Integers that can be written as the sum of two rational cubes

Eugenia Rosu

Contents

1 Introduction 2

2 Background. 4
 2.1 The L-function . 5
 2.2 Ring class fields. 5
 2.2.1 Idelic interpretation of ring class field 5
 2.2.2 Ring class field . 6
 2.2.3 Characterization of ideals in ring class fields 8
 2.3 The cubic character . 8
 2.3.1 Relating χ_D to the Galois conjugates of $D^{1/3}$ 11
 2.4 Hecke characters . 11
 2.4.1 Converting the characters. 12

3 Computing the value $L(E_D, 1)$ using Tate’s Zeta function 13
 3.0.2 Schwartz-Bruhat functions. 13
 3.0.3 Haar measure. 14
 3.1 Zeta functions . 14
 3.1.1 Computing the finite part of Tate’s Zeta function $Z_f(s, \chi_D, \Phi)$ 15
 3.1.2 Adelic representatives for $\text{Cl}({\mathcal{O}}_{3D})$ 17
 3.1.3 Connection to the Eisenstein series . 17
 3.1.4 Fourier expansion of the Eisenstein series $E_\epsilon(s, z)$ at $s = 0$. 20
 3.1.5 Connection to the theta function $\Theta_K(z)$. 22
 3.1.6 Final formula for $L(1, \chi_D)$. 23
 3.1.7 Turning the formula into a trace. 24
 3.1.8 S_D is an integer . 25

4 Shimura reciprocity law in the classical setting. 26
 4.1 Applying Shimura reciprocity law to $K = \mathbb{Q}[\sqrt{-3}]$. 29
 4.1.1 $f(\omega)$ is in the ring class field H_{3D}. 29
 4.1.2 Galois conjugates of $f(\omega)$. 31
5 Writing S_D as a square.
5.1 Factorization Formula
5.2 Ratios of θ_r and θ_0
5.3 Applying the factorization lemma to get a square
 5.3.1 Representatives of $\text{Cl}(O_{3D})$
 5.3.2 Using the factorization formula
5.4 Shimura reciprocity applied to θ_r
 5.4.1 θ_r as an automorphic form
 5.4.2 Galois action on modular functions (Shimura reciprocity)
5.5 The square is invariant under Galois action

6 Appendix A: properties of Θ_K
6.1 Properties of $\Theta_K((-b + \sqrt{3})/6)$
6.2 About $\Theta_K(D(-3 + \sqrt{3})/6)$
 6.2.1 Traces of theta functions

Abstract

We are interested in finding for which positive integers D we have rational solutions for the equation $x^3 + y^3 = D$. The aim of the paper is to compute the value of the L-function $L(E_D, 1)$, for $E_D : x^3 + y^3 = D$. For the case of prime $p \equiv 1 \mod 9$, two formulas have been computed by Rodriguez-Villegas and Zagier in [14]. We compute several formulas using automorphic methods.

1 Introduction

In the current paper we are interested in finding an algorithm to decide which positive integers can be written as the sum of two rational integers cubes:

$$x^3 + y^3 = D, \quad x, y \in \mathbb{Q}$$

After making the equation homogeneous, we get the equation $x^3 + y^3 = Dz^3$ that has a rational point at $\infty = [1, -1, 0]$. Moreover, after a change of coordinates $X = 12Dz^2/(x + y)$,

$$Y = 36D^2x - y \quad x + y$$

the equation becomes

$$E_D : Y^2 = X^3 - 432D^2$$

which defines an elliptic curve over \mathbb{Q}.

We will assume D is cube free and $D \neq 1, 2$ (trivial cases) throughout the paper. It is known that $E_D(\mathbb{Q})$ has trivial torsion for $D \neq 1, 2$ (see [16]). Thus, (1) has a solution iff $E_D(\mathbb{Q})$ has positive rank. From the BSD conjecture, this is equivalent to the vanishing of $L(E_D, 1)$.

Without assuming BSD, from the work of Coates-Wiles [2], or more generally Gross-Zagier [6] and Kolyvagin [10], when $L(E_D, 1) \neq 0$, we have $\text{rank } E_D(\mathbb{Q}) = 0$, thus no rational solutions in (1). We define an invariant S_D of E_D as follows:

$$S_D = \frac{L(E_D, 1)}{\Omega_{D,x} \mathcal{R}_{E_D}}.$$
where:

- $\Omega_{D,\infty}$ is the real period
- R_{E_D} is the regulator

The definition is made such that in the case of $L(E_D, s) \neq 0$ we expect to get from the full BSD conjecture:

$$S_D = \#\Sha(E_D) \prod_{p \mid D} c_p,$$

where $\#\Sha$ is the order of the Tate-Shafarevich group and c_p are the Tamagawa numbers corresponding to the elliptic curve E_D. From work of Cassels [1], using the Cassels-Tate pairing, we have that when \Sha is finite, its order is going to be a square. Thus we expect that S_D to be an integer square up to the Tamagawa numbers.

For the case of prime numbers, Sylvester conjectured that the answer is affirmative in the case of $p \equiv 4, 7, 8 \mod 9$. In the cases of $p \equiv 2, 3, 5 \mod 9$ we have $L(E_p, 1) \neq 0$ and p is not the sum of two cubes. This follows either from a 3-descent argument (Sylvester, Lucas and Pepin) or from the theorem of Coates-Wiles [2].

In [14], Rodriguez-Villegas and Zagier computed formulas for $L(E_p, 1)$ in the case of primes $p \equiv 1 \mod 9$. In this case it is predicted by BSD that the rank of $E_D(\mathbb{Q})$ is either 0 or 2. They compute two formulas for S_D. In the current paper, we are extending their results to all integers D. If we let $K = \mathbb{Q}[\sqrt{-3}]$, we have:

Theorem 1.1. For all integers D, S_D is an integer and we have the formula:

$$S_D = \text{Tr}_{H_{3D}/K} \left(D^{1/3} \frac{\Theta_K(D\omega)}{\Theta_K(\omega)} \right),$$

where:

- H_{3D} is the ring class field associated to the order $\mathcal{O}_{3D} = \mathbb{Z} + 3D\mathcal{O}_K$,
- $\omega = \frac{-1 + \sqrt{-3}}{2}$ is a third root of unity, and
- $\Theta_K(z) = \sum_{a, b \in \mathbb{Z}} e^{2\pi i (a^2 + b^2 - ab)}$ is the theta function associated to the number field K.

A second result makes S_D more easily computable. We also hope to extend this result to show that S_D is an integer square up to Tamagawa numbers:

Theorem 1.2. In the case of $D = \prod_{p_i \equiv 1 \mod 3} p_i^{e_i}$, S_D is an integer and we have:

$$S_D = \left| \text{Tr}_{H_D/H_0} \frac{\theta_1(z_0)}{\theta_0(z_0)} D^{-1/3} \right|^2$$

where:

- $\theta_1(z) = \sum_{n \in \mathbb{Z}} (-1)^n e^{\pi i (n+1/3)^2}z^{2n}$ a 1/2-weight modular form
- $z_0 = \frac{-b + \sqrt{-3}}{2}$ a CM-point, with $b^2 \equiv -3 \mod 4D^2$.

• $H_\mathcal{O}$ is the ray class field of modulus $3D$ and H_0 is an intermediate field $K \subset H_0 \subset H_\mathcal{O}$ that is the fixed field of a certain Galois subgroup $G_0 \cong \text{Cl}(\mathcal{O}_{3D})$.

Conjecture 1.1. We conjecture that the term $I_0 = \text{Tr}_{H_\mathcal{O}/H_3D} \frac{\theta_r(z_0)}{\theta_0(z_0/D)} D^{1/3}$ is an integer and I_0^2 is the order of the Tate-Shafaravich group.

Using similar methods, we obtain a general formula for all integers N, for which Theorem 1.2 is a particular case.

Theorem 1.3. Using the same notation as in Theorem 1.2, we have for all integers D:

$$S_D = \sum_{r=0}^{D-1} \left| \text{Tr}_{H_\mathcal{O}/H_3D} \frac{\theta_r(Dz_0)}{\theta_0(z_0/D)} D^{-1/3} \right|^2,$$

where:

• $\theta_r(z) = \sum_{n \in \mathbb{Z}} (-1)^n e^{\pi i (n+r/D-1/6)^2 z}$ is a $1/2$-weight modular form

• $z_0 = \frac{-b+\sqrt{-3}}{2}$ a CM-point

Conjecture 1.2. We conjecture that all terms $I_r = \left| \text{Tr}_{H_\mathcal{O}/H_3D} D^{-1/3} \frac{\theta_r(Dz_0)}{\theta_0(z_0/D)} \right|^2$ are equal for all r such that $(r, D) = 1$. This is indeed the case when D is a product of primes that split.

Further results not included in this draft:

In Appendix A we provide a second proof of Theorem 1.1 based on an idea of Xinyi Yuan. In Appendix B we compute a different formula for S_D inspired by the Rallis inner product. This expresses S_N in the following way:

Theorem 1.4. For D a product of primes $p \equiv 1 \mod 4$, we have

$$L(E_D, s) = c_D \sum_{A \in \text{Cl}(\mathcal{O}_{3D})} E_0(s, g_A, \Phi) \chi_D(A)(-1)^{\frac{NmA-1}{2}},$$

where g_A is the embedding of the generator of the ideal $A = (a + b\sqrt{-3})$ into $\text{GL}_2(\mathbb{A}_\mathbb{Q})$ and $E_0(s, g_A, \Phi) = \sum_{m=0 \mod D,(n,D)=1} \frac{1}{(mz+n)[mz+n]^{s}}$ is a sum of Eisenstein series defined by Hecke in [7].

2 Background.

Let $K = \mathbb{Q}[\sqrt{-3}]$. Note that K is a PID and has the ring of integers $\mathcal{O}_K = \mathbb{Z}[\omega]$, where $\omega = \frac{-1+\sqrt{-3}}{2}$ is a fixed root of unity. We will denote K_v the localization of K at the place v. We will denote by $K_p := \prod_{v \mid p} K_v \cong \mathbb{Q}_p[\sqrt{-3}]$.

4
2.1 The L-function

Our goal is to compute several formulas for the special value of the L-function $L(E_D, 1)$ of the elliptic curve $E_D : x^3 + y^3 = Dz^3$. The elliptic curve E_D has complex multiplication (CM) by O_K. Then $L(E_D, s)$ is the L-function of a Hecke character that is computed explicitly in Ireland and Rosen [8]. We have:

$$L(E_D, s) = L(s, \chi_D^*),$$

where χ_D and φ are classical Hecke characters such that $\varphi \chi_D$ is the Hecke character corresponding to the elliptic curve E_D. The Hecke character φ is the Hecke character corresponding to E_1 and χ_D is the Hecke character corresponding to the cubic twist. More precisely, the Hecke characters are defined to be:

- $\varphi : I(3) \to \mathbb{K}^*$ is defined on the ideals prime to 3 by $\varphi(A) = \alpha$, where α is the unique generator of the ideal A such that $\alpha \equiv 1 \mod 3$.

- $\chi_D : I(3D) \to \{1, \omega, \omega^2\}$ is the cubic character defined below in Section 2.3; it is defined on the space $I(3D)$ of all fractional ideals of O_K prime to $3D$. Moreover, it is well-defined over $Cl(O_{3D})$ the ring class group corresponding to the order $O_{3D} = \mathbb{Z} + 3D\mathcal{O}_K$.

The L-function can be expanded:

$$L(E_D, s) = \sum_{A \in I(3D)} \frac{\chi_D(A)\varphi(A)}{(Nm A)^s} = \sum_{\alpha \in O_K, \alpha \equiv 1 \mod 3} \frac{\chi_D(\alpha)\alpha}{Nm(\alpha)^s}. $$

2.2 Ring class fields.

Recall that an order O of K is a subring of O_K that is a finitely generated \mathbb{Z}-module and such that $O \otimes_{\mathbb{Z}} \mathbb{Q} = K$. As K is a quadratic number field, each order is of the form $O = \mathbb{Z} + fO_K$ and we call $f = \lvert O_K : O \rvert$ the conductor of O. We can also write O using a \mathbb{Z}-basis in the form $O = \{1, f\omega\}$.

We define the class group $Cl(O)$ of the order O of conductor f is defined to be:

$$Cl(O) := I_O(f)/P_O(f),$$

where $I_O(f)$ is the set of fractional O-ideals prime to the conductor f, and $P_O(f)$ the subgroup of $I_O(f)$ of principal fractional O-ideals.

We define the ring class field to be the abelian extension H_O of K corresponding to the Galois group $Cl(O)$ from class field theory, meaning:

$$Gal(H_O/K) \cong Cl(O).$$

We denote by $I(N)$ the group of fractional ideals in K prime to N. We denote the subgroup $P_{\mathbb{Z},N} = \{(a) : \alpha \in K \text{ such that } \alpha \equiv a \mod N \text{ for some integer } a \text{ such that } gcd(a, N) = 1\}$. Furthermore, let $O_N := \mathbb{Z} + NO_K$ be the order of K of conductor N. Then we can define the ring class field of the order O_N to be

$$Cl(O_N) := I(N)/P_{\mathbb{Z},N}.$$
Note that K has class number one and thus by the Strong Approximation theorem we have:

$$\mathbb{A}_K^\times = K^\times \mathbb{C}^\times \prod_{v|\infty} \mathcal{O}_{K_v}^\times.$$

We would like to describe $\text{Cl}(\mathcal{O}_N)$ adelically. We do this below:

Lemma 2.1. For N a positive integer, we can think of the ring class group adelically as:

$$\text{Cl}(\mathcal{O}_N) \cong U(N)\backslash \mathbb{A}_{K,f}^\times / K^\times,$$

where $U(N) = \prod_p (\mathbb{Z} + N\mathbb{Z}_p[\omega])^\times$.

Proof: From the Strong approximation theorem, as K is a PID, we have:

$$\mathbb{A}_K^\times \cong K^\times \mathbb{C}^\times \prod_{v|\infty} \mathcal{O}_{K_v}^\times.$$

Taking the quotient by $K^\times \mathbb{C}^\times$, we get:

$$\mathbb{A}_{K,f}^\times / K^\times \cong \prod_{v|\infty} \mathcal{O}_{K_v}^\times / \left(K^\times \cap \prod_{v} \mathcal{O}_{K_v}^\times \right) \cong \prod_{v|\infty} \mathcal{O}_{K_v}^\times / \langle -\omega \rangle,$$

where $\langle -\omega \rangle$ is the group of sixth roots of unity.

Furthermore, note that $U(N) \cong \prod_{v|N} \mathcal{O}_{K_v}^\times \prod_{p|N} (\mathbb{Z} + N\mathbb{Z}_p[\omega])^\times$. Moreover note that $(-\omega) U(N) = U(N)$. Thus we have:

$$\mathbb{A}_{K,f}^\times / K^\times U(N) \cong \prod_{v|\infty} \mathcal{O}_{K_v}^\times / \langle -\omega \rangle U(N) \cong \prod_{v|N} \mathcal{O}_{K_v}^\times / \prod_{p|N} (\mathbb{Z} + N\mathbb{Z}_p[\omega])^\times \cong \prod_{v|N} \prod_{p|N} \mathcal{O}_{K_v}^\times / (\mathbb{Z} + N\mathbb{Z}_p[\omega])^\times.$$

Finally, we need to show an isomorphism between $\text{Cl}(\mathcal{O}_N) = I(N)/P(N)$ and $\prod_{p|N} \mathcal{O}_{K_v}^\times / \prod_{p|N} (\mathbb{Z} + N\mathbb{Z}_p[\omega])^\times$. We construct the map:

$$I(N) \to \prod_{v|N} \mathcal{O}_{K_v}^\times \to \prod_{v|p} \mathcal{O}_{K_v}^\times / \prod_{p|N} (\mathbb{Z} + N\mathbb{Z}_p[\omega])^\times.$$

Let $(k_0) \in I(N)$ be an ideal. Then we can map $k_0 \to (k_0)_{v|N}$. After taking the projection map, we want to look at the kernel of the composition $I(N) \to \prod_{v|p} \mathcal{O}_{K_v}^\times / \prod_{p|N} (\mathbb{Z} + N\mathbb{Z}_p[\omega])^\times$.

This consists of ideals $(k_0) \in I(N)$ such that $k_0 \equiv a_p \mod N\mathbb{Z}_p[\omega]$, where $a_p \in \mathbb{Z}$ and $(a_p, p) = 1$.

By the Chinese remainder theorem, we can find $a \in \mathbb{Z}$ such that $a \equiv a_p \mod N$ for all $p|N$. Then we have $k_0 \equiv a \mod N\mathbb{Z}_p[\omega]$ for all $a \in \mathbb{Z}$. Thus $(k_0) \in P(N)$ and $P(N)$ is the kernel of the above map. Thus we get:

$$I(N)/P(N) \cong \prod_{v|p} \mathcal{O}_{K_v}^\times / \prod_{p|N} (\mathbb{Z} + N\mathbb{Z}_p[\omega])^\times,$$

which proves our claim.
Another easy result that we will use is the following straight forward application of the Chinese remainder theorem. This map will be important in our proof:

Lemma 2.2. For any \((l_{1,v})_{v|N} \in \prod_{v|N} \mathcal{O}_{K_v}^\times\), we can find \(k_1 \in \mathcal{O}_K\) such that for all \(v|N\) we have:

\[
l_{1,v} \equiv k_1 \mod N\mathcal{O}_{K_v},
\]

Proof: For any \(v|N\) we can find \(a_{1,v} \in \mathcal{O}_K\) such that \(l_{1,v} \equiv a_{1,v} \mod N\mathcal{O}_{K_v}\). We will pick for \(N = \prod_{v|N} p_v^{e_v}\), where \(p_v\) is the prime corresponding to the place \(v\):

\[
k_1 = \sum_{v|N} a_{1,v} m_v \frac{N}{p_v},
\]

where \(m_v \in \mathcal{O}_K\), \(m_v \frac{N}{p_v} \equiv 1 \mod p_v^{e_v}\). We can find such an inverse since \(\mathcal{O}_K\) is a PID, thus \(\mathcal{O}_K/N\mathcal{O}_K \cong \prod_{v|N} \mathcal{O}_K/p_v^{e_v}\). \(\) \(\)

2.2.1 Characterization of ideals in ring class fields

Recall that a primitive ideal is an ideal not divisible by any integral ideal. It is easy to prove:

Lemma 2.3. Any primitive ideal of \(\mathcal{O}_K\) can be be written in the form \(A = \langle a, \frac{b+\sqrt{-3}}{2} \rangle\) as a \(\mathbb{Z}\)-module, where \(b\) is an integer (determined modulo 2a) such that \(b^2 \equiv -3 \mod 4a\) and \(Nm A = a\). This implies that for \(A = \langle \alpha \rangle\), we have \(\|\alpha\| = a\).

Conversely, given an integer satisfying the above congruence and \(A\) defined as above, we get that \(A\) is an ideal in \(\mathcal{O}_K\) of norm \(a\).

