ € N, there exist C,6 > 0 such
that

(3.15) [VFy(t)] < Ce™

for ¢ sufficiently large. To get the above point-wise estimate, we apply the elliptic regularity to

the symplectic vortex 7|(r_2 749« s for a sufficiently large 7" to get a C' k_estimate

g - Yllex < C.

for some constant C' > 0 and any k£ € N. Write v = (o, u), then the curvature F,, and p(u)
are gauge invariant and hence bounded. Then (3.15) follows from applying the standard elliptic
estimates to the gradient flow equations. We also remark that the decay rate § can be chosen
such that 9 is smaller than the minimum absolute value of non-zero eigenvalues of the Hessian

operator of L at Y.

4. L?-MODULI SPACE OF SYMPLECTIC VORTICES ON A CYLINDRICAL RIEMANN SURFACE

In this section, we consider the symplectic vortices of finite energy on a Riemann surface X
with cylindrical end. For simplicity, X is assumed to have just one end, isometrically diffeomor-
phic to a half cylinder S x [0, 00). Let K be a compact set of 3 such that ¥\ K is isometrically
diffeomorphic to S' x (1, 00) with the flat metric d6? + dt?. Let P be a principal G-bundle
over X with a fixed trivialization over the cylindrical end S* x [0, 00). Let N (X, P) be the
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moduli space of symplectic vortices with finite energy associated to P and a closed Hamilton-
ian G-manifold (X, w) with an w-compatible G-invariant almost complex structure .J. It is the
space of gauge equivalence classes of

(A, u) € A(P) x C2(P, X)

satisfying the symplectic vortex equations (2.2) and with the property that the Yang-Mills-Higgs
energy (Cf. (2.5)) is finite. For any p > 2, by the elliptic regularity, N (X, P) is the moduli
space of the symplectic vortex equations (2.2) for

(A,u) € By = Ayi2(P) x Welo (P, X),

oc loc

the space of T,-P-connections on P and W,-"-equivariant maps from P to X such that

loc
B(Au) = | 2(dauf® + |Fal? + o uP)us < o0
’ = 22 A A M b))

modulo the the action of the group gWﬁ;: (P) of all I/Vlicp gauge transformations on P.

Given a finite energy symplectic vertex (u, A), restricted to the cylindrical end S* x [0, 00),
(u, A) is gauge equivalent to a gradient flow line of £ with finite energy. Then by Theorem
3.14, we know that there is a unique asymptotic limit (A, u,) € Crit(£). Modulo a gauge
transformation in W2P(S1, G), (Aw, uso) is gauge equivalent to

(n,exp(—0n) - x4) € Crit(L)

where 1 € g is treated as a connection d + 1df on the principal G-bundle over S! with respect
to a fixed trivialization, 7, € (/fl(O))g for g = exp(27mn) € G of finite order m. Therefore,
there is an asymptotic limit map

(4.1) Ose : Nx(X, P) —> Crit,

where Crit is the critical point set modulo the gauge transformations as Section 3. We remark
that Crit is diffeomorphic to the inertia orbifold /&) associated to the reduced symplectic orb-
ifold Xy = [171(0)/G], as we assume that 0 is a regular value of the moment map .

We first prove the continuity for the asymptotic limit map (4.1).

Proposition 4.1. Let 3 be a Riemann surface Y. with one cylindrical end, P be a principal
G-bundle over 3 and N (X, P) be the moduli space of symplectic vortices with finite energy
associated to P and a closed Hamiltonian manifold (X,w). Then the asymptotic limit of sym-

plectic vortices in N (X, P) define a continuous map
0o : Nx(X, P) — Crit = [ X,.

Proof. Let [(u, A)] € Nx(X, P) and 0. ([(u, A)]) = [zo] € (11(0))?/C(g) for an element
g = exp(2mng) of finite order. Fix an open neighborhood V' of [zo] in (171(0))¢/C/(g). We
need to find an open neighborhood U C Ny (X, P) of [(u, A)] such that

Oso(U) C V.
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Let V be a G, ,(S")-invariant open neighborhood of (exp(—61)zo,70) in C;, such that V N
Crit(£) is mapped to a subset of ' under the identification

Crit(ﬁ)/QQ,p(Sl) = [XQ

Denote by U the solutions (u,A) € gwl},f(z) to the symplectic vortex equations with finite
energy such that for sufficiently large T, the restriction of (u, A) to S* x [T, o) is gauge
equivalent to an element in V. Then U = U/ Gw2r(x) is an open neighborhood of [(u, A)]
in Vs (X, P) and 0,,(U) C V. O

