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Weil pairing example of Poincare duality

Before starting the new material, we go over an example from the curve cohomology chapter.
Recall Poincare duality:

Theorem 0.0.1. Let U be a connected regular curve over an algebraically closed field. For
a locally constant sheaf F on U and integer r, there is a canonical perfect pairing of finite
groups

Hr
c (U,F)×H2−r(U, F̌(1))→ H2

c (U, µn) ' Z/nZ.

Example 0.0.2. Let X be a complete connected smooth curve over an algebraiclly closed
field. Then we can take etale cohomology instead of compactly supported cohomology in the
pairing. Set F to be the constant sheaf Z/nZ. We tensor the first factor of the pairing and
the target with µn to get a canonical pairing

H1(X,µn)×H1(X,µn)→ H2(X,µn ⊗ µn) ' µn,

noting also that ˇZ/nZ(1)H om(Z/nZ, µn) ' µn. Recall that we may canonicallyH1(X,µn) '
Jac(X)[n], which follows from the Kummer sequence and the identification Hr(Xet,Gm) '
Pic(X). This turns out to be exactly the same as the Weil pairing. This is the canonical
pairing Jac(X)[n] × Jac(X)∨[n] → µn defined by Cartier duality. Jacobians of a smooth
curve are always canonically principally polarizable, so this yields a corresponding perfect
alternating pairing Jac(X)[n]×Jac(X)[n]→ µn. Tracing the maps given in Poincare duality
to verify that these are actually the same seems hard.

15 Cohomological dimension

The cohomological dimension of X is the least integer c such that Hr(Xet,F) = 0 for all
r > c and torsion sheaves F .

The cohomological dimension of a field SpecK is the same as the cohomological dimension
of Gal(Ksep/K) (from group cohomology). Hence cd(K) = 0 if K is algebraically closed.
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Finite fields have cohomological dimension 1. Note that H2(Gal(Fq/Fq),Z) = Q/Z 6= 0, but
this doesn’t count since Z is not torsion. R has infinite cohomological dimension since the
cohomology of a cyclic group is periodic.

As one expects from intuition from manifolds:

Theorem 15.0.1. If X is a variety over an algebraically closed field, then cd(X) ≤ 2 dim(X),
or dim(X) if X is affine. Moreover H2 dimX(X,Z/nZ) when X is proper.

Proof. We’ll only prove the first statement.
We can assume that F is of the form g∗F , where g : η → X is the generic point, since the

map F → g∗g
∗F via adjunction is an isomorphism at the generic point, hence has kernel and

cokernel supported on a proper closed subscheme and we can apply induction to conclude
that it suffices to prove the statement for g∗g

∗F instead.
Fact: If A is a Henselian local ring containing a field k such that the residue field of K is

separable over k, then A contains a field mapping isomorphically onto K. As a corollary, the
Henselization A of OX,Z has field of fractions F containing k(Z) with tr. deg. dimX−dimZ.

Then the main technical lemma we need is:

Lemma 15.0.2. The sheaf Rsg∗F has support in dimension ≤ m− s.

Proof. Let Z be closed irr. subvar. of X with generic point z and corresponding choice of
geometric point z. Then the strictly local ring at z is the maximal unramified extension of
Oh

X,Z , so its residue field is k(Z)sep and its field of fractions is an algebraic extension of k(X).
Hence it has transcendence degree dimX − dimZ over k(Z)sep. Since

(Rsg∗F)z = Hs(Kz,F)

this vanishes for s > m − dimZ, since one can show that cd(K) ≤ cd(k) + d for a field
extension K/k of transcendence degree d, and k(Z)sep has cd = 0. Therefore Rsg∗F is
nontrivial only if dimZ ≤ m− s, i.e. its support is in dimension at most m− s. �

By inductive hypothesis we conclude that Hr(X,Rsg∗F) = 0 for s 6= 0, r > 2(m − s).
Moreover, we also know that Hr+s(η,F) = 0 whenever r+s > m, since the generic point has
transcendence degree m over the algebraically closed base field. The Leray spectral sequence
says

Ers
2 = Hr(X,Rsg∗F) =⇒ Hr+s(η,F).