2.3 The cubic character

In the following we will define the cubic character \(\chi_D\) and check that it is well defined on the class group \(\text{Cl}(\mathcal{O}_D)\). Let \(\omega = \frac{-1+\sqrt{-3}}{2}\) be a fixed cube root of unity. Then we can define the cubic residue character following Ireland and Rosen [8].

Definition 2.1. For \(\alpha \in \mathbb{Z}[\omega]\) such that \(\alpha\) is prime to 3, we define a cubic residue character \(\chi_\alpha : I(3\alpha) \to \{1, \omega, \omega^2\}\) on the fractional ideals of \(K\) prime to \(3\alpha\). For every prime ideal \(p\) of \(\mathbb{Z}[\omega]\), the character is defined to be:

\[
\chi_\alpha(p) = \omega^j,
\]

for \(j \in \{0, 1, 2\}\) such that \(\omega^j\) is the unique third root of unity for which:

\[
\alpha^{(Nm p-1)/3} \equiv \omega^j \mod p, \text{ for } Nmp \neq 3.
\]

It is further defined multiplicatively on the fractional ideals of \(I(3\alpha)\).

Notation: We will also denote \(\chi_D(\cdot) = \langle \frac{\mathcal{D}}{\cdot} \rangle_3\).

First let us check that this definition makes sense. Since \(K\) is a PID, any prime ideal \(p\) has a generator of the form \(\pi = a + b\omega \in \mathbb{Z}_p[\omega]\). Then the norm \(Np = a^2 - ab + b^2\) which is congruent to 0, 1 \mod 3. Then, if \(p\) is prime to 3, we must have \(Np \equiv 1 \mod 3\), implying that 3 divides \(Np - 1\).
Furthermore, the group \((\mathbb{Z}[\omega]/p\mathbb{Z}[\omega])^\times \) has \(Nmp - 1 \) elements, thus we have \(\alpha^{Nm p^{-1}} \equiv 1 \mod p \). Then since \(Nmp - 1 \) is divisible by 3, we can factor out:

\[
p|\left(\alpha^{(Nm p^{-1})/3} - 1\right)\left(\alpha^{(Nm p^{-1})/3} - \omega\right)\left(\alpha^{(Nm p^{-1})/3} - \omega^2\right)
\]

Finally since \(K = \mathbb{Q}[\sqrt{-3}] \) is an UFD, \(p \) divides exactly one of these terms, say \(\alpha^{(Nm p^{-1})/3} - \omega \). Thus we can take \(\chi_\alpha(p) = \omega^i \) and it is well-defined.

Following Ireland and Rosen, it is natural to look at the primary elements of \(K \):

Definition 2.2. For a prime ideal \(p \) of \(K \) we call \(\pi \) primary if \(\pi \) generates \(p \) a prime ideal and \(\pi \equiv 2 \mod 3 \).

Lemma 2.4. For any ideal \(A \) prime to 3, we can find a generator \(\alpha \in \mathbb{Z}[\omega] \) such that \(\alpha \equiv 2 \mod 3 \).

Proof: Since \(K \) is a PID, we can find a generator \(\alpha_0 = a + b\omega \) be a generator of \(A \). Then note that \(\pm\alpha_0, \pm\alpha_0\omega, \pm\alpha_0\omega^2 \) also generate the ideal \(A \) and exactly one of them is \(\equiv 2 \mod 3 \).

Remark 2.1. Note that from the definition of \(\chi_\pi \) we have \(\chi_{\pi_1}(\pi_2) = \chi_{-\pi_1}(\pi_2) \), as \(\pi_1^{(Nm \pi_2 - 1)/3} = (\pi_2)^{(Nm \pi_2 - 1)/3} \) when \(Nm \pi_2 \) is odd and \(\pi_1^{(Nm 2 - 1)/3} = (\pi_1)^{(Nm 2 - 1)/3} \equiv 1 \mod 2 \) when \(\pi_2 = 2 \). Moreover \(\chi_{\pi_1}(\pi_2) = \chi_{\pi_1}(\pi_2) \), as \(\chi_{\pi_1}(1) = 1 \). Then we actually have for any choices of \(\pm \):

\[
\chi_{\pi_1}(\pi_2) = \chi_{\pi_2}(\pi_1)
\]

Theorem 2.1. (Cubic reciprocity law). For \(\pi_1, \pi_2 \equiv 2 \mod 3 \) primary generators of primes \(p_1, p_2, N\pi_1 \neq N\pi_2 \) and \(N\pi_1, N\pi_2 \neq 3 \), then:

\[
\left(\frac{\pi_1}{\pi_2}\right)_3 = \left(\frac{\pi_2}{\pi_1}\right)_3
\]

Corollary 2.1. For \(\pi_i, \pi_i' \equiv 2 \mod 3 \), we have

\[
\chi_{\pi_1 \ldots \pi_n}(\pm \pi_1' \ldots \pi_n') = \chi_{\pi_1 \ldots \pi_n}(\pm \pi_1 \ldots \pi_n)
\]

Proof: We will first show that \(\chi_{\pi_1 \ldots \pi_n}(\pi_i') = \chi_{\pi}(\pi_1 \ldots \pi_n) \). By definition, we have:

\[
\chi_{\pi_1 \ldots \pi_n}(\pi_i') \equiv (\pi_1 \ldots \pi_n)^{(Nm \pi_i - 1)/3} \mod \pi_i'
\]

Thus, we have:

\[
\chi_{\pi_1 \ldots \pi_n}(\prod_{i=1}^{m} \pi_i') = \prod_{i=1}^{m} \chi_{\pi_1 \ldots \pi_n}(\pi_i') = \prod_{i=1}^{m} \prod_{j=1}^{n} \chi_{\pi_j}(\pi_i')
\]

Using the cubic reciprocity, we have \(\chi_{\pi_i}(\pi_i') = \chi_{\pi_i'}(\pi_i) \), thus we get \(\prod_{i=1}^{m} \prod_{j=1}^{n} \chi_{\pi_j}(\pi_i') = \prod_{i=1}^{m} \prod_{j=1}^{n} \chi_{\pi_i'}(\pi_j) \), which furthermore implies:

\[
\chi_{\pi_1 \ldots \pi_n}(\prod_{i=1}^{m} \pi_i') = \chi_{\pi_i' \ldots \pi_m}(\prod_{j=1}^{n} \pi_i).
\]

Note that we can always write the elements of \(\mathbb{Z}[\omega] \) that are congruent to \(\pm 1 \mod 3 \) as a product of primary elements up to sign. Using the above corollary for \(\alpha \) and \(D \), we get:
Corollary 2.2. If \(\alpha \equiv \pm 1 \mod 3 \) and \(D \) an integer prime to 3, then we have:

\[
\chi_D(\alpha) = \chi_\alpha(D)
\]

Proof: Since \(\alpha, D \equiv \pm 1 \mod 3 \), we can write each of them in the form \(\alpha = \pm \prod_{i=1}^{n} \pi_i \) and \(D = \pm \prod_{j=1}^{m} \pi_j \).

Then using the previous Corollary and Remark 2.1, we have
\[
\chi_{\pm \prod_{i=1}^{n} \pi_i} (\pm \prod_{j=1}^{m} \pi_j) = \chi_{\pm \prod_{i=1}^{n} \pi_i} (\pm \prod_{i=1}^{n} \pi_i).
\]

Lemma 2.5. Let \(\alpha \) be prime to 3 and \(p \) a prime ideal prime to 3. Then the cubic residue can also be rewritten as:

\[
\chi_\alpha(p) = \left(\frac{\alpha}{\pi}\right)^{(N\pi - 1)/3} \mod \pi
\]

Proof: We have by definition \(\chi_\alpha(p) \equiv \alpha^{(N\pi - 1)/3} \equiv \omega^i \mod p \). Taking the complex conjugate we have \(\overline{\alpha^{(N\pi - 1)/3}} \equiv \overline{\omega^i} \mod p \). Then by taking the ratio we get:

\[
\left(\frac{\alpha}{\pi}\right)^{(N\pi - 1)/3} \equiv \frac{\overline{\omega^i}}{\omega^i} \mod p
\]

Thus we have \(\chi_\alpha(p) \equiv \alpha^{(N\pi - 1)/3} \equiv \omega^i \equiv \left(\frac{\overline{\alpha}}{\alpha}\right)^{(N\pi - 1)/3} \mod p \) which finishes the proof of the lemma.

Corollary 2.3. Let \(D = \prod_{i=1}^{m} p_i \). For \(\alpha \in \mathcal{P}_{\mathbb{Z}, 3D} \), we have \(\chi_D(\alpha) = 1 \). Thus \(\chi_D \) is well defined on \(\text{Cl}(\mathcal{O}_{3D}) \).

Proof: Recall from the previous Lemma that if \(\alpha \equiv \pm 1 \mod 3 \), then we have:

\[
\chi_\alpha(p) \equiv \left(\frac{\alpha}{\pi}\right)^{(N\pi - 1)/3} \mod p
\]

Let \(p | D \). Since \(\alpha \in \mathcal{P}_{\mathbb{Z}, 3D} \), we have \(\alpha \equiv a \mod 3D \) for some \(a \in \mathbb{Z} \) and \((a, 3D) = 1 \). Thus \(\alpha \equiv a \mod p \), which also \(\alpha \equiv a \mod p \), which implies:

\[
\chi_\alpha(p) \equiv \left(\frac{\alpha}{a}\right)^{(N\pi - 1)/3} \equiv \left(\frac{\overline{\alpha}}{a}\right)^{(N\pi - 1)/3} \equiv 1 \mod p
\]

Thus we get \(\chi_\alpha(p) = 1 \) for all \(p | D \). Thus we have \(\chi_D(\alpha) = 1 \). Moreover, using Corollary 2.2, we have \(\chi_D(\alpha) = \prod_{i=1}^{m} \chi_{p_i}(\alpha) = \prod_{i=1}^{m} \chi_\alpha(p_i) = 1 \).

Remark 2.2. For any fractional ideal \(\mathcal{A} \) of \(K \), when we write \(\chi_D(\mathcal{A}) \) we will mean:

\[
\chi_D(\mathcal{A}) := \chi_D(\alpha),
\]

where \(\alpha \) is the unique generator of \(\mathcal{A} \) such that \(\alpha \equiv 1 \mod 3 \).
2.3.1 Relating χ_D to the Galois conjugates of $D^{1/3}$.

There is another way to look at the cubic character using the Galois conjugates of $D^{1/3}$. We have the following lemma:

Lemma 2.6. Let D be an integer prime to 3. Then for a prime ideal p of K prime to $3D$, we have:

$$D^{1/3}\chi_D(p) = (D^{1/3})^{\sigma_p},$$

where $\sigma_p \in \text{Gal}(\mathbb{C}/K)$ is the Galois action corresponding to the ideal p in the Artin correspondence.

Proof: It is enough to prove the claim for $\sigma_i \in \text{Gal}(F/K)$, where $L = K[D^{1/3}, D^{1/3}\omega, D^{1/3}\omega^2]$. Let $\sigma_p = \left(\frac{L/K}{p}\right)$ the Frobenius element corresponds to p the prime ideal of \mathcal{O}_K. Then using the definition of the Frobenius element for $D^{1/3}$, we get:

$$(D^{1/3})^{\sigma_p} = (D^{1/3})^{\text{Nm}_p} \mod p\mathcal{O}_L$$

Furthermore, note that $(D^{1/3})^{\text{Nm}_p} = D^{1/3}D^{(\text{Nm}_p-1)/3} = D^{1/3}\chi_D(p) \mod p\mathcal{O}_L$. Since the Galois conjugates of $D^{1/3}$ are the roots of $x^3 - D$, the Galois conjugate $(D^{1/3})^{\sigma_p} \in \{D^{1/3}, D^{1/3}\omega, D^{1/3}\omega^2\}$ and from the congruences above we get:

$$(D^{1/3})^{\sigma_p} = D^{1/3}\chi_D(p)$$

Corollary 2.4. Let D be an integer prime to 3 and A an ideal of K prime to $3D$. Moreover, let $\sigma_A \in \text{Gal}(K^{ab}/K)$ be the Galois action corresponding to the ideal A through the Artin map. Then for the cubic character χ_D, we have:

$$(D^{1/3})^{\sigma_A} = D^{1/3}\chi_D(A).$$

Proof: Let $A = \prod_j p_j^{f_j}$ the prime decomposition of A in K. Note that $\chi_D(p_i) \in K$, thus it is preserved by the Galois action. Applying the above Lemma we get:

$$((D^{1/3})^{\sigma_{p_i}})^{\sigma_{p_j}} = (D^{1/3}\chi_D(p_i))^{\sigma_{p_j}} = D^{1/3}\chi_D(p_j)^{\sigma(p_j)}$$

Using this step repeatedly, we get $(D^{1/3})^{\sigma_A} = D^{1/3}\chi_D(A) = D^{1/3}\chi_D(A)$.

Remark 2.3. Note that for the complex conjugate character $\overline{\chi_D}$ we have a similar result:

$$(D^{2/3})^{\sigma_A} = D^{2/3}\overline{\chi_D(A)}.$$ (7)

2.4 Hecke characters

There are two equivalent ways of defining a Hecke character: classically and adelically. We define the **classical Hecke character** over K to be $\tilde{\chi} : I(f) \to \mathbb{C}^\times$ a character from the set of fractional ideals prime to f, where f is a nonzero ideal of \mathcal{O}_K. We further say that $\tilde{\chi}$ has
infinity type \(\tilde{\chi}_\infty \) if it is characterized by the condition that on the set of principal ideals \(P(f) \) prime to \(f \) it satisfies the condition:

\[
\tilde{\chi}((\alpha)) = \bar{\epsilon}(\alpha)\tilde{\chi}_\infty^{-1}(\alpha),
\]

where:

- \(\bar{\epsilon} : (\mathcal{O}_K/f\mathcal{O}_K)^\times \to \mathbb{T} \) is called the \((\mathcal{O}_K/f\mathcal{O}_K)^\times\)-type character i.e. \(\bar{\epsilon} \) is a character taking values in a finite group \(\mathbb{T} \).
- \(\tilde{\chi}_\infty \) is an infinity type continuous character i.e. \(\tilde{\chi}_\infty : \mathbb{C}^\times \to \mathbb{C}^\times \) is a continuous character.

We define the **idelic Hecke character** to be a continuous character \(\chi : \mathbb{A}^\times /K^\times \to \mathbb{C}^\times \).

There is a unique correspondence between the idelic and the classical Hecke characters. The correspondence can be explicitly constructed in the following way:

- \(\tilde{\chi}(\mathcal{O}_K^\times \omega_v) := \chi(p_v), v \nmid f \)
- \(\tilde{\chi}_\infty \) is determined by \(\chi_\infty \)
- \(\tilde{\chi}_v \) with \(v \mid f \) is determined by Weak Approximation Theorem.

2.4.1 Converting the characters.

We want to compute a formula for \(L(s,\chi) \), where \(\chi : \mathbb{A}_K^\times /K^\times \to \mathbb{C}^\times \) is the Hecke character defined by \(\chi = \chi_3D\varphi \). Here \(\chi_3D\varphi \) are the adelic correspondent Hecke characters of the classical Hecke characters:

1. \(\chi_3D : I(3D) \to \{1,\omega,\omega^2\} \) is the cubic character.

2. \(\varphi : I(3) \to \mathbb{C}^\times \) is the Hecke character defined by \(\chi((\alpha)) = \alpha \) for \(\alpha \equiv 1 \mod 3 \).

By abuse of notation, I will use \(\varphi, \chi_3D \) both for the classical and the adelic Hecke characters. This should be clear from the context. We can rewrite the two characters adelically:

1. \(\varphi : \mathbb{A}_K^\times \to \mathbb{C}^\times \) such that:

\[
\begin{aligned}
\varphi_v(p) &= -p, \text{ if } v|p, p \equiv 2 \mod 3, \\
\varphi_v(\mathcal{O}_K^\times) &= 1, \text{ if } v|p, p \equiv 1 \mod 3, \\
\varphi_v(\omega_v) &= \omega_v, \text{ where } \omega_v \text{ uniformizer of } \mathcal{O}_{K_v}, \omega_v \equiv 1 \mod 3, \\
\varphi_{\infty}(x_{\infty}) &= x_{\infty}^{-1}, \text{ if } v = \infty, \\
\varphi_v(\omega_v) \text{ can be determined from the Weak approximation theorem, } & \text{ if } v = \sqrt{-3}\mathbb{Z}
\end{aligned}
\]

2. Note that \(\chi_3D \) is trivial on \(P_{2,3D} \), thus \(\chi_3D \) is a character on \(Cl(\mathcal{O}_{3D}) \). We will define the character by making it trivial on \(\mathbb{C}^\times, U(3D) \) and \(K^\times \). Then we can define using Lemma 2.2:

\[
\chi_3D(l) = \chi_3D(l_1) = \chi_3D((k_1)).
\]
More precisely, this will be:

\[
\begin{align*}
\chi_{3D,v}(\overline{w}_v) &= \chi_{3D}(\omega_v), \quad \chi_{3D,v}(O_{K_v}^\times) = 1, \\
\chi_{3D,\infty}(\infty) &= 1, \\
\chi_{3D,v}(\overline{w}_v) \text{ can be determined from the Weak approximation theorem}, & \text{ if } v \mid 3D
\end{align*}
\]

We can generally compute \(\chi_f(l_f)\) in the following way:

Lemma 2.7. If \(\chi = \chi_{3D}\varphi\), let \(l_f = kl_1\), \(k \in K^\times, l_1 \in \prod_v O_{K_v}^\times\). Note that this decomposition is unique up to a unit of \(O_{K_v}^\times\) and pick \(k\) such that \(l_1 \equiv 1 \mod 3\). Moreover take \(k_1 \in K^\times\) such that \(l_1 \equiv k_1 \mod 3O_{K_v}\). Then:

\[
\chi_f(l_f) = k\chi_{3D}((k_1))
\]

Proof: We start by writing:

\[
\chi_f(l_f) = \chi_f(k)\chi_f(l_1) = \chi_{\varphi}(k)^{-1}\chi_{v|3D}(l_1, v)
\]

Moreover, from the Chinese remainder theorem, we can find \(k_1 \in K^\times\) such that \(k_1 \equiv l_1, v \mod 3O_{K_v}\). As we have \(k_1^{-1}l_1 \equiv 1 \mod 3O_{K_v}\) and \(\chi\) is trivial on \((\mathbb{Z} + 3O_{K_v})^\times\) for \(v \mid 3D\), we get \(\chi_v(k_1) = \chi(l_1, v)\). This implies:

\[
\chi_f(l_f) = k\chi_{v|3D}(k_1) = k\chi_{v|3D}(k_1)^{-1}\chi_{\varphi}(k_1)^{-1}
\]

Note that if we write \(k_1 = u \prod_v \omega_v^{r_v}\), where \(u \in O_{K_v}^\times\), we get:

\[
\prod_{v|3D} \chi_v(k_1) = \prod_{v|3D} \chi_v(\omega_v)^{r_v} = \prod_{v|3D} \chi(p_v)^{r_v} = \tilde{\chi}((k_1))
\]

This moreover implies:

\[
\chi_f(l_f) = k\tilde{\chi}((k_1))^{-1}k_1 = kk_1^{-1}k_1\chi_{3D}((k_1)) = k\chi_{3D}((k_1))
\]

3 Computing the value \(L(E_D, 1)\) using Tate’s Zeta function

In this section we will compute the value of \(L(E_D, 1) = L(1, \chi_D\varphi)\), working with \(\chi_D, \varphi\) as automorphic Hecke characters. We will show the following result:

3.0.2 Schwartz-Bruhat functions.

We take \(V = K\) a quadratic vector space over \(\mathbb{Q}\) and \(V_{\mathbb{Q}} = \mathbb{A}_\mathbb{Q} \otimes \mathbb{Q} K\). Then we can define the Schwartz-Bruhat functions \(\Phi = \prod_v \Phi_v, \Phi_v \in S(V_{\mathbb{Q}})\) to be:
Here \(q(z) = |z|^2 \) the usual absolute value on \(\mathbb{C} \).