For any [(u, A)] € Nx(X, P), there is a canonical degree 2 equivariant homology class
in H' (X, Z) described as follows. Assume that 0., ([(u, A)]) € Xo(g ), the twisted sector of X,
defined by the conjugacy class of g in G. So 0 ([(u, A)]) can be represented by (exp(—6n) - o)
for zo € (11(0))”, and g = exp(27n) is of order m. We can identify the cylinder S* x [0, c0)
with a unit disc D* = D — {0} in C using the biholomorphic coordinate change (if,t) —
e+ Then the cylindrical surface > become a punctured Riemann surface. Denote this
punctured Riemann surface by >.*. Let P* be the associated principal G-bundle over >*. Note
that P* has a fixed trivialization near the puncture. As the connection A,, has a non-trivial
holonomy g of order m, we can construct an orbifold principal G-bundle P,,;; over the orbifold
Riemann surface ., such that A can be extended to a connection on P,.;. The orbifold
Riemann surface Y,,4; is obtained by gluing ¥* and the orbifold disc D/Z,,, so 3, is the
closure of >* with one orbifold singular point of order m at the puncture. Note that over the
punctured disc D*, there is a Z,,-equivariant map

p:D*xGE—D"xG

sending (z, h) to (2™, exp(—2mn)h). Over D*, the map ¢ identifies the Z,,-equivariant principal
G-bundle on the left hand side D x G — D) where Z,,-action on D x G is given by

eQﬂ'i/m(Z’ h) = (eQm/mza exp(27n)h)

with the trivial GG-bundle on the right hand side. The orbifold principal G-bundle P,,; is ob-
tained by gluing P* over ¥X* with the Z,,-equivariant principal G-bundle by the gluing map
©. The trivial connection with the constant section z, define a symplectic vortex on the Z,,-
equivariant G-bundle over ). We can extend the symplectic vortex (A,u) on (3, P, X) to a
pair ([l, @) on (Xorpi, Porpi, X ) where A is a connection on P,,;; and @ : P,4; — X is a smooth
G-equivariant map. Hence, with the classifying map P,.,;, — EG, u gives rise to a degree
2 equivariant homology class in Hy(Xg, Z). For simplicity, we still denote this class by [ug]
which is called the homology class of (A, u). Then by a direct calculation, the energy of (A, u)
is
E(A,u) = (lw = pl, [ual)-

Fix an equivariant homology class B € Hy(Xq,Z) such that (w — u|,B) > 0. Let
Ns(X, P, B) be the moduli space of symplectic vortices on ¥ associated to (P, X') with the
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homology class B. Then N (X, P, B) C Nx(X, P) and there is a continuous asymptotic limit

map

Ose : Nsy(X, P, B) —> Crit 2 [ X,

4.1. Fredholm theory for L?-moduli space of symplectic vortices. To understand the mod-
uli space Nx(X, P, B), we need to introduce the weighted Sobolev space for the fiber of the
asymptotic limit map

Ose : Nsy(X, P, B) —> Crit 2 [ X,

Any symplectic vortex [(u, A)] € Ng(X, P, B) decays exponentially to its asymptotic limit at a
rate 6 > 0 for some 0 as Theorem 3.14. Note that Crit is compact, so we can choose a constant §
such that restricted to the cylindrical end [S* X [0, 00), [(u, A)] € 92! (ys) decays exponentially
to its limit at the rate ¢ for any y., € Crit. We fix such a ¢ throughout this section.

Fix a smooth function (5 : 3 — [0, co) such that the follow conditions hold:

(1) On S* x [1,00), B(6,t) = t is the coordinate function on the cylinder.
(2) B=00onX\ {S* x [0,00)}.
(3) B|s1x[0,1] is an increasing function.
The weighted W*P-norm on a compact support section ¢ of an Euclidean vector bundle V over

> with a covariant derivative V is defined by

1/p
ez = ([ (P + 9@+ + [P(©P)dos )

We denote Wf (X, E) the completion of all compact support sections of £ with respect to
the weighted WW*?-norm, which is also called the Banach space of W(Sk’p -sections of £/. When
k = 0, we simply denote by LL(3, E') the WP-sections of F.

Let Xo(g) be a twisted sector corresponding to the locally free action of C'(g) on (u=*(0))?
for g = exp(27n) € G with finite order. Let N5 (X, P, B; (g)) be the subset of N (X, P, B)
consisting of symplectic vortices [(A, u)] such that

Os ([A, u]) € X C Crit.

Note that the critical manifold corresponding to Xég) is diffeomorphic to the orbifold defined
by the action of constant C'(g)-valued gauge transformations on the space

{(d +ndf), exp(—On)z)|z € (1=(0))7} = (™'(0))".

Define Bs(P, B, (¢)) be the subspace of ngﬂ’f consisting of elements (A, u) with the follow-
ing property:
(1) on S* x [1,00), A —d — ndf € W3*(S* x [1,00),A' ® ad P),
(2) there exist z € (1~'(0)) and a sufficiently large T" such that u|s1x(1.00) = €xp,, (V).
Here u,(6,t) = exp(—0n)z and v € WP (S* x [T, 00), u:TX).
(3) the canonical class of v in H$'(X,7Z) is B.
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Then Bs(P, B, (g)) is a Banach manifold whose tangent space at (A4, u) is given by
TiawBs(P, B, (9)) = Wy "(S,A' ® ad P & w*'T*"Y) @ (1~ (0))?

with Y = P X X. There is an obvious smooth submersion (a locally trivial fibration)

4.2) Bs(P, B, (9) — (1 '(0))°

defined by the asymptotic limit of (A, u) over the end. The fiber over x € (p~1(0))? consists
of those (A, u) satisfying the above three conditions for a fixed = in (2). This is the product of
an affine Banach manifold modelled on VV(;1 P(3, A’ ® ad P) and a Banach manifold of TW!*-
sections of P over Y with prescribed asymptotics over S' x [T, 00). Then the local triviality
of the submersion (4.2) can be obtained by the parallel transport along geodesics in (1 ~1(0))?
with respect to the Levi-Civita connection on 7' X.