The fact that Hr(X,Rsg∗F) = 0 for s 6= 0, r > 2(m − s) is enough information to tell us
Er0

2 = Er0
∞ , hence Hr(X, g∗F) = 0. �

16 Purity/Gysin sequence

Let X be a variety in char. not divisible by n. Define Λ(r) to be the sheaf such that
Γ(U,Λ(r)) = µn(Γ(U,OU))⊗r for all etale affine U → X, (Λ(0) = Λ = Z/nZ) and let
F(r) = F ⊗ Λ(r). We say a smooth pair (Z,X) is smooth X with smooth subvar Z.
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Theorem 16.0.1. For any smooth pair of k-vars (Z,X) of codim c and locally constant
sheaf of Λ-modules on X, there are canonical isomorphisms

Hr−2c(Z,F(−c))→ Hr
Z(X,F)

for all r ≥ 0.

Corollary 16.0.2. There are isomorphisms Hr(X,F)→ Hr(U,F) for 0 ≤ r < 2c− 1 and
an exact sequence (Gysin sequence)

0 H2c−1(X,F) H2c−1(U,F) Hr−2c)Z,F(−c)) . . .

Proof. By the exact sequence of the pair (X,X\Z). �

Example 16.0.3. We have H1(A1,Gm) = Pic(A1) = 0. Then the Kummer sequence
shows that Hr(A1, µn) = 0 for r > 0, too, and we can use Kunneth to get more gener-
ally Hr(A1, µn) = 0 for r > 0. Considering the pair (Pn,Pn−1), the corollary tells us (with
F = µn = Λ) that H0(Pm,Λ) ' H0(Am,Λ) ' Λ and H1(Pm,Λ) ↪→ H1(Am,Λ) = 0. The
theorem directly tells us that Hr−2(Pm−1,Λ(−1)) ' Hr(Pm,Λ). We can use induction to
show that this implies Hr(Pm,Λ) = Λ(−r/2).

We can more generally use the Gysin sequence to analyze the Z/nZ-cohomology of smooth
complete intersections.

The theorem also has the followling form. For a sheaf F on X, we define F ! to be the
largest subsheaf of F with support on Z, which is also given by F ! = ker(F → j∗j

∗F) for
the open immersion j : X\Z → X. We let i!F to be i∗F ! for the inclusion i : Z → X. i! is
a right adjoint to i∗, hence it is left exact and preserves injectives.

Theorem 16.0.4. (Cohomological purity.) With hypotheses as above, R2ci!F ' (i∗F)(−c)
and all other degrees vanish.

This implies the first version using the Grothendieck spectral sequence for the composition
of functors Γ(Z,−), i!, which is

Er,s
2 = Hr(Z,Rsi!F) =⇒ Hr+s

Z (X,F).

Hr(Z,Rsi!F) vanishes by the purity theorem unless 2 = 2c, so we conclude that the spectral
sequence is already degenerate at the second page and that Hr

Z(X,F) ' Hr−2c(Z,R2ci!F) '
Hr−2c(Z,F(−c)).

To prove cohomological purity, one shows that the problem is étale local, and then that
any smooth pair of codimension c is locally isomorphic to (Am−c,Am). Then one proceeds
by induction.
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17 Proper base change

A sheaf on Xet is called constructible if it has finite stalks and it is locally constant on a
nonempty open subset of every closed irreducible subscheme Z.

Constructibility is preserved by (higher) pushforwards and it remains true that (Rrπ∗F)s =
Hr(Xs,F|Xs) for geometric points of S. Consequently, Hr(Xet,F) is finite for all r if X is
proper over a separably closed field k, since constructible sheaves on Spec k are equivalent
to finite abelian groups.

Theorem 17.0.1. Let π : X → S be proper, and let X ×S T → T for some morphism
f : T → S. For any torsion sheaf on X, there is a canonical isomorphism

f ∗(Rrπ∗F)→ Rrπ′∗(f
′∗F).
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