Remark 3.1. \(\operatorname{char}_{(a+p\mathcal{O}_{K_v})}(m) = \prod_{v|p} \operatorname{char}_{(a+D\mathcal{O}_{K_v})}(m) = \prod_{v|p} \operatorname{char}_{(1+p\mathcal{O}_{K_v})}(a^{-1}m) \) and each \(\operatorname{char}_{(b\mathcal{O}_{K_v})} \) is a locally constant function with compact support. We are taking a linear combination of these Schwartz-Bruhat functions, thus we do get a Schwartz-Bruhat function.

3.0.3 Haar measure.

We pick the usual additive Haar measure:

\[
\begin{align*}
 &d^\times x_v = \frac{dx_v}{|x_v|}, \text{ normalized such that vol}(\mathcal{O}^\times_{K_v}) = 1, \quad \text{if } v \nmid \infty \smallsetminus 3D
 \\
 &d^\times z = \frac{dz}{|z|}, \text{ usual Lebesgue measure}, \quad z \in \mathbb{C}, |z|_{\mathbb{C}} = x^2 + y^2, \text{ for } z = x + yi
\end{align*}
\]

We also define the multiplicative Haar measure:

\[
\text{XXX}
\]

3.1 Zeta functions

We recall Tate’s zeta function. For a Hecke character \(\chi_v : K_v^\times \to \mathbb{C}^\times \) and a Schwartz-Bruhat function \(\Phi_v \in \mathcal{S}(K_v) \), it is defined locally to be:

\[
Z_v(s, \chi_v, \Phi_v) = \int_{K_v^\times} \chi_v(\alpha_v)|\alpha_v|^s \Phi_v(\alpha_v)d^\times \alpha_v,
\]

where \(d^\times \alpha_v \) is the multiplicative Haar measure defined above.

We define globally \(Z(s, \chi, \Phi) = \prod_v Z_v(s, \chi_v, \Phi_v) \). As a global integral, this is:

\[
Z(s, \chi, \Phi) = \int_{\mathcal{A}_K^\times} \chi(\alpha)|\alpha|^s \Phi(\alpha)d^\times \alpha,
\]

Lemma 3.1. For all \(s \) and \(\Phi \) Schwartz-Bruhat functions chosen as above, we have:

\[
L_f(s, \chi_D \varphi) = Z_f(s, \chi_D \varphi, \Phi)V_{3D},
\]

where \(V_{3D} = \operatorname{vol}(1 + 3\mathbb{Z}_3[\omega]) \operatorname{vol}(\mathbb{Z} + D \prod_{p|D} \mathbb{Z}_p[\omega])^\times = \frac{1}{6} \prod_{p|D} \left(\frac{1}{(p - (\frac{3}{2}))} \right) \)

Proof: From Tate’s thesis, we have \(L_f(s, \chi_D \varphi) = Z_f(s, \chi_D \varphi) \prod_{p|3D} L_p(s, \chi_D \varphi_p) \).

Since \(\chi_D \varphi \) is ramified at \(3D \), we have \(L_p(s, \chi_D \varphi_p) = 1 \). We need to compute:
\[Z_p(s, \chi_D \varphi, \Phi_p) = \int_{\mathbb{Q}^*_p} \chi_D, p(\alpha_p) \varphi_p(\alpha_p) |\alpha_p|_p^s \Phi_p(\alpha_p) d^x \alpha_p \]

From the definition for \(p|D \), we have \(\Phi_p = \text{char}_{\mathbb{Z}+3D\mathbb{Z}_p[\omega]} \), the integral reduces to \(Z_p(s, \chi_D \varphi, \Phi_p) = \int_{\mathbb{Q}^*_p} \chi_D, p(\alpha_p) \varphi_p(\alpha_p) |\alpha_p|_p^s d^x \alpha_p \). Note that for \(p \neq 3 \), all the characters \(\chi_D, \varphi \) and \(\left| \cdot \right|_p \)

are unramified, thus we just get the volume \(\text{vol} \left(\mathbb{Z}+3D\mathbb{Z}_p[\omega] \right)^x \).

For \(p = 3 \), we have \(\Phi_p = \text{char}_{\mathbb{Z}+3\mathbb{Z}_3[\omega]} \). Similarly, we get \(\text{vol} \left((1+3\mathbb{Z}_3[\omega])^x \right) \).

We compute the volumes. For \(D \) a product of primes, we have

\[\text{vol} \left((\mathbb{Z}+3D\mathbb{Z}_p[\omega])^x \right) = \text{vol} \left((\mathbb{Z}+p\mathbb{Z}_p[\omega])^x \right) = (p-1) \text{vol} \left(1+p\mathbb{Z}_p[\omega] \right) = \frac{1}{(p-1)^2} \text{vol}(\mathbb{Z}_p^x) \]

Note that \(\text{vol} \left(1+p\mathbb{Z}_p[\omega] \right) = \frac{1}{(p-1)^2} \text{vol}(\mathbb{Z}_p^x) \) when \(p \) is nonsplit and \(\text{vol} \left(1+p\mathbb{Z}_p[\omega] \right) = \frac{1}{(p-1)^2} \text{vol}(\mathbb{Z}_p^x) \) when \(p \) is split. This is computed by writing:

- \(p \) nonsplit: \(\text{vol}(\mathbb{Z}_p[\omega]^x) = \sum \text{vol}(a+b\omega+p\mathbb{Z}_p[\omega]) \), where the sum is taken over all \(a+b\omega \) prime to \(p \) and \(0 \leq a, b \leq p-1 \). We count \(p^2-1 \) of them and we get \(\text{vol}(\mathbb{Z}_p[\omega]^x) = (p^2-1) \text{vol}(1+p\mathbb{Z}_p[\omega]) \).

- \(p \) split: \(\text{vol}(\mathbb{Z}_p[\omega]^x) = \sum \text{vol}(a+b\omega+p\mathbb{Z}_p[\omega]) \). We count similarly \(p^2-2p+1 \) such terms, as \(p \) splits and we have to discard the divisors of \(p \).

For \(p = 3 \), we have \(\text{vol} \left(1+3\mathbb{Z}_3[\omega] \right) = \frac{1}{3} \).

We compute:

- \(\mathbb{Z}_3[\omega] = \mathbb{Z}_3[\sqrt[3]{-3}] = \{ a_0 + a_1 \sqrt[3]{-3} + a_2(-3) + \ldots, 0 \leq a_i \leq 2 \} \)
- \(\text{vol}(\mathbb{Z}_3[\omega])^x = 1 \)
- \((\mathbb{Z}_3[\omega])^x = \bigcup (a_0 + a_1 \sqrt[3]{-3})(1+3\mathbb{Z}_3[\omega]), \) where \(a_0 + a_1 \sqrt[3]{-3} \) is prime to 3. Then we have 6 possibilities and thus \(\text{vol}(1+3\mathbb{Z}_3[\omega]) = \frac{1}{6} \).

By plugging in \(s = 1 \) in the above Lemma, we get:

Corollary 3.1. The finite part of the L-function at \(s = 1 \) equals:

\[L_f(1, \chi_D \varphi) = \frac{1}{6} \prod_{p|D} \frac{1}{(p-\left(\frac{3}{p}\right))} Z_f(1, \chi_D \varphi, \Phi), \]

3.1.1 Computing the finite part of Tate’s Zeta function \(Z_f(s, \chi_D \varphi, \Phi) \)

In this section we will compute the value of \(Z_f(s, \chi_D \varphi, \Phi) \). We begin by rewriting Tate’s zeta function \(Z_f(s, \chi_D \varphi, \Phi) \) as a linear combination of Hecke characters:
Lemma 3.2. For all \(s \in \mathbb{C} \) and the Schwartz-Bruhat functions \(\Phi_f \in \mathcal{S}(\mathbb{A}_{K,f}) \), we have:

\[
Z_f(s, \chi_D \varphi, \Phi_f) = V_{3D} \sum_{\alpha_f \in U(3D) \setminus \mathbb{A}_{K,f}^*} I(s, \alpha_f, \Phi_f) \chi_D(\alpha) \varphi(\alpha),
\]

where \(I(s, \alpha_f, \Phi_f) = \sum_{k \in K^*} \frac{k}{|k|_\mathbb{C}} \Phi_f(k \alpha_f) \).

Proof: By definition, we have \(Z_f(s, \chi_D \varphi, \Phi_f) = \int_{\mathbb{A}_{K,f}^*} \chi_D(\alpha_f) \varphi(\alpha_f) |\alpha_f|^s \Phi_f(\alpha_f) d^s \alpha_f \). We rewrite the integral by taking a quotient by \(K^* \):

\[
Z_f(s, \chi_D \varphi, \Phi_f) = \int_{\mathbb{A}_{K,f}^* / K^*} \sum_{k \in K^*} \chi_D(\alpha_f) \varphi(\alpha_f) |k \alpha_f|^s \Phi_f(k \alpha_f) d^s \alpha_f
\]

Note that from the definition of Hecke characters, we have \(\chi_D(f(k \alpha_f')) = \chi_{D, \infty}(k) \chi_D(\alpha_f') = \chi_D(f(\alpha_f')) \), \(\varphi_f(k \alpha_f') = \varphi_{\infty}(k) \varphi_f(\alpha_f') = k \varphi_f(\alpha_f') \) and \(|k \alpha_f'|^s = |k|_{\infty}^s |\alpha_f'|^s = |k|_\mathbb{C}^{-2s} |\alpha_f'|^s \), where \(| \cdot |_\mathbb{C} \) is the usual absolute value over \(\mathbb{C} \). Then the integral reduces to:

\[
Z_f(s, \chi_D \varphi, \Phi_f) = \int_{\mathbb{A}_{K,f}^* / K^*} \left(\sum_{k \in K^*} \frac{k}{|k|_\mathbb{C}^2} \chi_D(\alpha_f') \Phi_f(k \alpha_f') \right) \varphi_f(\alpha_f') |\alpha_f'|^s d^s \alpha_f
\]

Furthermore, note that our choice of Schwartz-Bruhat functions \(\Phi_f(k \alpha_f') \) are invariant over \(U(3D) \). Similarly:

- \(| \cdot |_f \) is trivial on units, thus on \(U(3D) \)
- \(\chi_D \) is invariant on \(U(3D) \) by definition
- \(\varphi \) is trivial on all the units at all the unramified places. At \(3 \) it is invariant under \(1 + 3 \mathbb{Z}_3 \omega \), thus it is trivial on all of \(U(3D) \)

Thus we can take the quotient by \(U(3D) \) as well. Note that the integral is now a finite sum:

\[
Z_f(s, \chi_D \varphi, \Phi_f) = \text{vol}(U(3D)) \sum_{\alpha_f' \in U(3D) \setminus \mathbb{A}_{K,f}^*/K^*} \left(\sum_{k \in K^*} \frac{k}{|k|_\mathbb{C}^2} \chi_D(\alpha_f') \Phi_f(k \alpha_f') \right) \varphi_f(\alpha_f') |\alpha_f'|^s
\]

Moreover, note that \(\text{vol}(U(3D)) = \text{vol}(1 + 3 \mathbb{Z}_3 \omega) \prod_{p|D} \text{vol}(\mathbb{Z} + D \mathbb{Z}_p[\omega]) = V_{3D} \).

By denoting \(I(s, \alpha_f, \Phi_f) = \sum_{k \in K^*} \frac{k}{|k|_\mathbb{C}^2} \Phi_f(k \alpha_f) \), we get the conclusion of the Lemma.

Combining the Lemma ?? and Lemma ??, we get:

Corollary 3.2. For all \(s \in \mathbb{C} \) and the Schwartz-Bruhat functions \(\Phi_f \in \mathcal{S}(\mathbb{A}_{K,f}) \) chosen above, we have:

\[
L_f(s, \chi_D \varphi) = \sum_{\alpha_f \in U(3D) \setminus \mathbb{A}_{K,f}^*/K^*} I(s, \alpha_f, \Phi_f) \chi_D(\alpha) \varphi(\alpha),
\]
3.1.2 Adelic representatives for $\text{Cl}(O_{3D})$

From the Strong approximation theorem, we can write $\alpha_f \in \mathbb{A}_K^\times = \mathbb{C}^\times K^\times \prod_{v \nmid \infty} O_{K_v}^\times$ in the form $\alpha_f = \gamma_k \kappa \beta_f$, where $\kappa \in K^\times$, $\gamma_k \in \mathbb{C}^\times$ and $\beta_f \in \prod_{v \nmid \infty} O_{K_v}^\times$. Then we can take representatives in $\alpha_f \in U(3D) \backslash \mathbb{A}_K^\times /K^\times$ such that $\alpha_f \in \prod_{v \nmid \infty} O_{K_v}^\times$. Moreover, since we are taking the quotient by the cube roots of six ($\pm 1, \pm \omega, \pm \omega^2$), we can pick α_f such that $\alpha_3 \equiv 1 \mod 3$. This can be done by replacing α_f by $\pm \alpha_f \omega^i$ for some $i, 0 \leq i \leq 2$.

Furthermore, note that representatives α_f, α'_f are in the same class in $U(3D)$ iff $\alpha_f \alpha_f^{-1} \equiv a \mod D\mathbb{Z}_p[\omega]$, for some integer a such that $(a, D) = 1$.

Moreover, we can define an ideal \mathcal{A}_α that is generated by $\kappa \in O_K$ such that

$$\alpha_p \equiv k_\alpha \mod 3D\mathbb{Z}_p[\omega].$$

Note that this ideal is unique only as a class in $\text{Cl}(O_{3D})$.

3.1.3 Connection to the Eisenstein series

Using the above representatives, note that φ_f and $|\cdot|_f$ are trivial for the representatives I_f and the Corollary ?? becomes:

$$L_f(s, \chi_D \varphi) = \sum_{\alpha_f \in U(3D) \backslash \mathbb{A}_K^\times /K^\times} I(s, \alpha_f, \Phi_f) \chi_D(\alpha_f).$$

We will now connect $I(s, \alpha_f, \Phi_f)$ to an Eisenstein series. We define the following classical Eisenstein series of weight 1:

$$E_\varepsilon(s, z) = \sum_{m,n \in \mathbb{Z}} \varepsilon(n) (3mz + n)^3 |3mz + n|^s,$$

where the sum is taken over all $m, n \in \mathbb{Z}$ except for the pair $(0, 0)$, and $\varepsilon = (\frac{-1}{3})$ is the quadratic character associated to the field extension K/\mathbb{Q}.

Note that the Eisenstein series does not converge absolutely. However, we can still compute its value at 0 using the Hecke trick in order for it to converge. We will compute its Fourier expansion in the following section.

Recall that for $\alpha_f \in \prod_{v \nmid \infty} O_{K_v}^\times$, we have the corresponding ideal class $[\mathcal{A}_\alpha]$ in $\text{Cl}(O_{3D})$. Such a representative is $\mathcal{A}_{\alpha_f} = (k_\alpha)$, where $k_\alpha \in O_K$ is chosen such that $k_\alpha \equiv \alpha_p \mod 3D\mathbb{Z}_p[\omega]$ for $p \nmid 3D$. Note that we can pick \mathcal{A}_α to be a primitive ideal.

We can further write \mathcal{A}_α as a \mathbb{Z}-lattice $\mathcal{A}_\alpha = [a, \frac{-b+\sqrt{-3}}{2a}]$, where $a = Nm \mathcal{A}_\alpha$ and b is chosen (not uniquely) such that $b^2 \equiv -3 \mod 4a$. Then we can take the corresponding CM point $z_{\mathcal{A}_\alpha} := \frac{-b+\sqrt{-3}}{2a}$.

Using this notation, we have the following equality:

Lemma 3.3. For $\alpha_f \in \prod_{v \nmid \infty} O_{K_v}^\times$ and any choice of $z_{\mathcal{A}_\alpha}$ as above, we have:
\[I(s, \alpha_f, \Phi_f) = \frac{1}{2} \frac{(\mathrm{Nm} A_\alpha)^{1-s}}{k_\alpha} E_v(s, \frac{1}{z\alpha}) \]

Remark 3.2. Note that the variable \(z\alpha \) on the left hand side is not uniquely defined. However, the function is going to be invariant on the class \([A_\alpha] \) in \(\text{Cl}(\mathcal{O}_{3D}) \).

Proof: Recall that \(I(s, \alpha_f, \Phi_f) = \sum_{k \in \mathcal{O}_K} \frac{k}{|k|_C^2} \Phi_f(k\alpha_f) \). We need to compute \(\Phi_f(k\alpha_f) \). Note that for all finite places \(v \) we have \(\Phi_v(k\alpha_v) \neq 0 \) only for \(k\alpha_v \in \mathcal{O}_{K_v} \), and since \(\alpha_v \in \mathcal{O}_{K_v}^\times \), we must have \(k \in \mathcal{O}_K \) for all \(v \mid \infty \). This implies \(k \in \mathcal{O}_K \) and for all \(v \mid 3D \) we get \(\Phi_v(k\alpha_v) = 1 \) for \(k \in \mathcal{O}_K \). Thus we can rewrite:

\[I(s, \alpha_f, \Phi_f) = \sum_{k \in \mathcal{O}_K} \frac{k}{|k|_C^2} \Phi_f(k\alpha_f) \]

where \(\Phi_{3D} = \prod_{v \mid 3D} \Phi_v \) and \(\alpha_{3D} = (\alpha_v)_{v \mid 3D} \).

We can further compute \(\Phi_v(k\alpha_v) \) for \(v \mid 3D \). Recall that for \(p|D \) we defined \(\Phi_p = \text{char}(\mathbb{Z} + 3D\mathbb{Z}[\omega])^\times \) and \(\Phi_3 = \text{char}(1 + 3\mathbb{Z}[\omega])^\times \). Then we have \(\Phi_{3D}(k\alpha_{3D}) \neq 0 \) iff \(k\alpha_p \in a + 3D\mathbb{Z}[\omega] \) for some integer \((a, p) = 1 \) and for \(p = 3 \) we need \(k\alpha_3 \in 1 + 3\mathcal{O}_{K_3} \).