Let G; be the gauge group of Wif gauge transformations that converge in Wf’p to constant
C(g)-valued gauge transformations over the cylindrical end S x [1,00). There is a subgroup
Gs of 55 consisting of those gauge transformations that converge in VV(S2 P to the trivial gauge
transformation. Then the Lie algebra of Gs is Wg’p (33, ad P). There is an exact sequence of
group homomorphisms

1—Gs — Gs — C(g) = 1
where C'(g) is thought as the constant gauge transformations.

The symplectic vortex equation (2.2) on X defines a smooth @;—invariant section S of the
Gs-equivariant Banach bundle &;(P, B, (g)) over Bs(P, B, (g)) whose fiber at (A, u) is given
by

(X, A" @ u T Y @ ad P).
Then the moduli space N (X, P, B; (¢)) can be identified with the zero set S~!(0) modulo the
gauge group Gs.

Note that Gs acts freely on gg(P, B, (g)) and does not change the asymptotic behaviour of
(A, u) over the end. The fibration (4.2) defines a smooth C'(g)-equivariant fibration

(4.3) Bs(P, B, (9))/Gs — (1" (0))".

The G;-invariant section S defines a section of Banach bundle £s(P, B, (g))/Gs over the Banach
manifold Bs(P, B, (g))/Gs. As in the case of moduli space of symplectic vortices over a closed
Riemann surface, the deformation complex associated to a symplectic vortex [A, u] in the fiber

of (4.3) is given by

L Dau
W2P(S, ad P) —> WP (S, A' @ ad P & w*T*"Y) —> [X(X, A°L @ u*T**"Y & ad P),

which is elliptic in the sense that the cohomology groups are finite dimensional. The proof of
this statement using the Atiyah-Singer-Singer boudnary condition is quite standard nowadays

so we omit it here. This ensures that

(Bs(P. B, (9))/9s. &(P. B, (9))/s. 5)

is a family of Fredholm systems over (x~*(0))9.
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Note that the twisted sector Xo(g) is defined by the locally free C'(g)-action on (u~1(0))9.
From the C'(g)-equivariant fibration (4.3), we obtain a Banach orbifold structure on

g&(Pva (g))/gg,

denoted by Bs(P, B, (g)). Denote &(P, B, (g)) = & (P, B, (g))/Gs. Then & (P, B, (g)) is a
Banach orbifold bundler over Bs(P, B, (¢)) and the Gs-invariant section S defines a section of
Es(P, B, (g)). Therefore, we obtain an orbifold Fredholm system

(Bé(PaB7 (g)),(‘:(;(P,B, (g))75)

for the moduli space Nx(X, P, B; (g)). It is a family of orbifold Fredholm systems over Xo(g)

realising the asymptotic limit map
Ore : N5(X, P, Bi (g) — X"

in the sense that the fiber 9 (z, (¢)) can be identified with the zero set of the section S restricted
to the fiber of the orbifold fibration

Bs(P, B, (g)) — X

over the point (z, (¢)) € X\

To calculate the expected dimension of components in Ny (X, P, B, (g)), we introduce a
degree shift as in [11]. We first define the degree shift of an element g in GG of order m acting
linearly on C". Let the complex eigenvalues of g on C" be

2mima /m 2mimy, /m

27rzm1/m’€ e

e

for an n-tuple of integers (mq,mo, - -+ ,m,) with 0 < m; < mfor j = 1,2,--- ,n. Then the
degree shift of an element g on C", denoted by ¢(g, C"), is given by
t(g,C") = ™

—'m
Jj=1

From the definition, we have
(g,C") + (g1, C") = n.
For the orbifold Xy = [ ~1(0)/G], if g € G has a non-empty fixed point set (¢ ~*(0))¢, then the
Chen-Ruan degree shift of g on X;, denoted by tcr(g, Xy) at x € (u=1(0))9, is defined to be
er(g, Xo) = 1(g, Tiz)(Xb))-

For a twisted sector Xo(g ) of X\, the corresponding degree shift as in [11] is defined to

LCR(XQ(Q), Xo) = ter(g, X)

for any g such that Xo(g ) is diffeomorphic to the orbifold defined by the action of C'(g) on the
fixed point manifold (;2~*(0))9.
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Theorem 4.2. Let Nx(X, P, B;(g)) be the subset of Ns(X, P, B) consisting of symplectic
vortices [(A,w)] such that
Oso(A, u) € X9
Then N5 (X, P, B; (g)) admits a Fredhom system with its virtual dimension given by
2(cS(TX), BY +2(n — dim G) (1 — g5) — 2tc0r(X?, X)

where gy, is the genus of the Riemann surface X..
Proof. With the Fredholm set-up and the orbifold model discussed above, we know that (A, u)
has a unique extension to an orbifold symplectic vortex (fl, @) on the principal G-bundle P,,;
over Xorip = (|Xorsi|, (p, m)), an orbifold Riemann surface with one orbifold point p of order m
(the order of g). So by the excision property, we only need to calculate the index of the lineari-
sation operator for the orbifold symplectic vortex (fl, @) modulo based gauge transformations.
Note that the remaining gauge transformations consist of constant ones taking values in C'(g),
the centralizer of g in G, as we require that @i(p) € (u~1(0))”.