Recall that we can define \(k_\alpha \) such that \(k_\alpha \equiv a_p \mod 3\mathbb{Z}[\omega] \) for all \(p|3D \). Then the we have \(kk_\alpha \in a + 3D\mathbb{Z}_p[\omega] \) for \((a, p) = 1 \) and \(kk_\alpha \in 1 + 3\mathbb{Z}[\omega] \) as well. Furthermore, for \(k \in \mathcal{O}_K \) we actually have \(\Phi_{3D}(k\alpha_{3D}) = \Phi_{3D}(kk_\alpha) \). Then we can rewrite \(I(s, \alpha_f, \Phi_f) \) using \(k_\alpha \) in the form:

\[I(s, \alpha_f, \Phi_f) = \sum_{k \in \mathcal{O}_K} \frac{k}{|k|_C^2} \Phi_f(kk_\alpha) \]

We can rewrite this further:

\[I(s, \alpha_f, \Phi_f) = \frac{|k_\alpha|_C^2}{k_\alpha} \sum_{k \in \mathcal{O}_K} \frac{kk_\alpha}{|kk_\alpha|_C^2} \Phi_f(kk_\alpha) \]

Finally, we will make this explicit. Note that we must have \(kk_\alpha \in \mathcal{A}_\alpha \), where \(\mathcal{A}_\alpha = (a_\alpha) \), we well as \(kk_\alpha \in a_\alpha + D\mathbb{Z}_p[\omega] \) for some integer \(a_\alpha \), \((a_\alpha, p) = 1 \) as well as \(kk_\alpha \in 1 + 3\mathbb{Z}_3[\omega] \). By the Chinese remainder theorem, we can find an integer \(a \) such that \(a \equiv a_\alpha \mod D \) and \(a \equiv 1 \mod 3 \). Then we have \(kk_\alpha \in a + D \prod_{p|3D} \mathbb{Z}_p[\omega] \cap \mathcal{O}_K \), thus \(kk_\alpha \in P_{2,3D} \cap P_{1,3} \). Here \(P_{2,3D} = \{ k \in K : k \equiv a \mod 3D\mathcal{O}_K \} \) for some integer \(a, \(a, 3D\) = 1 \) and \(P_{1,3} = \{ k \in K : k \equiv 1 \mod 3 \} \). We rewrite:

\[I(s, \alpha_f, \Phi_f) = \frac{|k_\alpha|_C^2}{k_\alpha} \sum_{k \in \mathcal{A}_\alpha \cap P_{2,3D} \cap P_{1,3}} \frac{k}{|k|_C^2} \]

Finally, we want to write the elements of \(\mathcal{A}_\alpha \cap P_{2,3D} \cap P_{1,3} \) explicitly.

Recall that we can write \(\mathcal{A}_\alpha \) as a \(\mathbb{Z} \)-lattice \(\mathcal{A}_\alpha = [a, \frac{b + \sqrt{3}c}{2}] \). Then all of the elements of \(\mathcal{A} \) are of the form \(ma + n\frac{b + \sqrt{3}c}{2} \) for some integers \(m, n \in \mathbb{Z} \). Moreover, note that the intersection of \(\mathcal{A} \) and \(P_{2,3D} \) is \(\{ k \in \mathcal{O}_K : k \equiv n \mod 3D, \text{ for some integer } n, (n, 3D) = 1 \} \) is \(\{ ma + 3Dn\frac{b + \sqrt{3}c}{2} : m, n \in \mathbb{Z} \} \). Further taking the intersection with \(P_{1,3} \), we must have \(ma \equiv 1 \), thus we must have \(m \equiv 1 \mod 3 \). Thus we can rewrite \(I(s, \alpha_f, \Phi_f) \) in the form:
I(s, αf, Φf) = \frac{a^s}{k_α} \sum_{m,n \in \mathbb{Z}, m \equiv 1 \pmod{3}} \frac{1}{(ma + n\frac{b+\sqrt{-3}}{2a})(ma + n\frac{b+\sqrt{-3}}{2a}-2^s)}.

Here we have also used the fact that \(|k_α| = a\). Note that we can further rewrite this as:

I(s, αf, Φf) = a^{-s-1}k_α \sum_{m,n \in \mathbb{Z}, m \equiv 1 \pmod{3}} \frac{1}{(m + n\frac{b+\sqrt{-3}}{2a})(m + n\frac{b+\sqrt{-3}}{2a}-2^s-2^s)}.

Furthermore, by changing \(n \rightarrow -n\) and taking out a factor of \(a^{1-2s}\), we have:

I(s, αf, Φf) = a^{-s}k_α \sum_{m,n \in \mathbb{Z}, m \equiv 1 \pmod{3}} \frac{1}{(m + n\frac{b+\sqrt{-3}}{2a})(m + n\frac{b+\sqrt{-3}}{2a}-2^s-2^s)}.

Note that for \(Re(s) > 1\) the integral converges absolutely, thus we can rewrite it in the form:

I(s, αf, Φf) = \frac{1}{2} a^{-s}k_α \sum_{m,n \in \mathbb{Z}, m \equiv 1 \pmod{3}} \frac{1}{(m + n\frac{b+\sqrt{-3}}{2a})(m + n\frac{b+\sqrt{-3}}{2a}-2^s-2^s-2^s)} + \frac{1}{2} a^{-s}k_α \sum_{m,n \in \mathbb{Z}, m \equiv 2 \pmod{3}} (-m + n\frac{b+\sqrt{-3}}{2a})(-m + n\frac{b+\sqrt{-3}}{2a}-2^s-2^s).

Changing \(n \rightarrow -n\) in the second sum, we get:

\begin{align*}
I(s, αf, Φf) &= \frac{1}{2} a^{-s}k_α \sum_{m,n \in \mathbb{Z}, m \equiv 1 \pmod{3}} \frac{1}{(m + n\frac{b+\sqrt{-3}}{2a})(m + n\frac{b+\sqrt{-3}}{2a}-2^s-2^s-2^s)} \\
&\quad - \frac{1}{2} a^{-s}k_α \sum_{m,n \in \mathbb{Z}, m \equiv 2 \pmod{3}} \frac{1}{(m + n\frac{b+\sqrt{-3}}{2a})(m + n\frac{b+\sqrt{-3}}{2a}-2^s-2^s)}
\end{align*}

Thus we can write for \(Re(s) > 1\) we can rewrite:

I(s, αf, Φf) = \frac{1}{2} a^{-s}k_α \sum_{m,n \in \mathbb{Z}, m \equiv 1 \pmod{3}} \frac{\varepsilon(m)}{(m + n\frac{b+\sqrt{-3}}{2a})(m + n\frac{b+\sqrt{-3}}{2a}-2^s-2^s-2^s)}.

On the right hand side we can recognize the Eisenstein series \(E_2(2s - 2, \frac{z}{a_\mathcal{A}})\), thus we get:

I(s, αf, Φf) = \frac{1}{2} a^{-s}k_α E_2(2s - 2, z\mathcal{A}) = \frac{1}{2} a^{-s}k_α E_2(2s - 2, z\mathcal{A}) = \frac{1}{2} a^{-s}k_α E_2(2s - 2, z\mathcal{A})\frac{(Nm\mathcal{A})^{1-s}}{k_\mathcal{A}}.

By analytic continuation, we can extend the equality to all \(s \in \mathbb{C}\).

Using this Lemma, we can extend the Corollary \ref{corollary} in the form:

Corollary 3.3. For all \(s\), we have:

\[L_f(s, \chi D\varphi) = \frac{1}{2} \sum_{\mathcal{A} \in \mathcal{C}(\mathcal{O}_D)} E_2(2s - 2, z\mathcal{A})\frac{(Nm\mathcal{A})^{1-s}}{k_\mathcal{A}}. \]

Proof: Recall that in the Corollary \ref{corollary} we got

\[L_f(s, \chi D\varphi) = \sum_{\alpha \in U(3\mathcal{D} \setminus K^\times)} I(s, αf, Φf)\chi_D(\alpha)\varphi(\alpha). \]

18
We can rewrite $I(s, \alpha_f, \Phi_f) = \frac{1}{2} a^{1-s}_{\kappa_n} E_\varepsilon(2s - 2, z_{A_n})$ and $\varphi(\alpha) = 1, \chi_D(\alpha) = \chi_D(k_\alpha) = \chi_D(A_\alpha)$. Then we get:

$$L_f(s, \chi_D \varphi) = \sum_{\alpha \in U(3D) \setminus \mathbb{A}_K^K / \mathbb{K}^*} \frac{1}{2} a^{1-s}_{\kappa_\alpha} E_\varepsilon(2s - 2, z_{A_\alpha}) \chi_D(A_\alpha)$$

Finally, consider \mathcal{A} as representatives of $\text{Cl}(\mathcal{O}_{3D})$. Note that by changing $\mathcal{A} \to \overline{\mathcal{A}}$ we just invert the classes of $\text{Cl}(\mathcal{O}_{3D})$. Thus we get the result of the Corollary:

$$L_f(s, \chi_D \varphi) = \sum_{\mathcal{A} \in \text{Cl}(\mathcal{O}_{3D})} \frac{1}{2} a^{1-s}_{\kappa_\mathcal{A}} E_\varepsilon(2s - 2, z_{\mathcal{A}}) \chi_D(\mathcal{A}).$$

3.1.4 Fourier expansion of the Eisenstein series $E_\varepsilon(s, z)$ at $s = 0$.

We want to connect the Eisenstein series $E_\varepsilon(s, z)$ to the theta function $\Theta_K(z)$. In order to do this, we will compute the Fourier expansion of $E_\varepsilon(s, z)$ at $s = 0$.

We will use the Hecke trick to compute the Fourier expansion of the Eisenstein series:

$$E_\varepsilon(s, z) = \sum_{d \leq \varepsilon} \frac{\varepsilon(d)}{(3cz + d)^{2s}}$$

We will follow closely the proof of Pacetti [12]. This is also done by Hecke in [7]. We rederive the formula:

$$E_1(z, s) = \sum_{d \leq \varepsilon} \frac{\varepsilon(d)}{d^{1+2s}} + 2 \sum_{c=1}^{\infty} \sum_{r=0}^{2} \sum_{d \in \mathbb{Z}} \frac{\varepsilon(r)}{(3cz + (3d + r))^2}$$

We divide by 3^{2s+1} and get:

$$E_1(z, s) = 2L(\varepsilon, 1 + 2s) + \sum_{c=1}^{\infty} \sum_{r=0}^{2} \frac{\varepsilon(r)}{3^{2s+1}} \sum_{d \in \mathbb{Z}} \frac{\varepsilon(r)}{\frac{3cz + r}{3} + d}$$

We define for z in the upper-half plane:

$$H(z, s) = \sum_{m \in \mathbb{Z}} \frac{1}{(z + m)^{2s}}$$

Following Shimura [??], for $z = x + yi$ and $s > 0$ we have the Fourier expansion:

$$H(z, s) = \sum_{n=-\infty}^{\infty} \frac{\tau_n(y, s + 1, s)e^{2\pi i n x}}{\Gamma(2s)(4\pi y)^s},$$

where

$$\tau_n(y, s + 1, s) = \begin{cases} n^{2s}e^{-2\pi n y} \sigma(4\pi n y, s + 1, s), & \text{if } n > 0 \\ n|n|^{2s}e^{-2\pi |n| y} \sigma(4\pi |n| y, s + 1), & \text{if } n < 0 \\ \Gamma(2s)(4\pi y)^{-2s}, & \text{if } n = 0, \end{cases}$$

where $\gamma(Y, \alpha, \beta) = \int_0^\infty (t + 1)^{\alpha-1}t^{\beta-1}e^{-Yt}dt$.
For any $s > 0$, $H(z, s)$ converges, thus we can compute the limits of each of its Fourier coefficients:

- $n = 0$: $\lim_{s \to 0} \frac{(2\pi)^{2s+1} \Gamma(2s)}{\Gamma(s)} \frac{1}{\Gamma(s)} (4\pi y)^{-2s} = -2\pi i \lim_{s \to 0} \frac{\Gamma(2s)}{\Gamma(s)}$

- $n < 0$: $\lim_{s \to 0} \frac{(2\pi)^{2s+1}}{\Gamma(s + 1) \Gamma(s)} |n|^{2s} e^{-2\pi |n| y} \int_{0}^{\infty} (t+1)^{s-1} t^s e^{-4\pi |n| y t} dt = -2\pi i e^{-2\pi |n| y} \lim_{s \to 0} \frac{1}{\Gamma(s)} \int_{0}^{\infty} (t+1)^{s} t^s e^{-4\pi |n| y t} dt$

- $n > 0$: $\lim_{s \to 0} \frac{(2\pi)^{2s+1}}{\Gamma(s + 1) \Gamma(s)} n^{2s} e^{-2\pi n y} \int_{0}^{\infty} (t+1)^{s-1} t^s e^{-4\pi n y t} dt$

(COMPUTATION)

We should get:

$$\lim_{s \to 0} H(s, z) = -\pi i - 2\pi i \sum_{n=1}^{\infty} q^n$$

Finally, note that:

$$E_1(s, z) = 2L(\varepsilon, s) + 2 \sum_{c=1}^{\infty} \sum_{r=0}^{2} \frac{\varepsilon(r)}{3^{2s+1}} H \left(\frac{3dz + r}{3}, s \right)$$

Using the Fourier expansion of $H(z, s)$, we get:

$$E_1(s, z) = 2L(\varepsilon, s) + 2 \sum_{c=1}^{\infty} \sum_{r=0}^{2} \frac{\varepsilon(r)}{3^{2s+1}} \sum_{n \in \mathbb{Z}} \tau_n(yn, s + 1, s) e^{2\pi inz} \omega^{nr}$$

Taking the limit as $s \to 0$, and the Fourier expansion above, we get:

$$E_1(s, z) = 2L(\varepsilon, s) + 2 \sum_{c=1}^{\infty} \sum_{r=0}^{2} \frac{\varepsilon(r)}{3} \left(-\pi i - 2\pi i \sum_{n=1}^{\infty} e^{2\pi inz} \omega^{nr} \right)$$

We compute separately the inner sum:

$$\sum_{r=0}^{2} \frac{\varepsilon(r)}{3} \left(-\pi i + \sum_{n=1}^{\infty} e^{2\pi inz} \omega^{nr} \right) = -2\pi i \sum_{n=1}^{\infty} e^{2\pi inz} \varepsilon(n) 2 \sum_{r=0}^{2} \omega^{nr} \varepsilon(rn) = -2\pi i G(\varepsilon) \sum_{n=1}^{\infty} e^{2\pi inz} \varepsilon(n),$$

where $G(\varepsilon) = \sum_{r=0}^{2} \varepsilon(r) \omega^r = \sqrt{-3}$ is the Gaussian quadratic sum corresponding to ε.

Then we get:

$$E_1(0, z) = 2L(\varepsilon, 1) - \frac{4\pi i \sqrt{-3}}{3} \sum_{c=1}^{\infty} \sum_{n=1}^{\infty} e^{2\pi inz} \varepsilon(n) = 2L(\varepsilon, 1) + \frac{4\pi \sqrt{3}}{3} \sum_{N=1}^{\infty} \left(\sum_{m|N} \varepsilon(m) \right) e^{2\pi inz}$$

20
Since ε is a quadratic character, we can compute $L(1, \varepsilon) = \frac{\pi \sqrt{3}}{9}$ (see Kowalski [?]). This gives us the Fourier expansion:

$$E_1(0, z) = \frac{2\pi \sqrt{3}}{9} \left(1 + 6 \sum_{N=1}^{\infty} \left(\sum_{m|N} \varepsilon(m) \right) e^{2\pi i Nz} \right)$$

3.1.5 Connection to the theta function $\Theta_K(z)$.

Recall the theta function Θ_K associated to the number field K:

$$\Theta_K(z) = \sum_{a, b \in \mathbb{Z}} e^{2\pi i (a^2 - ab + b^2)z}.$$

Equivalently, we can rewrite the theta function in the form: $\Theta_K(z) = 1 + 6 \sum_{A} e^{2\pi i NmA z}$, where we sum over all ideals A. Thus we have the Fourier expansion for Θ_K:

$$\Theta_K(z) = 1 + 6 \sum_{n \geq 1} c(n)q^n,$$

where $c(n)$ is the number of ideals of norm n. We will show the following version of Siegel-Weil theorem:

Theorem 3.1. For $E_\varepsilon(s, z)$ defined in the previous section and ε the quadratic character corresponding to to the extension K/\mathbb{Q}, we have:

$$E_\varepsilon(0, z) = 2L(0, \varepsilon)\Theta_K(z)$$

The proof consists of comparing the Fourier expansions of the two sides. This is mainly going to be based on the lemma below:

Lemma 3.4. For $n \geq 1$ then for the ideals in \mathcal{O}_K we have:

$$\sum_{d|n} \varepsilon(d) = \# \text{ideals of norm } n$$

Proof: We first show the result for powers of primes p^s. We consider three cases:

If $p \equiv 1 \mod 3$, then there are two ideals of norm p: $(a + b\omega)$ and $(a - b\omega)$ such that $a^2 - ab + b^2 = p$. Then we have $k + 1$ ideals of norm p^k: $(a + b\omega)^i(a + b\omega)^{k-i}$ for $0 \leq i \leq k$. Moreover, since $\varepsilon(p) = 1$, we have $(1 + \varepsilon(p) + \ldots + \varepsilon(p^k)) = k + 1$.

If $p \equiv 2 \mod 3$, then there are no ideals of norm p. Thus, if k is even, we have exactly one ideal of norm p^k: $A = (p^{k/2})$. In this case $(1 + \varepsilon(p) + \ldots + \varepsilon(p^k)) = 1 - 1 + \ldots + 1 = 1$. If k is odd, we have no ideals of norm p^{2k+1}. Moreover $(1 + \varepsilon(p) + \ldots + \varepsilon(p^k)) = 1 - 1 + \ldots - 1 = 0$.

If $p = 3$, then we have exactly one ideal of norm 3^k, namely the ideal $(\sqrt{-3})$. Moreover $\varepsilon(3) = 0$, thus $(1 + \varepsilon(3) + \ldots + \varepsilon(3^k)) = 1$.

It is easy to extend the result to all integers. As ε is a character, we have:

$$\sum_{d|n} \varepsilon(d) = \prod_{p|n} (1 + \varepsilon(p) + \ldots + \varepsilon(p)^{c_p}),$$

21
where \(n = \prod p_i^{e_i} \), \(e_i \geq 1 \) and \(p_i \) are primes. If we have any ideal \(\mathcal{A} \) of norm \(n \), then
\[
\mathcal{A} = \prod \mathfrak{p}_i^{e_i},
\]
and we must have \(n = \prod N\mathfrak{p}_i^{e_i} \). Moreover, we have \# ideals of norm \(n = \prod \# \text{ideals of norm } (N\mathfrak{p}_i)^{e_i} \), which finishes the proof.