The underlying Fredholm operator is the a compact perturbation of the direct sum of the
operator (—d%, *d )

Q5(2, ad P) — QY(2, ad P) ® Q3(%, ad P)

in the original cylindrical model, with its index given by — dim G(1 — 2¢y,), and the Cauchy-

Riemann operator 0 iaon the orbifold X,,,; with values in the complex vector bundle @*7V"Y".

Hence, the virtual dimension is given by
4.4) Indexégﬁ —dim G(1 — 2¢gx) — dim C(g).
By the orbifold index theorem, we have
4.5) Indexggﬂ2 = 2(c1 (W'T""™Y), [|Zorea]]) + 2n(1 = g5) — 2eer(9, TapX).
By the definition of ¢{ (u*T"*"*Y") and [u¢], we have
(A (@ T, [|Soriil]) = (5 (TX), B).

To calculate the degree shift for the g-action on 175 X, we apply the following decomposi-
tion
Tap X =90 ¢ @ Tia) X0
Here the actions of g on g and g* are adjoint to each other and the zero eigenspace of the g-action

on g is the Lie algebra of C'(g). By the definition of degree shift, this implies that
2ucr(9, Tag X)
(4.6) = 2icr(g, &) + 2dimec G/C(g)
= 2uor(g, Xp) + dimg G/C(g).

Put these formula (4.4), (4.5) and (4.6) together, we get the virtual dimension as claimed in the

theorem. O
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4.2. L*-moduli space of symplectic vortices on punctured Riemann surface.

Let C' = (3, p1,...,px) be a Riemann surface with &£ marked points. We assume that C' is
stable, i.e, 2 — 2g(X) — k < 0 where gy, is the genus of the Riemann surface X. It is well known
that there is a canonical hyperbolic metric on the punctured Riemann surface ¥\ {p1, ..., px}-
This hyperbolic metric provides a disjoint union of horodiscs centred at each punctured point.
We may deform the metric on the disc such that the metric becomes cylindrical. For simplicity,
we use the same notation X for this Riemann surface with % cylindrical ends. Denote the metric
and the corresponding volume form by py; and vy, respectively.

Let P be a principal G-bundle over X. Let Nx(X, P) be the moduli space of symplectic
vortices with finite energy on ¥ associated to P and a 2n-dimensional Hamiltonian G-space
(X,w). Then N5 (X, P) is the space of gauge equivalence classes of solutions to the symplectic

vortex equations (2.2) for

(A, u) € By = Aprogsy X Wil (P, X)

loc loc
such that
1
E(A,u) = / Sl 4 [Fal? + o uPJws < oo,
>

Then the asymptotic limit map
O - N5(X, P) — (Crit)"

is continuous. Let ¢ be a positive real number which is smaller than the minimum absolute
value of eigenvalues of the Hessian operators of £ along the compact critical manifold Cerit,
then [u, A] € Nx(X, P) decays exponentially to its asymptotic limit along each end. Moreover,

the energy function on Ns,(X, P) takes values in a discrete set

Fix an equivariant homology class B € HS (X, Z) such that ([w—yu], B) > 0. Let Nx(X, P, B)
be the moduli space of symplectic vortices on X associated to (P, X') with the homology class
B. We remark that the homology class of (u, A) is defined by the associated orbifold model as
in the previous section for one cylindrical end case.

Then the Fredholm analysis for the one cylindrical end case in the previous section can be

adapted to establish the following theorem.

Theorem 4.3. Let Nx.(X, P, B; {(9:) }i=1... k) be the subset of N.(X, P, B) consisting of sym-
plectic vortices [(A,u)] such that

Doo(A,u) € (X 5 - % X)) < (Crin)*
Then Nx(X, P, B;{gi}i-1... k) admits an orbifold Fredhom system with its virtual dimension
given by

k
2cF(TX), B) +2(n —dimG)(1 — gs) — 2 1er(X*, X)
i=1
where gy, is the genus of the Riemann surface ..
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5. COMPACTNESS OF L?-MODULI SPACE OF SYMPLECTIC VORTICES

In this section, we establish a compactness result for the underlying topological space of the
moduli space N (X, P, B) of symplectic vortices on a Riemann surface 3 with k cylindrical
ends. We assume that & > 0. By reversing the orientation on S if necessarily, we can assume
that all these ends are modelled on S* x [0, c0).

Given an orbifold topological space N, the underlying topological space (also called the
coarse space of \') will be denoted by |N|. We will provide a compactification of the coarse
moduli space | N5 (X, P, B)| by adding certain limiting data consisting of bubbling off J-
holomorphic spheres in (X,w,.J) in the interior of ¥ and chains of symplectic vortices on
cylinders. When X is Kiihler, the compactness theorem for the L?-moduli spaces of symplectic
vortices on a Riemann surface with cylindrical end have been studied in [40]. The compactified
space is a stratified topological space over a partially order finite index set, whose topology is
inductively induced by the convergence properties for sequences of symplectic vortices on ..

To describe the limiting data for a sequence of symplectic vortices on Y, we first introduce
an index set for the topological type of the domain. Let g be the topological genus of > and
B € HS(X,Z) such that {[w — ], B) > 0. Recall that a tree is a connected graph without any
closed cycle of edges.

Definition 5.1. A web of stable weighted trees of the type (3; B) is a finite disjoint union of

trees

'=ToulyUu---UI%

consisting of a principal tree I'y with ordered £ tails and a collection of chains (ordered se-

quences) of trees
L= | 106)
j=1

foreach tail? = 1,- - - | k, together with the following additional conditions.

(1) The principal tree I'y has a distinguished vertex (called the principal vertex) with a
weight (g, By) and ordered £ tails labelled by {1,2,--- , k}. Here g is a non-negative
integer and By € HS (X, Z) satisfying the following positivity condition

(w—pl, Bo) = 0.
(2) For the i-th tail in I'y, there is a chain of trees of length m;
Iy = (1) UT(2)U- - U T (m)

such that each 7;(j) has a distinguished vertex (called a branch vertex) with a weight
given by a class B; ; € HS (X, Z) such that

(lw—pul, Bij) > 0.

If B; ; = 0, the tree 7;(j) is non-trivial in the sense that the branch vertex is not the only

vertex.
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(3) Any undistinguished vertex v in I has its weight given by a class B, € Hs(X,Z), such
that

([w], Bu) > 0.

If B, = 0, the number of edges at v is at least 3, two of which connect to vertices of
non-zero weights.
(4) Under the natural homomorphism Hy(X,Z) — HS (X, 7Z),

(5.1) BO+ZZB”+Z > B,=B

=1 j=1 =0 veV(Ty)

holds in HS (X, Z). Here V(T';) is the set of undistinguished vertices in I';.

Two webs of stable weighted trees are called equivalent if there is a weight preserving iso-
morphism between them. Denote by Sy.p be the set of equivalence classes of webs of stable
weighted trees of the type (3; B).

Given two element [['] and [I'] in Sx.5, we say [I'] < [I”] if any representative I in [[] can
be obtained, up to equivalence, from any representative I" in [I'] by performing finitely many

steps of the following three operations.

(1) Contracting an edge connecting two undistinguished vertices, say v; and vy, in I' to
obtain a web with a replaced undistinguished vertex of a combined weight B,, + B,,.

(2) Identifying two branch vertices of adjacent trees in a chain I'; of length m; to get a chain
of trees of length m; — 1 with a weight given by the sum of the two assigned weights.

(3) Identifying the principal vertex in I' with a first branch vertex in a chain (say I';), such
that the new principal vertex is endowed with a new weight B + B; ; and the ¢-th chain
becomes 7;(2) U - - - U T;(my).

Lemma 5.2. (Sx.p, <) is a partially ordered finite set.

Proof. It is easy to see that the order < is a partial order. By the condition (5.1), we see that
there are only finitely many collections of

{(Bo, Bij, Bo)([w — nl, Bij) > 0, {[w — p], B) > 0}.

The stability conditions for branch vertices or undistinguished vertices with zero weight implies

that there are only finitely many possibilities. This ensures that Sy, is a finite set. U

Given an element ' = I_Ii?‘ZOFi in Sy. g, we can associate a bubbled Riemann surface of genus
g and k cylindrical ends, and a collection of chains of bubbled cylinders as follows. Associated
to 'y, we assign a bubbled Riemann surface >y which is the nodal Riemann surface obtained
by attaching trees of CPP!’s to 3. Associated to an i-th chain of trees I'; = L7 Ti(j) we assign
a chain of bubbled cylinders

Ci = {Cz(l)a e ’Cl(ml)}

where each C;(j) is a nodal cylinder with trees of CPP!’s attached according to the tree.
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Now we construct a moduli space of stable symplectic vortices with the domain curve being
the bubbled Riemann surface 3, or one of the bubbled cylinders in {C;(j)|i = 1,--- ,k;j =
1,---,m;} as follows.

Let Ty be the new weighted graph obtained by severing all edges in I'y which are attached to
the principal vertex. Assume that I'y has [, trees attached to the principal vertex. Then Iy con-
sists a single vertex (the principal vertex) with [, half-edges and k ordered tails. The remaining
part of I'y, denoted by Iy, becomes a disjoint union of [ trees, each of which has a half-edge

attached one particular vertex (the adjacent vertex to the principal vertex). Equivalently,
FO - (f‘oufo)/ ~

where the equivalence relation is given by the identification of [,-tuple half-edges in Ty with the
lo-tuple half-edges in Lo.
Denote by foo by the moduli space of symplectic vortices of homology class B, over X with

lo marked points and £ cylindrical ends. Then there is a continuous map
é@o : ./\[ Ty — X lo

given by the evaluations at the [, marked points. Moreover, there is a continuous asymptotic

limit map along each of the £ cylindrical ends
9o : N, — (Crit)".

Associated to f‘o, as a disjoint union of [ trees, there is a moduli space of the Gromov-Witten
moduli space of unparametrized stable pseudo-holomorphic spheres with /y-marked points and
the weighted dual graph given by Ty, see Chapter 5 in [31]. We denote this moduli space by

MFGW. Then there is a continuous map
0
g : MEW — X

given by the evaluations at the [y marked points. The moduli space of bubbled symplectic
vortices of type Iy, denoted by N, is defined to be the orbifold topological space generated
by the fiber product

GW
Nfo XXLO Mf‘o

with respect to the maps €vg and évy. Then the coarse moduli space | A, | inherits a continuous
asymptotic limit map
6F0 : |NF0| — (Crit)k.