We are ready to state the proof of the theorem. Using the above Lemma we can rewrite the Fourier expansion of \(\Theta_K \) as:
\[
\Theta_K(z) = 1 + 6 \sum_{N=1}^{\infty} \left(\sum_{m|N} \varepsilon(m) \right) e^{2\pi i N z}
\]

Multiplying by a factor of \(\frac{2\sqrt{3}}{9} \), we recognize the Eisenstein series \(E_\varepsilon(0, z) \). Thus it implies \(E_\varepsilon(0, z) = \frac{2\sqrt{3}}{9} \Theta_K(z) \). Note that this is the same as:
\[
E_\varepsilon(0, z) = 2L(1, \varepsilon)\Theta_K(z)
\]

3.1.6 Final formula for \(L(1, \chi_D \varphi) \)

Applying Corollary ?? for \(s = 1 \) we get:
\[
L_f(1, \chi_D \varphi) = \frac{1}{2} \sum_{\mathcal{A} \in \text{Cl}(\mathcal{O}_D)} \frac{1}{k_\mathcal{A}} E_\varepsilon(0, Dz_\mathcal{A}) \chi_{3D}(\mathcal{A})
\]

Furthermore, from Theorem 3.1 this is the same as:
\[
L_f(1, \chi_D \varphi) = \frac{\pi \sqrt{3}}{9} \sum_{\mathcal{A} \in \text{Cl}(\mathcal{O}_D)} \frac{1}{k_\mathcal{A}} \Theta_K(Dz_\mathcal{A}) \chi_{3D}(\mathcal{A})
\]

We need one more step before rewriting the formula as a trace. This is going to be the following lemma:

Lemma 3.5. For \(\mathcal{A} = \left[a, \frac{-b + \sqrt{-3}}{2} \right] \) a primitive ideal of norm \(N\mathcal{A} = a \), with generator \(\mathcal{A} = (k_\mathcal{A}) \), where \(k_\mathcal{A} \equiv 1 \mod 3 \), we have:
\[
\Theta_K \left(\frac{-b + \sqrt{-3}}{2a} \right) \frac{k_\mathcal{A}}{a} = \Theta_K \left(\frac{-1 + \sqrt{-3}}{2} \right)
\]

Proof: Since \(\mathcal{A} = \left[a, \frac{-b + \sqrt{-3}}{2} \right] \) as a \(\mathbb{Z} \)-lattice, we can write its generator \(k_\mathcal{A} \) in the form \(k_\mathcal{A} = ma + 3n \frac{-b + \sqrt{-3}}{2} \) for some integers \(m, n \). Moreover, \(k_\mathcal{A} = m - 3n \frac{b + \sqrt{-3}}{2} \) and \(\frac{k_\mathcal{A}}{a} = m - 3n \frac{b + \sqrt{-3}}{2a} \). Moreover, since \(k_\mathcal{A} \) is the generator of a primitive ideal, we have \(\gcd(m, 3n) = 1 \). Then we can find through the Euclidean algorithm integers \(A, B \) such that \(mA + 3nB = 1 \), which makes \(\left(\begin{array}{c} A \\ -3n \end{array} \right) m \) a matrix in \(\Gamma_0(3) \). Since \(\Theta \) is a modular form of weight 1 for \(\Gamma_0(3) \), we have:
\[
\Theta_K \left(\frac{A - \frac{b + \sqrt{-3}}{2a}}{-3n \frac{-b + \sqrt{-3}}{2a} + m} \right) = \left(m - 3n \frac{-b + \sqrt{-3}}{2a} \right) \Theta_K \left(\frac{-b + \sqrt{-3}}{2a} \right)
\]
Noting that \(-3n\frac{-b+\sqrt{-3}}{2a}+m = k_A/a = 1/\kappa_A\), we can compute \(A\frac{-b+\sqrt{-3}}{2a}+B = (A\frac{-b+\sqrt{-3}}{2a}+Ba)\kappa_A\). This is \((aB + A\frac{-b+\sqrt{-3}}{2a})(ma + 3n\frac{b+\sqrt{-3}}{2})/a\). After expanding, we get:
\[-3nA^2 + 3 + abB + aB + \frac{b(-mA + 3nB) + \sqrt{-3}}{2}\]

Note that \(mA + 3nB = 1\) implies that \(mA\) and \(3nB\) have different parities. Also we chose \(b\) odd, since \(b^2 + 3 \equiv 0 \mod 4a\). Then we note that \(-3nA^{b^2+3} + abB + \frac{b(-mA + 3nB + 1)}{2} \in \mathbb{Z}\) and thus using the period 1 of \(\Theta_K\) we get:
\[
\Theta_K \left(A\frac{-b+\sqrt{-3}}{2a} + B \right) = \Theta_K \left(\frac{-1 + \sqrt{-3}}{2} \right)
\]

This finishes the proof.

Note that the Lemma above is equivalent to \(\Theta_K(\tau_A) = \kappa_A \Theta_K(\omega)\), where \(\tau_A = \frac{-b+\sqrt{-3}}{2a}\). Then we can rewrite (9) as:

Proposition 3.1.

\[
L_f(E_D, 1) = \frac{\pi\sqrt{3}}{9} \Theta_K(\omega) \sum_{A \in \text{Cl}(\mathcal{O}_{3D})} \frac{\Theta_K(D\tau_A)}{\Theta_K(\tau_A)} \chi_{3D}(A)
\]

(9)

3.1.7 Turning the formula into a trace.

We will rewrite (9) as a trace. First, let \(f(z) = \frac{\Theta_K(Dz)}{\Theta_K(z)}\). This is a modular function for \(\Gamma_0(3D)\).

We will prove in the following section ?? the following proposition:

Proposition 3.2. Take \(A\) representative ideals for \(\text{Cl}(\mathcal{O}_{3D})\). We can take all \(A\) to be primitive and we can write them in the form \(A = [a, \frac{-b+\sqrt{-3}}{2a}]\). Then the Galois conjugates of \(f(\omega)\) are:

\[
f(\omega)^{\sigma_A^{-1}} = \frac{\Theta(D\frac{-b+\sqrt{-3}}{2a})}{\Theta(\frac{-b+\sqrt{-3}}{2a})}
\]

We will also rewrite the character \(\chi_D\) to include a trace. In the Introduction we have also showed in Lemma ?? that \((D^{1/3})^{\sigma_A^{-1}} = D^{1/3}\chi_D(A)\).

Then the formula (9) becomes:

\[
L_f(E_D, 1) = \frac{\pi\sqrt{3}}{9} D^{-1/3} \Theta_K(\omega) \sum_{A \in \text{Cl}(\mathcal{O}_{3D})} \left(D^{1/3} \frac{\Theta_K(D\omega)}{\Theta_K(\omega)} \right)^{\sigma_A^{-1}}
\]

(10)

Moreover, we also have \(D^{1/3} \in H_{3D}\). See Cohn [3] for a proof. Thus we can rewrite the sum on the left hand side as \(\text{Tr}_{H_{3D}/K} \left(D^{1/3} \frac{\Theta_K(D\omega)}{\Theta_K(\omega)} \right)\). We can compute the extra terms as well.
• Rodriguez-Villegas and Zagier in [1] cite $\Theta_K\left(\frac{-9+\sqrt{-3}}{18}\right) = -3\Gamma\left(\frac{1}{3}\right)^3/(2\pi)^2$. We will use several properties of Θ_K proved in section ???. We can rewrite $\Theta_K\left(\frac{-9+\sqrt{-3}}{18}\right)$ as $\Theta_K\left(\frac{-3+\sqrt{3}}{6} - \frac{1}{3}\right)$ and using formula ??, we get:

$$
\Theta_K\left(\frac{-3+\sqrt{3}}{18} - \frac{1}{3}\right) = (1 - \omega^2)\Theta_K\left(\frac{-3+\sqrt{3}}{6}\right) + \omega^2\Theta_K\left(\frac{-3+\sqrt{3}}{18}\right)
$$

Using $\Theta_K\left(\frac{-3+\sqrt{3}}{6}\right) = 0$, we get $\Theta_K\left(\frac{-9+\sqrt{-3}}{18}\right) = \omega^2\Theta_K\left(\frac{-3+\sqrt{3}}{18}\right)$.

Furthermore, the functional equation $\Theta(-1/3z) = -\sqrt{-3z}\Theta(z)$ for $z = \frac{3+\sqrt{3}}{2}$, we get $-\sqrt{-3\frac{3+\sqrt{-3}}{2}}\Theta(\omega) = \Theta_K\left(\frac{-3+\sqrt{3}}{18}\right)$. Note that $-\sqrt{-3\frac{3+\sqrt{-3}}{2}} = 3\omega$, thus we get $\Theta_K\left(\frac{-9+\sqrt{-3}}{18}\right) = 3\Theta(\omega)$.

This gives us the value $\Theta(\omega) = \Gamma\left(\frac{1}{3}\right)^3/(2\pi)^2$

• $L_\infty(s, \chi_D \varphi) = L_\infty(s, \varphi_\infty)$, where $\varphi_\infty(z) = z^{-1}$. Then we can compute:

$$
L_\infty(s, \varphi_\infty) = L_\infty(s - 1/2, |\cdot|_{L^2}\varphi_\infty) = 2(2\pi)^s\Gamma(s).
$$

This gives us $L_\infty(1, \chi_D \varphi) = 4\pi$.

XXXX Should have 2 instead here.

• The real period Ω_D of the elliptic curve E_D. The real period of E_1 is $\Gamma\left(\frac{1}{3}\right)^3/\sqrt{3}$ (see [1]). Then to compute the real period of E_D we twist by a factor of $D^{-1/3}$ (see [1]) and get:

$$
\Omega_D = D^{-1/3}\Gamma\left(\frac{1}{3}\right)^3
$$

Check this.

Multiplying all the terms, we get:

$$
L(E_D, 1) = 2\frac{\pi\sqrt{3}}{9}D^{-1/3}\frac{\Gamma\left(\frac{1}{3}\right)^3}{(2\pi)^2} \text{Tr}_{H_3/K}\left(D^{1/3}\Theta_K(D\omega)/\Theta_K(\omega)\right)
$$

This gives us the theorem:

Theorem 3.2.

$$
L(E_D, 1) = \frac{\sqrt{3}\Gamma\left(\frac{1}{3}\right)^3}{18\pi}D^{-1/3}\text{Tr}_{H_3/K}\left(D^{1/3}\Theta_K(D\omega)/\Theta_K(\omega)\right)
$$

3.1.8 S_D is an integer

In the previous section we showed that $S_D \in K$. Note that $D^{1/3}\Theta(D\omega)/\Theta(\omega) = D^{1/3}\Theta(-D + D\omega)/\Theta(-1 + \omega) = D^{1/3}\Theta(D\omega)/\Theta(\omega)$. Thus $S_D \in \mathbb{Q}$. We would like to show that $S_D \in \mathbb{Z}$.

First we look at the Fourier expansion of $f(z) = \Theta(Dz)/\Theta(z)$:
\[\Theta(z) = 1 + 6 \sum_{N \in \mathbb{Z}_{\geq 1}} c(N)q^N, \]

where \(c(N) = \# \text{ ideals with norm } N \text{ in } K \) and, \(q = e^{2\pi iz}. \) Then we also have the Fourier expansion of \(\Theta(Dz) \):

\[\Theta(Dz) = 1 + 6 \sum_{N \in \mathbb{Z}_{\geq 1}} c(N)q^{DN}, \]

By taking their ratio we get \(\frac{\Theta(Dz)}{\Theta(z)} = \sum_{n \in \mathbb{Z}} a_nq^n, \ a_n \in \mathbb{Z}. \) This is easy to see just by straight computation. The minimal polynomial of \(D^{1/3}f(\omega) \) is:

\[\prod_{\mathcal{A} \in \text{Cl}(\mathcal{O}_D)} (X - D^{1/3}\chi_D(\mathcal{A})(f(\omega))^{\sigma_A}) \in \mathbb{Z}[\omega, D^{1/3}](X, q) \]

This implies that \(\text{Tr}_{H_D/K} D^{1/3}f(\omega) \in \mathbb{Z}[\omega, D^{1/3}]. \) We already know that \(\text{Tr}_{H_D/K} D^{1/3}f(\omega) \in \mathbb{Q}, \) thus \(\text{Tr}_{H_D/K} D^{1/3}f(\omega) \in \mathbb{Z}. \)

4 Shimura reciprocity law in the classical setting.

Let \(\mathcal{F} \) be the field of modular functions over \(\mathbb{Q}. \) From CM theory (see \(\| \), for example), it is known that if \(\tau \in K \cap \mathcal{H} \) and \(f \in \mathcal{F}, \) then we have \(f(\tau) \in K_{ab}, \) where \(K_{ab} \) is the maximal abelian extension of \(K. \) Shimura reciprocity law gives us a way to compute the Galois conjugates of \(f(\tau)^\sigma \) when acting with \(\sigma \in \text{Gal}(K_{ab}/K). \) We will follow the exposition of Stevenhagen \(\| \). For more details see Gee \(\| \).

We recall that \(\mathcal{F} = \bigcup_{N \geq 1} \mathcal{F}_N, \) where \(\mathcal{F}_N \) is the space of modular functions of level \(N. \) Moreover, we can think of \(\mathcal{F}_N \) as the function field of the modular curve \(X(N) = \Gamma(N) \backslash \mathcal{H}^* \) over \(\mathbb{Q}(\zeta_N), \) where \(\zeta_N = e^{2\pi i/N} \) and \(\mathcal{H}^* = \mathcal{H} \cup \mathbb{P}^1(\mathbb{Q}). \) We can compute explicitly \(\mathcal{F}_N = \mathbb{Q}(j, j_N), \) where \(j \) is the \(j \)-invariant and \(j_N(z) = j(Nz). \) In particular, we have \(\mathcal{F}_1 = \mathbb{Q}(j). \)

When working over \(\mathbb{Q}, \) one has an isomorphism:

\[\text{Gal}(\mathcal{F}_N/\mathcal{F}_1) \cong \text{GL}_2(\mathbb{Z}/NZ)/\{\pm 1\}. \]

More precisely, if we denote by \(\gamma_\sigma \) the Galois action corresponding to the matrix \(\gamma \in \text{GL}_2(\mathbb{Z}/NZ) \) under the isomorphism above, it is enough to define the Galois action for \(\text{SL}_2(\mathbb{Z}/NZ) \) and for \(G_N = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} : d \in (\mathbb{Z}/NZ)^\times \right\}. \) We state explicitly the two actions below.

- **Action of** \(\alpha \in \text{SL}_2(\mathbb{Z}/NZ) \) **on** \(\mathcal{F}_N. \)

 \[(f(\tau))^{\sigma_\alpha} = f^{\alpha}(\tau) = f(\alpha \tau), \]

 where \(\alpha \) is acting on the upper half plane via fractional linear transformations.

- **Action of** \(\begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \in (\mathbb{Z}/NZ)^\times \) **on** \(\mathcal{F}_N. \) Note that for \(f \in \mathcal{F}_N \) we have a Fourier expansion
\[
f(z) = \sum_{n \geq 0} a_n q^{n/N} \text{ with coefficients } a_n \in \mathbb{Q}(\zeta_N), \quad q = e^{2\pi iz}.\]
If we denote \(u_d := \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} \), then the action of \(\sigma_{u_d} \) is given by
\[
(f(\tau))^{\sigma_{u_d}} = f^{u_d}(\tau) := \sum_{n \geq 0} a_n^{u_d} q^{n/N},
\]
where \(\sigma_d \) is the Galois action in \(\text{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}) \) that sends \(\zeta_N \to \zeta_N^d \).

As the restriction maps between the fields \(\mathcal{F}_N \) are in correspondence with the natural maps between the groups \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z})/(\pm 1) \) we can take the projective limit to get the isomorphism:
\[
\text{Gal}(\mathcal{F}/\mathcal{F}_1) \cong \text{GL}_2(\hat{\mathbb{Z})}/(\pm 1).
\]

To further get all the automorphisms of \(\mathcal{F} \) we need to consider the action of \(\text{GL}_2(\mathbb{A}_{Q,f}) \). We get the exact sequence:
\[
1 \to \{ \pm 1 \} \to \text{GL}_2(\mathbb{A}_{Q,f}) \to \text{Aut}(\mathcal{F}) \to 1.
\]
For this to make sense, we need to extend the action from \(\text{GL}_2(\hat{\mathbb{Z}}) \) to \(\text{GL}_2(\mathbb{A}_{Q,f}) \). We do this by using the action of \(\text{GL}_2(\hat{\mathbb{Q}}]^+\):

- **Action of** \(\alpha \in \text{GL}_2(\hat{\mathbb{Q}}]^+ \) **on** \(\mathcal{F} \).
 \[
 f^\alpha(\tau) = f(\alpha\tau),
 \]
 where \(\alpha \) acts by fractional linear transformations.

We extend the action of \(\text{GL}_2(\hat{\mathbb{Z}}) \) to \(\text{GL}_2(\mathbb{A}_{Q}) \) by writing the elements \(\gamma \in \text{GL}_2(\mathbb{A}_{Q}) \) in the form \(\gamma = u\alpha \), where \(u \in \text{GL}_2(\hat{\mathbb{Z}}) \) and \(\alpha \in \text{GL}_2(\hat{\mathbb{Q}}]^+ \). Note that this decomposition is not uniquely determined. However, by combining the two actions of \(u \) and \(\alpha \), a well defined action is given by:
\[
 f^{u\alpha} = (f^u)^\alpha.
\]

We want to look at the action of \(\text{Gal}(K^{ab}/K) \) inside \(\text{Aut}(\mathcal{F}) \). From class field theory we have the exact sequence:
\[
1 \to K^\times \to \mathbb{A}_{K,f}^\times \xrightarrow{[\cdot,K]} \text{Gal}(K^{ab}/K) \to 1,
\]
where \([\cdot,K]\) is the Artin map.

We are going to embed \(\mathbb{A}_{K,f}^\times \) into \(\text{GL}_2(\mathbb{A}_{Q,f}) \) such that the Galois action of \(\mathbb{A}_{K,f}^\times \) through the Artin map and the action of the matrices in \(\text{GL}_2(\mathbb{A}_{Q,f}) \) are compatible. We do this by constructing a matrix \(g_\tau(x) \) for the idele \(x \in \mathbb{A}_{K,f}^\times \).