Remark 5.3. We remark that there is an ambiguity here with regarding the orbifold structure on
Nr,. A proper way to make this precise is to employ the language of proper étale groupoids to
describe the spaces of objects and arrows on Nfo X xlo /\/lfow, and then add further arrows to
include all equivalences relations to get an orbifold structure on Nr,. As we are dealing with the
compactification of the coarse moduli space, there is no ambiguity for the coarse space |[NT,|.
We will return to this issue when we discuss weak Freholm systems for these moduli spaces in
[9] and [10].
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Similarly, for the i-th chain of trees I'; = |_|m T;(j) , we define a chain of moduli spaces
of stable symplectic vortices of type I'; as follows. Associated to the tree T;(j), we excise the
branch vertex away to get a graph consisting of a single vertex with /; ; half-edges and [; ; trees
with one half-edge for each tree. Let TZ( ) and T (7) be these two graphs respectively.

Denote by NT} () be the moduli space of symplectic vortices of homology class B; ; over the
cylinder C;(j) = S x R with [; ;-marked points. Then there are a continuous evaluation map

Vg, 5y N,y — X'
and continuous asymptotic value maps
£ LA :
aT G) NTz(]) — Crit

associated to the two ends at oo respectively. Denote by MGW) the Gromov-Witten moduli
space of unparametrized stable pseudo-holomorphic spheres with [; j-marked points and the
weighted dual graph given by T (7)- Note that Mg‘g) is equipped with a continuous evaluation

map

€UT M?‘;V) — Xlig,

Then forming the fiber product
Gw
NTz(J) XXli,j MT( .

3(3)

we get the moduli space /\A/’TZ. (;) of stable symplectic vortices of type T;(j). In particular, |/\A/'T o)

inherits continuous asymptotic limit maps
(5.2) 0z, N ()| — Crit

along the two ends. Note that the group of rotations and translations S' x R on the cylinder
induces a free action of S! x R on the moduli space /\A/'T (j) which preserves the asymptotic limit
maps 8 We quotient the moduli space NT () by the group R x S, and denote the resulting
moduli space by

NTi(j) = -N’Ti(j)/(R X Sl).
The induced asymptotic limit maps on the coarse moduli space is denoted by

T(j ’NT ])’ — CI‘lt

By taking the consecutive fiber products with respect to maps 8;5 ) and 0. for 5 =

T;(5+1)
1,---,m,;, we get the coarse moduli spaces of chains of stable symplectic vortices of type I';,

that is,
|er‘

= |NTZ~(1)| X Crit ’NTi(2)| Xcrit * X Crit ‘NTi(mi) .

Then there are two asymptotic limit maps given by 8 and 8+ 31mply denoted by 0; and
8+

7 ?

JF  |Nr,| — Crit.
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Definition 5.4. Given ' = I'yUI'; U - - - U ', a web of stable weighted trees in Sy.. 5, the coarse
moduli space of stable symplectic vortices of type I, denoted by |[Nr|, is defined to be the fiber

product
k

INr| = [N, X (Crit)* H AT,

i=1

)

where [T, INt,| = [Nr, | X [Nry| X -+ - x [N, |, and the fiber product is defined via the maps
or, : |Nr,| = (Crit)* and

k

k
[0 : TI Vel = (Crin®.

i=1 i=1
There exists a continuous map
or : |NF’ — (Cl‘i’[)k

given by []"_, 8.

=1 "1

For any k-tuple ((g1),- - , (gx)) conjugacy classes in G such that each representative g; in
(g:) has a non-empty fixed point set in ~!(0), then we define

INE((g1)s -+ ()] = OF (\Xégl)] X e X \Xég’“)\) :

Now we can state the compactness theorem for the coarse L?-moduli space [N (X, P, B)| of

symplectic vortices on ..

Theorem 5.5. Let 3 be a Riemann surface of genus g with k-cylindrical ends. The coarse
L2-moduli space |Nx (X, P, B)| can be compactified to a stratified topological space
Ns(X,P,B) = || M|
reSs:.s
indexed by the set Sx..p of webs of stable weighted trees, such that the top stratum is |Nx(X, P, B)|.

Moreover, the coarse moduli space
Ns(X, P, B; {(9:) }i=1,- k)]

of the moduli space Ns,(X, P, B;{(g:) }i=1.... ) in Theorem 4.3 can be compactified to a strati-
fied topological space

Ns(X, P, Bi {(9) iz )l =[] INE((g0)s--+ 5 (90))].
reSs;p

Proof. For simplicity, we assume that the Riemann surface > has only one outgoing cylindrical
end, that is, diffeomorphic to S* x [0, 0o). The proof for the general case is essentially the same.
Under this assumption, any web of stable weighted trees of the type (3J; B) has only one chain
of trees denoted by {T°(1),7(2),--- ,T(m)}.