Let \(\mathcal{O} \) be the order of \(K \) generated by \(\tau \) i.e. \(\mathcal{O} = \mathbb{Z}[\tau] \). We define the matrix \(g_\tau(x) \) to be the unique matrix in \(\text{GL}_2(\mathbb{A}_{Q}) \) such that \(x \begin{pmatrix} \tau \\ 1 \end{pmatrix} = g_\tau(x) \begin{pmatrix} \tau \\ 1 \end{pmatrix} \). We can compute it explicitly. To do that, consider the minimal polynomial of \(\tau \):
\[
p(X) = X^2 + BX + C
\]
Then if we write \(x_p \in \mathbb{Q}_p^\times \) in the form \(x_p = s_p \tau + t_p \in \mathbb{Q}_p^\times \) with \(s_p, t_p \in \mathbb{Q}_p \), we can compute:

\[
g_\tau(x_p) = \left(\begin{array}{cc} t_p - s_p B & -s_p C \\ s_p & t_p \end{array} \right)
\]

Shimura reciprocity law is going to make the following diagram commute:

\[
\begin{array}{c}
1 \\
\downarrow g_\tau \\
1
\end{array}
\]

\[
\begin{array}{cccc}
K^\times & \xrightarrow{[\cdot,K]} & \mathbb{A}_{K,f}^\times & \xrightarrow{\text{Gal}(K^{ab}/K)} & \text{Gal}(\mathbb{Q}) & \rightarrow 1 \\
\downarrow g_\tau & & & & & \\
\{\pm 1\} & \xrightarrow{\text{GL}_2(\mathbb{A}_{Q,f})} & \text{Aut}(\mathbb{F}) & \rightarrow 1
\end{array}
\]

We make the statement explicit below:

Theorem 4.1. (Shimura reciprocity law) For \(f \in \mathcal{F} \) and \(x \in \mathbb{A}_{K,f}^\times \), we have:

\[
(f(\tau))^{[x,K]} = f^{g_\tau(x^{-1})(\tau)},
\]

where \([x, K]\) is the Galois action corresponding to the idele \(x \) via the Artin map, \(g_\tau \) is defined above and the action of \(g_\tau(x) \) is the action in \(\text{GL}_2(\mathbb{A}_{Q,f}) \).

Remark 4.1. Note that the elements of \(K^\times \) have trivial action. This can be easily seen by embedding \(K^\times \hookrightarrow \text{GL}_2(\mathbb{Q})^+ \) given by \(k \mapsto g_\tau(k) \). Noting that \(\tau \) is fixed by the action of the torus \(K^\times \), we have:

\[
f^{g_\tau(k^{-1})}(\tau) = f(g_\tau(k^{-1})\tau) = f(\tau)
\]

Remark 4.2. We can also rewrite the theorem for ideals in \(K \). Let \(f \in \mathcal{F}_N \) and \(\mathcal{O} = \mathbb{Z}[\tau] \) of conductor \(M \). Going through the Artin map, we can restate Shimura reciprocity in this case in the form:

\[
f(\tau)^{\sigma_A} = f^{g_\tau(A)^{-1}}(\tau),
\]

where \(\sigma_A \) is the Galois action corresponding to the ideal \(A \) through the Artin map and

\[
g_\tau(A) := g_\tau((\alpha)_{p|\text{Nm}(A)}).
\]

Note that \(g_\tau(A) \) is unique up to multiplication by roots of unity in \(K \). However, these have trivial action on \(f \). This can be easily seen by multiplying by an element of \((\pm \omega) \in K^\times \) and noticing that we get trivial action at the unramified places \(p \nmid MN \).

Remark 4.3. Note that the action of \(g_\tau(A) \) is the same as the action of \(g_\tau((\alpha)_{p|M^N})^{-1} \).

Remark 4.4. Note that the maps above are based on the map between the ideals \(A \) prime to \(MN \) and the ideles:
\[I(MN) \to \mathbb{A}_{K,f}^x/K^x \]
\[\mathcal{A} = \prod_v p_v^{c_v} \to (\varpi_v)^{c_v}, \]

where \(\varpi_v \) is the uniformizer of the ideal \(p_v \) at the place \(v \nmid \infty \).

4.1 Applying Shimura reciprocity law to \(K = \mathbb{Q}[\sqrt{-3}] \).

Lemma 4.1. The function \(f(z) = \frac{\Theta_K(Dz)}{\Theta_K(z)} \) is a modular function of level \(3D \) with integer Fourier coefficients at the cusp \(\infty \).

Proof: Since \(\Theta_K(z) \) is a modular form of weight 1 for \(\Gamma_0(3) \), it can be easily seen that \(\Theta(Dz) \) is a modular form of weight 1 for \(\Gamma(3D) \). Furthermore, their ratio is modular function for \(\Gamma_0(3D) \). We check this below. For \(\gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma(3D) \), we have:

\[
 f(\gamma z) = \frac{\Theta\left(\begin{array}{cc} D & 0 \\ 0 & 1 \end{array} \right) \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) z}{\Theta\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) z} = \frac{\Theta\left(\begin{array}{cc} a & b D \\ c & d \end{array} \right)(Dz)}{\Theta\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) z} = \frac{(cz+d)\Theta(Dz)}{(cz+d)\Theta(z)} = f(z)
\]

To find the Fourier expansion of \(f(z) \) at \(\infty \), it is enough to write the Fourier expansions of \(\Theta(Dz) \) and \(\Theta(z) \):

\[
 \frac{\Theta(Dz)}{\Theta(z)} = 1 + \sum_{N \geq 1} c(N)q^{ND} = \sum_{M \geq 0} a_M q^M
\]

We can compute the Fourier coefficients explicitly from the equality:

\[
 1 + \sum_{N \geq 1} c(N)q^{ND} = (1 + \sum_{N \geq 1} c(N)q^N)(\sum_{M \geq 0} a_M q^M)
\]

Note that we have \(a_0 = 1 \) and \(a_M = -a_{M-1}c(1) - a_{M-2}c(2) - \cdots - a_1c(M-1) - a_0c(M)\) if \(D \nmid M \) and \(a_M = c(M/D) - a_{M-1}c(1) - a_{M-2}c(2) - \cdots - a_1c(M-1) - a_0c(M) \) if \(D \mid M \). By induction, since \(c(N) \in \mathbb{Z} \), we get all the coefficients \(a_M \in \mathbb{Z} \).

4.1.1 \(f(\omega) \) is in the ring class field \(H_{3D} \).

From CM-theory, we have that if \(f \in F_{3D} \) and \(\tau \) generating \(\mathcal{O}_K \), we have \(f(\tau) \in H_{3D,\mathcal{O}_K} \) the ray class field of conductor 3D. We claim that \(f(\omega) \in H_{3D} \). Recall that we have \(\text{Gal}(K^{ab}/H_{3D}) \cong U(3D)\backslash \mathbb{A}_{K,f}^x/K^x \). Thus in order to show that \(f(\omega) \in H_{3D} \), we need to check that \(f(\omega) \) is invariant under the action of \(U(3D) \).

Lemma 4.2. For \(\omega = \frac{-1 + \sqrt{-3}}{2} \) and \(f(z) = \frac{\Theta_K(Dz)}{\Theta_K(z)} \) we have \(f(\omega) \in H_{3D} \).
Proof: In order for \(f(\omega) \in H_{3D} \), we need to show that it is invariant under \(\text{Gal}(K^{ab}/H_{3D}) \).

Using Shimura reciprocity law, we need to show:

\[f(\omega) = f^{r_\omega(s)}(\omega), \]

for all \(s \in K^x U(3D) \). From Remark 4.1, the action of \(K^x \) is trivial. Thus it is enough to show the result for all elements \(l = (A_p + B_p \omega)_p \in U(3D) \). By the definition of \(U(3D) \), this implies that \(A_p + B_p \omega \in (\mathbb{Z}_p[\omega])^x \) for all \(p \) and \(A_3 \equiv 1 \mod 3, B_3 \equiv 1 \mod 3, B_p = 0 \mod D \) for all \(p|D \). Since the action for \(p \nmid 3D \) is trivial, \(s \) has the same action \(l_D = (A_p + B_p \omega)_{p|3D} \in U(3D) \). Moreover, this has the same action as \(l_0 = (A + B \omega)_{p|3D} \), where \(A + B \omega \in \mathcal{O}_K \) and \(A \equiv A_p \mod 3DZ_p \) and \(B \equiv B_p \mod 3DZ_p \) for all \(p|3D \).

Note further that we can pick \(A, B \) such that \((A + B \omega) \) generates a primitive ideal \(\mathcal{A} \) in \(\mathcal{O}_K \). Moreover, from above we have \(3D|B \) and \(A \equiv 1 \mod 3 \). Recall that we can rewrite any primitive ideal in the form \(\mathcal{A} = [a, \frac{-b + \sqrt{-3}}{2}]_\mathbb{Z} \), where \(a = N \mathcal{A} \) and \(b^2 \equiv -3 \mod 4a \). Then the generator is \(A + B \omega = ta + s\frac{-b + \sqrt{-3}}{2} \), where \(t, s \in \mathbb{Z}, 3D|s \).

Now observe that \(f(\omega) = f(\tau) \), where \(\tau = \frac{-b + \sqrt{-3}}{2} \), thus from Shimura reciprocity law, we have:

\[(f(\tau))^{\sigma_{l^{-1}}} = f^{r_\tau(l)}(\omega). \]

Here \(r_\tau(l) = \begin{pmatrix} A_p - bB_p - B_p c \\ B_p \end{pmatrix} \) and \(r_\tau(l) \) has the same action as \(r_\tau(l_0) \), where \(l_0 = (A + B \omega)_{p|3D} \) and \(A + B \omega = ta + s\frac{-b + \sqrt{-3}}{2} \). Then we need to compute the action of:

\[(f(\tau))^{\sigma_{l_0}} = f^{r_\tau(l_0)}(\tau). \]

Note that \(r_\tau(l_0) = \begin{pmatrix} ta - sb - sc/a \\ ta \end{pmatrix}_{p|3D} \), where \(c = \frac{b^2 + 3}{4} \). Then we can rewrite the action of \(r_\tau(l_0) \):

\[f^{r_\tau(l_0)}(\tau) = f^{\begin{pmatrix} ta - sb - sc/a \\ ta \end{pmatrix}_{3D}}(\begin{pmatrix} 1 \\ 0 \end{pmatrix}) = f^{\begin{pmatrix} 1 \\ 0 \end{pmatrix}_{p|3D}}(\begin{pmatrix} ta - sb - sc/a \\ ta \end{pmatrix}) \]

Since \(a|c \), the matrix \(\begin{pmatrix} ta - sb - sc/a \\ ta \end{pmatrix} \in SL_2(\mathbb{Z}) \) and we can rewrite:

\[f((ta - sb - sc/a \ t)z) = \frac{\Theta_K \left(\begin{pmatrix} D & 0 \\ 0 & 1 \end{pmatrix} (ta - sb - sc/a \ t)z \right)}{\Theta_K \left(\begin{pmatrix} ta - sb - sc/a \\ t \end{pmatrix}z \right)} = \frac{\Theta_K \left(\begin{pmatrix} ta - sb - scD/a \ t \\ s \end{pmatrix}z \right)}{\Theta_K \left(\begin{pmatrix} ta - sb - sc/a \\ t \end{pmatrix}z \right)} \]

Note that since \(3D|s \), we actually have \(\begin{pmatrix} ta - sb - scD/a \\ s \end{pmatrix}, \begin{pmatrix} ta - sb - sc/a \\ t \end{pmatrix} \in \Gamma_0(3) \) and we can apply the properties of the modular form \(\Theta_K \):

\[\frac{\Theta_K \left(\begin{pmatrix} ta - sb - scD/a \\ t \end{pmatrix}z \right)}{\Theta_K \left(\begin{pmatrix} ta - sb - sc/a \\ t \end{pmatrix}z \right)} = (sz + t)^{-1} \Theta_K (Dz) = (sz + t)^{-1} \Theta_K (z) = f(z). \]

Finally, note that since \((a, 3D) = 1 \) and \(f \) has rational coefficients, the action of \((\frac{1}{a}, 0)_{p|3D} \) is trivial. This finishes the proof that \(f(\omega) \) is invariant under the Galois action coming from \(U(3D) \), thus \(f(\omega) \in H_{3D} \).
Lemma 4.3. Let its Fourier expansion. Let A be a primitive ideal prime to $3D$. For $\tau_1 = \frac{-b+\sqrt{-3}}{2}$, let $\mathcal{O}_D = \mathbb{Z} + D\tau\mathbb{Z}$.

4.1.2 Galois conjugates of $f(\omega)$.

Let $A = \left[a, \frac{-b+\sqrt{-3}}{2} \right]_\mathbb{Z}$ be a primitive ideal prime to $3D$. For $\tau_1 = \frac{-b+\sqrt{-3}}{2}$ be a CM point and let $\mathcal{A} = \left[a, \frac{-b+\sqrt{-3}}{2} \right]$ be a primitive ideal prime to N. Then we have the Galois action:

$$f(\tau)^{\sigma_A^{-1}} = f(\tau/a)$$

Proof: From Shimura reciprocity (11), we have:

$$f(\tau)^{\sigma_A^{-1}} = f^{g_{\tau}(A)}(\tau).$$

Note that the minimum polynomial of τ is $p_{\tau}(X) = X^2 + bX + \frac{b^2 + 3}{4}$. Now let $\alpha = ta + \frac{s-b+\sqrt{-3}}{2} = ta + s\tau$ be a generator of A. Then we have $g_{\tau}(A) = \left(\frac{ta-sb - \frac{b^2+3}{4} ta}{s} \right)_p$. We can rewrite the matrix in the form:

$$g_{\tau}(A) = \left(\frac{ta-sb - \frac{b^2+3}{4} ta}{s} \right)_p \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)_{p|a}$$

As $\left(\frac{ta-sb - \frac{b^2+3}{4} ta}{s} \right)_p \in \text{SL}_2(\mathbb{Z}_p)$ for $p \nmid ND$, it has a trivial action. Then:

$$f^{g_{\tau}(A)}(\tau) = f^{\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)_{p|a}}(\tau)$$

We rewrite the matrix $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)_{p|a} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)_{p|a} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)_{Q}$, where $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)_{p|a} \in \text{GL}_2(\mathbb{Z})$ and $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)_{Q} \in \text{GL}_2(\mathbb{Q})^\times$.

Note that the action of $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)_{p|a}$ is only given by $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)_{p|NM}$. However, since f has rational Fourier coefficients in its Fourier expansion, this action is trivial. Thus we are left with:

$$f^{\sigma_{\tau}(A)}(\tau) = f^{\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)_{a}}(\tau)$$

This is just $f^{g_{\tau}(A)}(\tau) = f(\tau/a)$.

Lemma 4.4. Take the primitive ideals $A = \left[a, \frac{-b+\sqrt{-3}}{2} \right]_\mathbb{Z}$ to be the representatives of the ring class field H_3 such that all norms $N_{\mathbb{Q}}A$ are relatively prime to each other and $b^2 \equiv -3 \mod 4a$ for all the $a = N_{\mathbb{Q}}A$ chosen.

Then the only Galois conjugates of $f(\omega) = \frac{\Theta_K(D\omega)}{\Theta_K(\omega)}$ are the following:

$$\left(\frac{\Theta_K(D\omega)}{\Theta_K(\omega)} \right)^{\sigma_A^{-1}} = \frac{\Theta_K \left(\frac{D}{-b+\sqrt{-3}} \right)}{\Theta_K \left(\frac{-b+\sqrt{-3}}{2a} \right)}$$

30
Proof: Note that \(\Theta_K(D\omega) = \Theta_K(D^{\frac{b+\sqrt{-3}}{2}}) \) and apply lemma 4.3 to \(\tau = \frac{b+\sqrt{-3}}{2} \) and
\(f(z) = \frac{\Theta_K(Dz)}{\Theta_K(z)} \). These are the only Galois conjugates from Lemma ??.

5 Writing \(S_D \) as a square.

In this section we will show the following result:

Theorem 5.1. For \(D = \prod_{p_i \equiv 1 \mod 3} p_i^{e_i} \), let \(\tau \equiv -3 \mod 12D^2 \). Moreover, let \(b^* \equiv b^{-1} \mod D \).

Let \(H_0 \) be the ray class field of conductor \(3D \) and let \(\mathcal{H}_0 \subset H_0 \) be the subfield of \(H_0 \) that is the fixed field of \(G_0 = \{ r \in (\mathbb{Z}/D\mathbb{Z})^\times, r \equiv 1 \mod 6 : A_r^c = (1 + b^*(1-r)\frac{b+\sqrt{-3}}{2}) \} \). Then we have

\[S_D = |\text{Tr}_{H_0/H_0}(f_1(\tau)D^{2/3})|^2 \]

and \(S_D \in \mathbb{Z} \).

The main tool in proving Theorem 5.1 is a Factorization Formula of Rodriguez-Villegas and Zagier [13]. We will apply the Factorization Formula 12 to the formula for the L-function \(L(E_D, 1) \) in Theorem ??.

5.1 Factorization Formula

We recall the version of Factorization Formula ([13], Theorem, page 7) simplified to the case of \(\alpha = p = 0 \):

Theorem 5.2. (Factorization formula.) For \(a \in \mathbb{Z}_{>0}, \mu, \nu \in \mathbb{Q}, z = x + yi \in \mathbb{C} \) and \(Q_z(m, n) = \frac{|mz-n|^2}{2y} \), we have:

\[\sum_{m, n \in \mathbb{Z}} e^{2\pi i (\mu m + \nu n)} e^{\pi i mn - \frac{|mz-n|^2}{2y}} = \sqrt{2ay} \theta \left[\begin{array}{c} a \mu \\ \nu \end{array} \right] (a^{-1}z) \cdot \theta \left[\begin{array}{c} \mu \\ -a\nu \end{array} \right] (-az), \]

where \(\theta \left[\begin{array}{c} \mu \\ \nu \end{array} \right] (z) = \sum_{n \in \mathbb{Z}+\mu} e^{\pi n^2 z + 2\pi in} v \) is a theta function of half integral weight.

Using the formula above, we will prove the following Proposition:

Proposition 5.1. For \(a \equiv 1 \mod 6, D \equiv 1 \mod 6 \) and \(b^2 \equiv -3 \mod 4D^2a^2a_1, b \equiv 1 \mod 16 \), we have:

\[\frac{3}{2} \Theta \left(D^{\frac{b+\sqrt{-3}}{2a}} \right) - \frac{1}{2} \Theta \left(D^{\frac{b+\sqrt{-3}}{6a}} \right) = \sum_{r \in \mathbb{Z}/D\mathbb{Z}} \frac{\sqrt[4]{3}}{D\sqrt{a_1}} e^{-\frac{\pi i(a-1)r}{6}} \theta_{ar} \left(\frac{b+\sqrt{-3}}{2a^2a_1} \right) \theta_r \left(\frac{b+\sqrt{-3}}{2a_1} \right), \]

\[(13) \]
where \(\theta_s(z) = \sum_{n \in \mathbb{Z}} e^{\pi(n+s/D-1/6)z}(-1)^n \) is a theta function of weight 1/2 for s non-negative integer. Here we use the notation \(r \in \mathbb{Z}/D \mathbb{Z} \) to mean any representatives \(r \) for the residues mod \(D \).