Given any sequence [A;, u;] € Nx(X, P, B), we shall show that there exists a subsequence
with a limiting datum in Nt for some I' € Sy.5. The strategy to prove this claim is quite

standard now, for example see [17], [14] and [34].
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Note that the energy function on this sequence
1
B(Aiw) = [ 5(da i + [Faf + w0 wfos
by

is constant given by ([w — p], B). For any non-constant pseudo-holomorphic map from a closed

Riemann surface, the energy is bounded from below by a positive number

min{([w], B)|5 € Ha(X, Z), ([«], 5) > 0},

which is greater than the minimal energy of non-trivial symplectic vortices on Y associated to
(P, X,w)
h=min{{{w — ], B)|8 € Hy (X, Z),([w — ul, B) > 0},
Step 1. (Convergence for the sequence with bounded derivative) Without loss of generality,
we suppose that {(A;, u;)} is a sequence of symplectic vortices in Ns,(X, P, B) with a uniform
bound
|da,wil| L < C

for a constant C'. Then there exists a sequence of gauge transformations {g;} such that {g; -
(A;, u;)} has a C*° convergent subsequence.

This claims follows from Theorem 3.2 in [13].

Step 2. (Bubbling phenomenon at interior points) Assume that the sequence ||da,u;||z~ is
unbounded over a compact set in X, then the rescaling technics in the proof of Theorem 3.4 in
[13] can be applied here to get the standard pseudo-holomorphic sphere at the point in > where
a sphere is attached to ..

Hence, combining Steps 1-2, we know that there may exist a subset of finite points, say
{q1,- - ,q,}, of ¥ such that for any compact set Z C ¥’ = ¥ — {q1, -+ ,q,}, there exists a
subsequence of (A;, u;) and gauge transformation g; such that g;(A;, u;) uniformly converge in
Z. As Z exhausts Y, we get a symplectic vortex (A, s ) on X', By the removable singularity
theorem, this symplectic vortex (A, ts ) can be defined on 3.

Moreover, at each point ¢;, we get a bubble tree of holomorphic sphere attached to ¢;. As in
the Gromov-Witten theory, there is certain energy bounded from below lost when the bubbling
phenomenon happens at interior points. This gives rise to a principal tree 'y in a web of stable
weighted trees in Sy, p.

Step 3. (Bubbling phenomenon at the infinite end) Assuming that for a sufficiently large 7', the
sequence {(A;,u;)} converges to (Au, Uso) on X — (ST x [T, 00)), where (A, o) is of the
type 'y, a principal tree in Definition 5.1. Now we study the sequence over the cylindrical end.

We may further assume that the Yang-Mills-Higgs energy

1
[ Sldaf + |y
S1X[T,00)

is greater than the minimum energy 5 defined as above. Otherwise, the limit of the sequence is
in NVp,.

We replace the sequence {(A;, u;)|(s1x[r,00) } by their translations to the left by {d;} such that
the Yang-Mills-Higgs energy of the translate for (A4;, u;) over [T' — 0;,0] is /4. Then §; — oo

2t o)
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as ¢ — 00. Applying the above standard convergence theorem to the translated sequence with
or without the bounded derivative condition on ||d 4, u;|| <, there exists a subsequence which
converges to a bubbled symplectic vertex (A’_,u’ ) on any compact subset of S' x R. This
gives rise to a stable symplectic vortex of type ['(1), where I'(1) is a tree with a branch vertex
as in Definition 5.1.

Step 5. (No energy loss in between) Now we show that there is no energy loss on the connect-
ing neck between (A, u. ) and (Aw, us). Equivalently, associated to the subsequence (still

denoted by {(A;, u;)}, for each i, there exist

such that N;, K; and N/ — N; — 2K; — oo as i — oo, and under the temporal gauge,
(1) the sequence (A;, u;) on ST x [N;, N; + K;] coneverges to (Au, Us) ON any compact
set after translation;
(2) (Ai,u;) on ST x [N} — K, N;] coneverges to (A’_, u/_) on any compact set after trans-

lation.

We shall show that the Yang-Mills-Higgs energy of (A;,u;) on S' x [N; + K;, N/ — K;] tends
to 0 as i — oo.
Let y», and ' __ be the limit of (A, ux) ast — oo and (AL, ul ) as t — —oo respectively.

[oop) o0

Let i/ be the pair obtained from ¢y’ by reversing the orientation of S*. Suppose that

Yoo = <a7a>7 gLoo - (b7 6)

Then (A;(t),w;(t)),t € [N;, N; + K;] is arbitrary close to y, and (A;(t'),u;(t')),t € [N} —
K, N] is arbitrary close to §’ __ as i — 00.

We claim that £(ys.) = L(7/,). Otherwise, the difference would be larger than i However
the Yang-Mills-Higgs energy of (A;, u;) on [N;, N/] is less than /2. This is impossible.

Now we explain the Yang-Mills-Higgs energy of (A;, u;) at [V; + ¢, N/ — t] decays expo-
nentially with respect to t. We normalize the band by translation such that [N; + K;, N] — K;]
becomes [—d, d] where d = NZ'/;NZ' - K.

Denote the Yang-Mills-Higgs energy of y; = (A;, u;) on ST x [, ] by

>+ | o u;|*)dvol

1
BO= [ S(dsuf s
Sx[—t,t]
for 0 <t < d. Then
dE,(1)
dt
Replace L by L - Z(yoo), then by the crucial inequality (Proposition 3.12), we obtain the

= IVL, 0" + VLo

following differential inequality

dE;(t)
dt
Here we use the fact that

(5.3) > §(|L(yi ()] + [L(ys(—t))]) = SE;(t).