We start by applying the Factorization Formula (12) several times for \(\mu := \frac{\nu + \theta}{D} \), \(0 \leq r \leq D-1 \) and \(z := z/D \). Summing up the formulas, we are going to get:

Lemma 5.1. We have the following factorization lemma:

\[
\sum_{r \in \mathbb{Z}/D \mathbb{Z}} \frac{\sqrt{2 \nu y}}{\sqrt{D}} \theta \left[a(\mu + r)/D \nu \right] \left(D \frac{z}{a} \right) \theta \left[(\mu + r)/D - a \nu \right] (-aDz) = \sum_{m,n \in \mathbb{Z}} e^{2\pi i (m\nu + n\mu)} e^{\pi(mni - \frac{\nu m^2}{2Y})\frac{D}{n^2}}
\]

Proof: Plugging in \(\mu := \frac{\nu + \theta}{D} \), \(z := z/D \) in (12), we get:

\[
\sqrt{2 \nu y} \theta \left[a(\mu + r)/D \nu \right] \left(D \frac{z}{a} \right) \theta \left[(\mu + r)/D - a \nu \right] (-aDz) = \sum_{m,n \in \mathbb{Z}} e^{2\pi i (m\nu + n(\mu + r)/D)} e^{\pi(mni - \frac{\nu m^2}{2Y})\frac{1}{n}}
\]

We sum from \(r \) in \(\mathbb{Z}/D \mathbb{Z} \):

\[
\sum_{r \in \mathbb{Z}/D \mathbb{Z}} \sum_{m,n \in \mathbb{Z}} e^{2\pi i (m\nu + n(\mu + r)/D)} e^{\pi(mni - \frac{\nu m^2}{2Y})\frac{1}{n}} = \sum_{m,n \in \mathbb{Z}} \sum_{r \in \mathbb{Z}/D \mathbb{Z}} e^{2\pi i (m\nu + n(\mu + r)/D)} e^{\pi(mni - \frac{\nu m^2}{2Y})\frac{1}{n}}
\]

Note that the LHS can be rewritten as \(\sum_{m,n \in \mathbb{Z}} e^{2\pi i (m\nu + n(\mu)/D)} e^{\pi(mni - \frac{\nu m^2}{2Y})\frac{1}{n}} \sum_{r \in \mathbb{Z}/D \mathbb{Z}} e^{2\pi i rD/D} \)
and note further that:

\[
\sum_{r \in \mathbb{Z}/D \mathbb{Z}} e^{2\pi i rD/D} = \sum_{r=0}^{D-1} e^{2\pi i rD/D} = \begin{cases} 0, & \text{for } D \nmid n \\ D, & \text{for } D \mid n \end{cases}
\]

Thus we are only summing over the \(n \)'s that are multiples of \(D \):

\[
\sum_{r \in \mathbb{Z}/D \mathbb{Z}} \sum_{m,n \in \mathbb{Z}} e^{2\pi i (m\nu + n(\mu + r)/D)} e^{\pi(mni - \frac{\nu m^2}{2Y})\frac{1}{n}} = D \sum_{m,n' \in \mathbb{Z}} e^{2\pi i (mn' + m(\nu + r)/D')} e^{\pi(mn'i - \frac{\nu m'^2}{2Y/D'})\frac{1}{n'}}
\]

Going back to our initial equality, we can replace \(z' = z/D \) and get:

\[
\sum_{r \in \mathbb{Z}/D \mathbb{Z}} \theta \left[a(\mu + r)/D \nu \right] \left(D \frac{z'}{a} \right) \theta \left[(\mu + r)/D - a \nu \right] (-aDz') = D \sum_{m,n \in \mathbb{Z}} e^{2\pi i (mn + m(\mu + r))} e^{\pi(mni - \frac{\nu m'^2}{2Y/D'})\frac{1}{n'}}
\]

32
Lemma 5.2. For $b \equiv 1 \mod 16$, $b \equiv 0 \mod 3$, $b^2 \equiv -3 \mod 4a^2a_1D$, we have:

$$e^{2\pi i (m/2+n/2) \frac{nD_{aa+1-m+b+b\sqrt{-3}}}{D_{aa+1} \sqrt{3}}} = e^{2\pi i \frac{\left| nD_{aa+1-m+b+b\sqrt{-3}} \right|^2}{D_{aa+1} \sqrt{3}} D_{\frac{b+b\sqrt{-3}}{6}}}$$
Proof: We only need to show that:
\[2\pi i \left(\frac{m}{2} + \frac{n}{2} + \frac{Dmn}{2a} \right) = -2\pi i \frac{|naa_1D - m \frac{b+\sqrt{b^2-4}}{2}|^2}{aa_1D} \frac{D}{b} \frac{b}{6a} \mod 2\pi i \mathbb{Z}. \]
After dividing by \(2\pi i\), we compute the RHS of the identity:
\[\frac{|naa_1D - m \frac{b+\sqrt{b^2-4}}{2}|^2}{aa_1D} \frac{D}{b} \frac{b}{6a} = \left(Dm^2 b(b^2 + 3) \frac{2b^2mn}{24a^2a_1} - D \frac{b^2mn}{6a} + \frac{Dba_1n^2}{6} \right) \]
Thus our claim turns into:
\[\left(\frac{m}{2} + \frac{n}{2} + \frac{Dmn}{2a} \right) = \left(Dm^2 b(b^2 + 3) \frac{2b^2mn}{24a^2a_1} - D \frac{b^2mn}{6a} + \frac{Dba_1n^2}{6} \right) \mod \mathbb{Z} \]
Equivalently:
\[\frac{m}{2} + \frac{n}{2} = \left(D \frac{m^2 b (b^2 + 3)}{2} \frac{3}{4a^2a_1} - D \frac{(b^2 + 3)mn}{6a} + \frac{n^2 b}{2} \frac{3}{Da_1} \right) \mod \mathbb{Z} \]
We have \(b^2 \equiv -3 \mod 4ana_1^2 \), \(b \equiv 1 \mod 16 \), \(b \equiv 0 \mod 3 \). Note that this implies that \(b \) is odd and that \(b^2 + 3 \equiv 4 \mod 8 \), as well as \(b^2 + 3 \equiv 0 \mod 3 \). Then, since \(a, a_1, D \) are odd, we get:
- \(m/2 \equiv m^2/2 \equiv D \frac{m^2 b (b^2 + 3)}{2} \frac{3}{4a^2a_1} \mod \mathbb{Z} \)
- \(n/2 \equiv n^2/2 \equiv \frac{n^2 b}{2} \frac{3}{Da_1} \mod \mathbb{Z} \)
- \(-D \frac{(b^2 + 3)mn}{6a} \in \mathbb{Z} \)
This finishes the proof.

Lemma 5.3. Under the same conditions as above we have:
\[\sum_{m,n \in \mathbb{Z}} e^{2\pi i/3} e^{2\pi i \frac{|m-b+\sqrt{b^2-4}}{2a_1} + naa_1|^2} \frac{z}{3} = \frac{3}{2} \Theta(3z) - \frac{1}{2} \Theta(z), \]
where \(z \in \mathbb{H} \), \(A_1 = [aa_1, \frac{-b+\sqrt{b^2-4}}{2}] \) and \(b \equiv 0 \mod 3 \), \(b^2 \equiv -3 \mod 4ana_1^2 \).

Proof: Note first that by changing \(m \rightarrow -m \) and \(-m \cdot \frac{-b+\sqrt{b^2-4}}{2} + naa_1 \) to its conjugate, we have:
\[\sum_{m,n \in \mathbb{Z}} e^{2\pi i/3} e^{2\pi i \frac{|-m-b+\sqrt{b^2-4}}{2a_1} + naa_1|^2} \frac{z}{3} = \sum_{m,n \in \mathbb{Z}} e^{2\pi i/3} e^{2\pi i \frac{|b+\sqrt{b^2-4}}{2a_1} + naa_1|^2} \frac{z}{3}. \]
We can split the sum in three terms, depending on \(n \mod 3 \):
\[\sum_{m,3|n \in \mathbb{Z}} e^{2\pi i \frac{|b+\sqrt{b^2-4}}{2a_1} + naa_1|^2} + \omega \sum_{m,n \in \mathbb{Z}, n \equiv 1 \mod 3} e^{2\pi i \frac{|b+\sqrt{b^2-4}}{2a_1} + naa_1|^2} z + \omega^2 \sum_{m,n \in \mathbb{Z}, n \equiv 2 \mod 3} e^{2\pi i \frac{|b+\sqrt{b^2-4}}{2a_1} + naa_1|^2} z \]
Note that the first term equals:
\[\sum_{m,n \in \mathbb{Z}} e^{2\pi i \frac{|b+\sqrt{b^2-4}}{2a_1} + naa_1|^2} \frac{z}{3} = \Theta_K(3z). \]
Also note that the two terms $\sum_{m,n \in \mathbb{Z}, n \equiv 1 \mod 3} e^{2\pi i \frac{|m b + \sqrt{-3} + n a_1|}{a_1}} z$ and $\sum_{m,n \in \mathbb{Z}, n \equiv 2 \mod 3} e^{2\pi i \frac{|m b + \sqrt{-3} + n a_1|}{a_1}} z$ equal each other, by changing in the latter $n \rightarrow -n$ and $m \rightarrow -m$. Thus we got so far:

$$\Theta(3z) + (\omega + \omega^2) \sum_{m,n \in \mathbb{Z}, n \equiv 1 \mod 3} e^{2\pi i \frac{|m b + \sqrt{-3} + n a_1|}{a_1}} z$$

Furthermore, we have:

$$\sum_{m,n \in \mathbb{Z}, n \equiv 1 \mod 3} e^{2\pi i \frac{|m b + \sqrt{-3} + n a_1|}{a_1}} z = \frac{1}{2} \sum_{m,n \in \mathbb{Z}, (n,3) = 1} e^{2\pi i \frac{|m b + \sqrt{-3} + n a_1|}{a_1}} z$$

Finally, this is just:

$$\frac{1}{2} \sum_{m,n \in \mathbb{Z}} e^{2\pi i \frac{|m b + \sqrt{-3} + n a_1|}{a_1}} z = 2 \sum_{m,n \in \mathbb{Z}} e^{2\pi i \frac{|m b + \sqrt{-3} + 3n a_1|}{3a_1}} 3z = \frac{1}{2} (\Theta(z) - \Theta(3z))$$

Finally, we get:

$$\sum_{m,n \in \mathbb{Z}} e^{2\pi i / 3} e^{2\pi i \frac{|m b + \sqrt{-3} + n a_1|}{a_1}} z = \Theta(3z) - \frac{1}{2} (\Theta(z) - \Theta(3z)) = \frac{3}{2} \Theta(3z) - \frac{1}{2} \Theta(z).$$

From the previous two lemmas, we get the following corollary:

Corollary 5.2. Under the above conditions, we have:

$$\sum_{m,n \in \mathbb{Z}} e^{2\pi i (m/2 - n/6)} e^{\pi (m n i - \frac{|na_1 D - m b + \sqrt{-3}|^2}{a_1 D \sqrt{3}})} \frac{D}{a_1} = \frac{3}{2} \Theta \left(D \frac{-b + \sqrt{-3}}{2a} \right) - \frac{1}{2} \Theta \left(\frac{D - b + \sqrt{-3}}{6a} \right)$$

Proof: Note that we can rewrite the LHS in the form:

$$\sum_{m,n \in \mathbb{Z}} e^{2\pi i (m/2 - n/6)} e^{\pi (m n i - \frac{|na_1 D - m b + \sqrt{-3}|^2}{a_1 D \sqrt{3}})} \frac{D}{a_1} = \sum_{m,n \in \mathbb{Z}} e^{2\pi i (m/2 - n/2 + n/3)} e^{\pi (m n i - \frac{|na_1 D - m b + \sqrt{-3}|^2}{a_1 D \sqrt{3}})} \frac{D}{a_1}$$

Then, from Lemma 5.2, we have:

$$\sum_{m,n \in \mathbb{Z}} e^{2\pi i (m/2 - n/6)} e^{\pi (m n i - \frac{|na_1 D - m b + \sqrt{-3}|^2}{a_1 D \sqrt{3}})} \frac{D}{a_1} = \sum_{m,n \in \mathbb{Z}} e^{2\pi i / 3} e^{\pi (m n i - \frac{|na_1 D - m b + \sqrt{-3}|^2}{a_1 D \sqrt{3}}) D - b + \sqrt{-3}}$$

Now apply Lemma 5.3 for $z = D \frac{-b + \sqrt{-3}}{6a}$, we get:

$$\sum_{m,n \in \mathbb{Z}} e^{2\pi i / 3} e^{\frac{|na_1 D - m b + \sqrt{-3}|^2}{a_1 D - b + \sqrt{-3}}} D - b + \sqrt{-3} = \frac{3}{2} \Theta \left(D \frac{-b + \sqrt{-3}}{2a} \right) - \frac{1}{2} \Theta \left(\frac{D - b + \sqrt{-3}}{6a} \right)$$

Finally, from (15) and Corollary 5.2 we get the result of Proposition 5.1:
\[
\frac{3}{2} \Theta \left(D - \frac{b + \sqrt{-3}}{2a} \right) - \frac{1}{2} \Theta \left(D - \frac{b + \sqrt{-3}}{6a} \right) = \frac{\sqrt{3}}{\sqrt{a_1}} \sum_{r \in \mathbb{Z} / D \mathbb{Z}} e^{\pi i (a-1)/6} \theta_{ar} \left(-\frac{b + \sqrt{-3}}{2a^2 a_1} \right) \theta_r \left(\frac{b + \sqrt{-3}}{2a_1} \right).
\]

A particular case of Proposition 5.1 is going to be the following result:

Corollary 5.3. For \(b^2 \equiv -3 \mod 2a^2a_1, \ b \equiv 1 \mod 16, \) we have:

\[
\frac{3}{2} \Theta \left(-\frac{b + \sqrt{-3}}{2a} \right) - \frac{1}{2} \Theta \left(-\frac{b + \sqrt{-3}}{6a} \right) = \frac{\sqrt{3}}{\sqrt{a_1}} e^{\pi i (a-1)/6} \theta_0 \left(-\frac{b + \sqrt{-3}}{2a^2 a_1} \right) \theta_0 \left(\frac{b + \sqrt{-3}}{2a_1} \right),
\]

where \(\theta_0(z) = \sum_{n \in \mathbb{Z}} e^{\pi i (n-1/6)^2 z (-1)^n}. \)

Proof: Applying the Proposition 5.1 for \(D = 1 \) we get:

\[
\frac{3}{2} \Theta \left(-\frac{b + \sqrt{-3}}{2a} \right) - \frac{1}{2} \Theta \left(-\frac{b + \sqrt{-3}}{6a} \right) = \frac{\sqrt{3}}{\sqrt{a_1}} e^{\pi i (a-1)/6} \theta_0 \left(-\frac{b + \sqrt{-3}}{2a^2 a_1} \right) \theta_0 \left(\frac{b + \sqrt{-3}}{2a_1} \right).
\]

Furthermore, using the result from Appendix A, Lemma 6.3 that \(\Theta \left(-\frac{b + \sqrt{-3}}{6a} \right) = 0, \) we get the result of the Corollary.

We can rewrite further the ratios:

Corollary 5.4. Under the same conditions as above, we have:

\[
\frac{\Theta \left(D - \frac{b + \sqrt{-3}}{2a} \right) \Theta \left(D - \frac{b - \sqrt{-3}}{2a} \right)}{\Theta \left(-\frac{b + \sqrt{-3}}{2a} \right) \Theta \left(-\frac{b - \sqrt{-3}}{2a} \right)} = \frac{1}{3} \sum_{r \in \mathbb{Z} / D \mathbb{Z}} \theta_{ar} \left(-\frac{b + \sqrt{-3}}{2a^2 a_1} \right) \theta_r \left(\frac{b + \sqrt{-3}}{2a_1} \right).
\]

Proof: We begin by writing the ratio of the formulas in Proposition 5.1 and Corollary 5.3:

\[
\frac{\Theta \left(D - \frac{b + \sqrt{-3}}{2a} \right) \Theta \left(D - \frac{b - \sqrt{-3}}{2a} \right)}{\Theta \left(-\frac{b + \sqrt{-3}}{2a} \right) \Theta \left(-\frac{b - \sqrt{-3}}{2a} \right)} = \frac{\frac{\sqrt{3}}{\sqrt{a_1}} e^{\pi i (a-1)/6}}{\frac{\sqrt{3}}{\sqrt{a_1}} e^{\pi i (a-1)/6}} \sum_{r \in \mathbb{Z} / D \mathbb{Z}} \theta_{ar} \left(-\frac{b + \sqrt{-3}}{2a^2 a_1} \right) \theta_r \left(\frac{b + \sqrt{-3}}{2a_1} \right).
\]

Simplifying, we get the result of the Corollary.

Remark 5.1. Note that \(\theta_0(z) = \eta(z/3), \) where \(\eta \) is the Dedekind eta function.

5.2 Ratios of \(\theta_r \) and \(\theta_0 \)

Now we will apply the Factorization Lemma once more to connect the theta functions \(\theta_r \) to the theta function \(\theta_0. \) We do this by applying the Factorization Formula (12) twice and comparing the results.