Ei(t) = |L(yi(t) — L(yi(=1))]
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Then the differential inequality (5.3) gives rise to
e Ei(t) < e %E;(d),
for any ¢t < d. Apply to our case, this implies
(5.4) E(As wi)| vk, 8-k < e B (A, w;)| (v, N7

As i — oo, the Yang-Mills-Higgs energy goes to 0.

This ensures that
Oro ([Asos Uso]) = 8{1([14' ul.]) € Crit.

If the sum of Yang-Mills-Higgs energies of (A, us) and (A’ u’ ) agrees with ([w — |, B),
the limit of the sequence is in N for I' = T’y LI T';.

Step 6. (Energy loss at the +o00 end in the limit) If the sum of Yang-Mills-Higgs energies of
(Asos Uso) and (AL, ul ) is less than ([w — p], B), then

007 oo

v={lw—pu],B) — E(Ax,usx) — E(AL_,u..) > h.

007 Yoo

In this case, we loss some energy at the 4+-co end in the limit, we repeat Steps 3-4 to get a limit
in M- with a chain of trees of length m > 2. This same process will stop after a finitely many

steps due to the fact that each tree in the chain carries at least / energy. Put all these limiting

|_| |NF’7

FES;};B

data together, we get

with each Nt admitting an orbifold Fredholm system. The topology on this disjoint union

can be defined in a similar way as for Gromov-Witten moduli spaces. The compactness and

Hausdorff properties of this topology can be established in the same way as in [21], [28] and
[35]. This completes the compactification of | N (X, P, B)|.

The compactification of [N, (X, P, B; {(g;) }i=1,.. x)| can be obtained in the similar manner.

0

6. OUTLOOK

In this paper, we mainly discuss the L?-moduli space of symplectic vortices on a Riemann
surface with cylindrical end. The analysis can be generalised to the case of a family of Riemann
surfaces with cylindrical end. Then we get a moduli space of L2-symplectic vortices fibered

over Deligne-Mumford moduli spaces. In particular, for a Riemann surface

Egzk - (27 (Zla e 7Zk)7j>

of genus g and with £-marked points, when 2 — 2¢g — k < 0, we can consider X, as a Riemann
surface of genus g and with n-punctures. By the uniformization theorem, for each complex
structure on Y., i, there is a unique complete hyperbolic metric on the corresponding punctured
surface. This defines a canonical horodisc structure at each puncture, see [7]. This horodisc
structure at each puncture is also called a hyperbolic cusp. Using the canonical horodisc struc-

ture at each point defined by the complete hyperbolic metric on the punctured X, ;, we can
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identify the moduli space M, ; with the moduli space of hyperbolic metrics with a canonical
horodisc structure at each punctured disc. Each horodisc can be equipped with a canonical
cylindrical metric on the punctured disc. In particular, we get a smooth universal family of
Riemann surface with k cylindrical ends over the moduli space M, ;.. Then the analysis in this
paper on the L2-moduli space of symplectic vortices can be carried over to get a continuous
family of Fredholm system defined by the symplectic vortex equations. The corresponding L>-
moduli spaces of symplectic vortices without and with prescribed asymptotic data will denoted
by

Now(X, P,B) - and - Ny (X, P, B {(9:) im, )

respectively. Then we have the similar compactness result for this L?-muduli space where the
index set Sy is replaced by S, ;. where the principal vertex of each web is replaced a dual
graph as in the Gromov-Witten moduli space with weights in HS (X, Z) at each vertex, each
vertex carries bubbling trees (with weights in Hy(X,7Z)) and each tail is assigned a chain of
trees.

In the subsequence paper, we shall also establish a weak orbifold Fredholm system and a
gluing principle for the compactified moduli space Ny x(X, P, B; {(gi)}i=1... x) so that the
virtual neighborhood technique developed in [8] can be applied to define a Gromov-Witten
type invariant from these moduli spaces. We will show that the compactified moduli space

N 9.k (X, P,B;{gi}i=1... x) admits an oriented orbifold virtual system and the virtual integra-

tion

/ cH*(IX,,R)* = R

Nk (X,P,B;i{(gi)}i=1, k)
is well-defined. Here 1X is the inertial orbifold of the symplectic reduction X, = p~'(0)/G.

The Gromov-Witten type invariant is defined to be

vr
(HGW * * %
Ng (X, P,B;i{(gi)}i=1, &)

for any k-tuple of cohomology classes
<a17 T ,Oék) S H*(Xo(gl),R) X e X H*(Xo(gk),R).

Here 7, : Crit® — Crit = I.X, denotes the projection to the i-the component. We emphasize that
this is an invariants on H(Xp) rather than on H(X). It is different from usual HGW invari-
ants. We call the invariant L?-Hamiltonian GW invariants (abbreviated as fTHGW). In particular,
when (g, k) = (0, > 3), the above invariant can be assembled to get a new (big) quantum prod-
uct #7f on H*(1 Xy, R). Here HR stands for Hamiltonian reduction. In a separate paper ([10]),
we will introduce an augmented symplectic vortex equation to define an equivariant version of
this invariant on H/(X) when G is abelian. This enables us to define a quantum product *¢
on H}(X). In a sequel work, we will investigate its relation to «HE in particular, we combine
symplectic vortex equation with the augmented one to define the quantum Kirwan map (), and

show that (), is a ring morphism with respect to * and *7 %,
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