Note first that any primitive ideal \(A \) in \(\mathcal{O}_K \) prime to 6 has a generator \((n_a a + m_a - \frac{b + \sqrt{-3}}{2}) \) such that \(a = \text{Nm}(A), \ b^2 \equiv -3 \mod 12a \) and \(n_a \equiv 1 \mod 3. \) Moreover, note that \(a = n_a^2 a^2 + m_a^2 \frac{b + \sqrt{-3}}{2} - m_a n_a b, \) thus \(m_a n_a b \equiv 1 \mod a, \) as \(a | (b^2 + 3)/4. \)

Using this notation, we have:
Lemma 5.4. For $b \equiv 0 \mod 3$, $b^2 \equiv -3 \mod 4D^2a'$, $n_{a'} \equiv 1 \mod 3$, we have:

$$\theta_r \left(-\frac{b + \sqrt{-3}}{2aa'}\right) \theta_0 \left(\frac{b + \sqrt{-3}}{2D^2aa'}\right) = \frac{1}{\sqrt{a'}} \theta_{n_{a'}r} \left(-\frac{b + \sqrt{-3}}{2a}\right) \theta_0 \left(\frac{b + \sqrt{-3}}{2D^2a}\right)$$

Proof: We write the generator of \mathcal{A}' in the form $(n_{a'}a' + m_{a'} - \frac{b + \sqrt{-3}}{2})$, where $b^2 \equiv -3 \mod 4a'D^2$. Moreover, we can pick $n_{a'} \equiv 1 \mod 3$. Then, using the Factorization Formula (12) for $\mu = -\frac{1}{6} + \frac{r_D}{D}$, $\nu = \frac{1}{2}$, $a := D$ and $z = \frac{-b + \sqrt{-3}}{2a'D}$, we have:

$$\sqrt[3]{\frac{\pi}{2}} \theta \left[\frac{-\frac{1}{6} + \frac{r_D}{D}}{D/2}\right] \left(D \frac{b + \sqrt{-3}}{2aa'D}'\right) \theta \left[-\frac{D}{6} - \frac{1}{2}\right] \left(\frac{b + \sqrt{-3}}{2D^2aa'}\right) = \sum_{m,n} e^{2\pi i \frac{6m}{a'} e^{2\pi i \frac{2aD + \frac{1}{2}}{2}} e^{2\pi i \left[\frac{m \frac{-b + \sqrt{-3} + m + naD}{D}^2 - \frac{b + \sqrt{-3}}{6D}}{2}\right]}}.$$

Thus we got:

$$\sqrt[3]{\frac{\pi}{2}} \theta_r \left(D \frac{b + \sqrt{-3}}{2aa'D}'\right) \theta_0 \left(\frac{b + \sqrt{-3}}{2D^2aa'}\right) = \sum_{m,n} e^{2\pi i \frac{6m}{a'} e^{2\pi i \frac{2aD + \frac{1}{2}}{2}} e^{2\pi i \left[\frac{m \frac{-b + \sqrt{-3} + m + naD}{D}^2 - \frac{b + \sqrt{-3}}{6D}}{2}\right]}}.$$ (16)

Note that if we write any element of \mathcal{A}', we can write it as an element of $\mathcal{A}D$ multiplied by the generator of \mathcal{A}'. Thus if we write an element of $\mathcal{A}D$, in the form $m \frac{-b + \sqrt{-3} + naaD}{2} + naaD$, it is going to equal an element $m_0 \frac{-b + \sqrt{-3}}{2} + naaD \in \mathcal{A}D$ times the generator $m_{a'} \frac{-b + \sqrt{-3} + naaD}{2} + naa'D$ of \mathcal{A}':

$$m \frac{-b + \sqrt{-3}}{2} + naa'D = (m_0 \frac{-b + \sqrt{-3}}{2} + naaD)(m_{a'} \frac{-b + \sqrt{-3}}{2} + naa'D).$$

This gives us:

$$\begin{cases} m = m_0m_{a'} + na_0a' - m_0m_{a'}b \\ n = na_0a' - m_0m_{a'} \frac{b^2 + 3}{4aaD} \end{cases}$$

Since $b^2 + 3 \equiv 0 \mod 4D^2$, it implies that $n \equiv na_0 \mod D$. Then we have:

$$\sum_{m,n} e^{2\pi i \frac{6m}{a'} e^{2\pi i \frac{2aD + \frac{1}{2}}{2}} e^{2\pi i \left[\frac{m \frac{-b + \sqrt{-3} + m + naD}{D}^2 - \frac{b + \sqrt{-3}}{6D}}{2}\right]}} = \sum_{m_0,n_0} e^{2\pi i \frac{n_0a_{a'} r \theta_{n_{a'}r} \left(-\frac{b + \sqrt{-3}}{2a}\right) \theta_0 \left(\frac{b + \sqrt{-3}}{2D^2a}\right)}} e^{2\pi i \frac{m_0 \frac{-b + \sqrt{-3} + m_{a'}D}{D}^2 - \frac{b + \sqrt{-3}}{6D}}{2}}.$$

Since we picked $n_{a'} \equiv 1 \mod 3$, this is the same as:

Then applying the Factorization Formula (12) again for $\mu := -\frac{1}{6} + \frac{r_{a'} r}{D}$, $\nu := \frac{1}{2}$, $a := D$ and
Thus:

\[z := \frac{-b + \sqrt{-3}}{2aD}, \]

we get:

\[
\sum_{m,n} e^{2\pi i m \frac{n_0}{D}} e^{2\pi i \frac{m-b+n_0 D^2}{2\sqrt{a}}} = \left(\frac{-b + \sqrt{-3}}{2\sqrt{a}} \right) \left(\frac{-b + \sqrt{-3}}{2D^2a} \right).
\]

Moreover, on the RHS we have the theta functions \(\theta \left[\frac{1}{b} + \frac{n r}{D} \right] (z) = e^{-\pi i / 6} \theta_0 (z) \) and \(\theta \left[\frac{1}{b} + \frac{n r}{D} \right] (z) = e^{\pi i / 6} \theta_0 (z) \). Thus we can rewrite the equality as:

\[
\sum_{m,n} e^{2\pi i m \frac{n_0}{D}} e^{2\pi i \frac{m-b+n_0 D^2}{2\sqrt{a}}} = \left(\frac{-b + \sqrt{-3}}{2\sqrt{a}} \right) \left(\frac{-b + \sqrt{-3}}{2D^2a} \right).
\]

Comparing the two relations (16) and (17), we get:

\[
\frac{1}{\sqrt{a}} e^{\pi i r \theta_r \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)} \theta_0 \left(\frac{b + \sqrt{-3}}{2D^2} \right) = e^{\pi i r \theta_{n_0} \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)} \theta_0 \left(\frac{b + \sqrt{-3}}{2D^2} \right)
\]

Lemma 5.5. Under the same conditions as above, we have:

\[
\frac{e^{\pi i r \theta_r \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)}}{\theta_0 \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)} = \frac{e^{\pi i r \theta_{n_0} \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)}}{\theta_0 \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)}
\]

Proof: Note that from Corollary 5.3, we have \(\frac{3}{2} \Theta \left(\frac{-b + \sqrt{-3}}{2aD^2} \right) = \frac{3\pi}{D\sqrt{a}} \theta_0 \left(\frac{-b + \sqrt{-3}}{2aD^2} \right) \theta_0 \left(\frac{b + \sqrt{-3}}{2aD^2} \right) \).

Moreover, we also have from the same corollary that \(\frac{3}{2} \Theta \left(\frac{-b + \sqrt{-3}}{2aD^2} \right) = \frac{3\pi}{D\sqrt{a}} \theta_0 \left(\frac{b + \sqrt{-3}}{2aD^2} \right) \theta_0 \left(\frac{-b + \sqrt{-3}}{2aD^2} \right) \),

thus:

\[
\frac{1}{\sqrt{a}} \theta_0 \left(\frac{-b + \sqrt{-3}}{2aD^2} \right) \theta_0 \left(\frac{b + \sqrt{-3}}{2aD^2} \right) = \theta_0 \left(\frac{-b + \sqrt{-3}}{2aD^2} \right) \theta_0 \left(\frac{b + \sqrt{-3}}{2aD^2} \right)
\]

Recall from the previous Lemma that we also have:

\[
\frac{1}{\sqrt{a}} e^{\pi i r \theta_r \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)} \theta_0 \left(\frac{b + \sqrt{-3}}{2aD^2} \right) = e^{\pi i r \theta_{n_0} \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)} \theta_0 \left(\frac{b + \sqrt{-3}}{2aD^2} \right)
\]

Dividing the two relations, we get exactly:

\[
\frac{e^{\pi i r \theta_r \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)}}{\theta_0 \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)} = \frac{e^{\pi i r \theta_{n_0} \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)}}{\theta_0 \left(\frac{-b + \sqrt{-3}}{2aD^2} \right)}
\]

38
5.3 Applying the factorization lemma to get a square

We would like to apply the factorization lemma for the formula in Theorem ?? for certain ideals that are representatives of the ring class field $\text{Cl}(\mathcal{O}_{3D})$. We will pick this ideals below.

5.3.1 Representatives of $\text{Cl}(\mathcal{O}_{3D})$

Recall that, using Cox [4], for the ideal class group of conductor $3D$, we have:

$$\text{Cl}(\mathcal{O}_{3D}) = (\mathcal{O}_{3D}/3D\mathcal{O}_K)^\times/(\mathbb{Z}/3D\mathbb{Z})^\times(\mathcal{O}_K^\times/\{\pm 1\})$$

Moreover, we can compute explicitly that for $D = \prod_{p_i \equiv 1 \mod 3} p_i$ we have $\text{Cl}(\mathcal{O}_{3D}) \cong (\mathbb{Z}/D\mathbb{Z})^\times$ which also gives us $\# \text{Cl}(\mathcal{O}_{3D}) = \phi(D)$, where ϕ is Euler’s totient function.

Furthermore, we are claiming that we can take as representatives of $\text{Cl}(\mathcal{O}_{3D})$ ideals with norm $\text{Nm} \mathcal{A}_k \equiv k \mod D$ for $k \in (\mathbb{Z}/D\mathbb{Z})^\times$. We construct these ideals in the following lemma:

Lemma 5.6. We can take as representatives of $\text{Cl}(\mathcal{O}_{3D})$ the ideals:

$$\mathcal{A}_k = \left(n_k a_k + m_k \frac{-b + \sqrt{-3}}{2} \right),$$

where $\text{Nm} \mathcal{A}_k = a_k \equiv k \mod D$ for $k \in (\mathbb{Z}/D\mathbb{Z})^\times$, $a_k \equiv 1 \mod 6$ and $n_k \equiv 1 \mod D$. We can pick such an ideal if we take $m_k \equiv b^{-1}(k + 1) \mod D$. We can further put the conditions $n_k, m_k \equiv 1 \mod 3$ to determine the ideal uniquely modulo $3D$.

Proof: Note first that two ideals \mathcal{A}, \mathcal{B} are in the same class in $\text{Cl}(\mathcal{O}_{3D})$ if we can find generators α, β for \mathcal{A} and \mathcal{B}, respectively, such that $\alpha \beta^{-1} \equiv m \mod 3D$, where m is an integer prime to $3D$. Note that this implies $\alpha \beta^{-1} \equiv \pm 1 \mod 3$.

Let us assume that \mathcal{A}_k and \mathcal{A}_l are in the same class in $\text{Cl}(\mathcal{O}_{3D})$. Then we must have

$$\pm \omega^i \left(n_k a_k + m_k \frac{-b + \sqrt{-3}}{2} \right) \equiv \pm \omega^j R \left(n_l a_l + m_l \frac{-b + \sqrt{-3}}{2} \right) \mod 3D$$

for some i, j. Since we chose $n_k, m_k, n_l, m_l \equiv 1 \mod 3$ and b is odd we actually have

$$n_k a_k + m_k \frac{-b + \sqrt{-3}}{2} \equiv n_l a_l + m_l \frac{-b + \sqrt{-3}}{2} \equiv \omega \mod 3,$$

which determines the choice of $\pm \omega^i = \pm \omega^j$ on both sides. We further need the condition:

$$n_k a_k + m_k \frac{-b + \sqrt{-3}}{2} \equiv R(n_l a_l + m_l \frac{-b + \sqrt{-3}}{2}) \mod D$$

Note that this is equivalent to:

$$k + b^{-1}(k + 1) \frac{-b + \sqrt{-3}}{2} \equiv R(l + b^{-1}(l + 1) \frac{-b + \sqrt{-3}}{2}) \mod D$$

Furthermore, this can be rewritten as:

$$\frac{kb + (k + 1)\sqrt{-3}}{2} \equiv R lb + (l + 1)\sqrt{-3} \mod D$$

This implies $k \equiv lR \mod D$ and $k + 1 \equiv lR + R \mod D$, thus $R \equiv 1 \mod D$ and $k \equiv l \mod D$.

Finally, we have $\#(\mathbb{Z}/D\mathbb{Z})^\times$ such ideals, all in different classes of $\text{Cl}(\mathcal{O}_{3D})$, thus we have representatives in every class of $\text{Cl}(\mathcal{O}_{3D})$.

39
5.3.2 Using the factorization formula

We will pick representatives as in the above Lemma to rewrite the Proposition 5.1 and apply Corollary 5.4. We will denote by \(\{ s \in (\mathbb{Z}/D\mathbb{Z})^\times, s \equiv 1 \mod 6 \} \) the norms of the ideals chosen in Lemma 5.6. Furthermore, we are going to choose in Proposition 5.1 all \(r \) to be even. We will use the notation \(\{ r \in \mathbb{Z}/D\mathbb{Z}, r \text{ even} \} \) to express this.

Lemma 5.7. Picking representatives of \(s \in (\mathbb{Z}/D\mathbb{Z})^\times \) such that \(s \equiv 1 \mod 6 \) and \(r \in \mathbb{Z}/D\mathbb{Z} \) also such that \(r \equiv 0 \mod 2 \), we have

\[
\sum_{s \in (\mathbb{Z}/D\mathbb{Z})^\times} \sum_{s \equiv 1 \mod 6} \frac{\Theta \left(\frac{D-b+\sqrt{-3}}{2a_s} \right)}{\Theta \left(\frac{-b+\sqrt{-3}}{2a_s} \right)} \chi(A_s) = \sum_{r \in \mathbb{Z}/D\mathbb{Z}, r \text{ even}} \sum_{s \equiv 1 \mod 6} \frac{\theta_{sr} \left(\frac{-b+\sqrt{-3}}{2} \right)}{\theta_0 \left(\frac{-b+\sqrt{-3}}{2D^2} \right)} \chi(A_r) \frac{\theta_r \left(\frac{b+\sqrt{-3}}{2} \right)}{\theta_0 \left(\frac{b+\sqrt{-3}}{2D^2} \right)} \chi(A_r)
\]

Proof: We fix \(\phi(D) \) ideals \(A_k \) as in Lemma 5.6. Recall that we pick \(A_k \) such that \(\text{Nm} A_k = a_k \equiv k \mod D \) for \(k \in (\mathbb{Z}/D\mathbb{Z})^\times \), \(a_k \equiv 1 \mod 6 \) and \(n_k \equiv 1 \mod D \). We can pick such an ideal if we take \(A_k = (n_k a_k + m_k \frac{-b+\sqrt{-3}}{2}) \) with \(m_k \equiv b^{-1}(k+1) \mod D \). We will try to compute:

\[
S = \sum_{k \in (\mathbb{Z}/D\mathbb{Z})^\times} \frac{\Theta \left(\frac{D-b+\sqrt{-3}}{2a_k} \right)}{\Theta \left(\frac{-b+\sqrt{-3}}{2a_k} \right)} \chi(A_k)
\]

Recall that from Corollary 5.4, we have:

\[
\frac{\Theta \left(\frac{D-b+\sqrt{-3}}{2a_s} \right)}{\Theta \left(\frac{-b+\sqrt{-3}}{2a_s} \right)} = \frac{1}{3} \frac{\Theta \left(\frac{D-b+\sqrt{-3}}{2a_s} \right)}{\Theta \left(\frac{-b+\sqrt{-3}}{6a_s} \right)} = \sum_{r \in \mathbb{Z}/D\mathbb{Z}, r \text{ even}} \frac{\theta_{sr} \left(\frac{-b+\sqrt{-3}}{2D^2} \right)}{\theta_0 \left(\frac{-b+\sqrt{-3}}{2D^2} \right)} \frac{\theta_r \left(\frac{b+\sqrt{-3}}{2} \right)}{\theta_0 \left(\frac{b+\sqrt{-3}}{2D^2} \right)}
\]

Moreover since \(r, a_s \) are both even, we have \(e^{\pi i a_s^2 b} = e^{\pi i r} = 1 \) and thus in Lemma 5.5 we have:

\[
\theta_{sr} \left(\frac{-b+\sqrt{-3}}{2D^2} \right) = \theta_0 \left(\frac{-b+\sqrt{-3}}{2D^2} \right)
\]

Then our sum can be written in the form:

\[
\frac{\Theta \left(\frac{D-b+\sqrt{-3}}{2a_s} \right)}{\Theta \left(\frac{-b+\sqrt{-3}}{2a_s} \right)} = \frac{1}{3} \frac{\Theta \left(\frac{D-b+\sqrt{-3}}{6a_s} \right)}{\Theta \left(\frac{-b+\sqrt{-3}}{6a_s} \right)} = \sum_{r \in \mathbb{Z}/D\mathbb{Z}, r \text{ even}} \frac{\theta_{sr} \left(\frac{-b+\sqrt{-3}}{2D^2} \right)}{\theta_0 \left(\frac{-b+\sqrt{-3}}{2D^2} \right)} \frac{\theta_r \left(\frac{b+\sqrt{-3}}{2} \right)}{\theta_0 \left(\frac{b+\sqrt{-3}}{2D^2} \right)}
\]

Now summing up for all \(s \in (\mathbb{Z}/D\mathbb{Z})^\times \), we get the result of the lemma:
From Lemma 6.7 in Appendix A, we have
\[\sum_{s \in (\mathbb{Z}/D\mathbb{Z})^\times \ mod \ 6 \atop s \equiv 1 \ mod \ 6} \frac{\Theta \left(D \frac{-b+\sqrt{-3}}{2a_s} \right)}{\Theta \left(\frac{-b+\sqrt{-3}}{2a_s} \right)} \chi(A_s) = 0. \] This gives us the result of the Lemma.

Proposition 5.2. Under the conditions above, we have:
\[\sum_{s \in (\mathbb{Z}/D\mathbb{Z})^\times \ mod \ 6 \atop s \equiv 1 \ mod \ 6} \frac{\Theta \left(D \frac{-b+\sqrt{-3}}{2a_s} \right)}{\Theta \left(\frac{-b+\sqrt{-3}}{2a_s} \right)} \chi(A_s) = \left| \sum_{s \in (\mathbb{Z}/D\mathbb{Z})^\times \ mod \ 6 \atop s \equiv 1 \ mod \ 6} \frac{\theta_s \left(\frac{-b+\sqrt{-3}}{2D^2} \right)}{\theta_0 \left(\frac{-b+\sqrt{-3}}{2D^2} \right)} \chi(A_s) \right|^2. \]

Proof: Only for the purpose of this proposition we will use the following notation for \(\theta_r \), to emphasize how it depends on \(D \):
\[\theta_{r/D}(z) = \sum_{n \in \mathbb{Z}} e^{\pi i (n + \frac{r}{D} - b)^2 z} (-1)^n \]

Using the new notation, in the previous Lemma we have proved:
\[\sum_{s \in (\mathbb{Z}/D\mathbb{Z})^\times \ mod \ 6 \atop s \equiv 1 \ mod \ 6} \Theta \left(D \frac{-b+\sqrt{-3}}{2a_s} \right) \chi(A_s) = \sum_{s \in (\mathbb{Z}/D\mathbb{Z})^\times \ mod \ 6 \atop s \equiv 1 \ mod \ 6} \sum_{s_{\text{mod } 2D} \ even} \theta_{sr/D}(\frac{-b+\sqrt{-3}}{2D^2}) \theta_{r/D}(\frac{b+\sqrt{-3}}{2D^2}) \chi(A_s). \]

Note that using Corollary 5.3 for \(a = D^2 \) can rewrite:
\[\theta_0 \left(\frac{-b + \sqrt{-3}}{2D^2} \right) \theta_0 \left(\frac{b + \sqrt{-3}}{2D^2} \right) = \frac{D}{\sqrt{3}} \Theta \left(\frac{b + \sqrt{-3}}{2} \right) \]

Thus the equation becomes:
\[\sum_{s \in (\mathbb{Z}/D\mathbb{Z})^\times \ mod \ 6 \atop s \equiv 1 \ mod \ 6} \Theta \left(D \frac{-b+\sqrt{-3}}{2a_s} \right) \chi(A_s) = \frac{1}{\sqrt{3}} \frac{D}{\sqrt{3}} \Theta \left(\frac{b + \sqrt{-3}}{2} \right) \sum_{s \in (\mathbb{Z}/D\mathbb{Z})^\times \ mod \ 6 \atop s \equiv 1 \ mod \ 6} \sum_{s_{\text{mod } 2D} \ even} \theta_{sr/D}(\frac{-b+\sqrt{-3}}{2D^2}) \theta_{r/D}(\frac{b+\sqrt{-3}}{2D^2}) \chi(A_s) \]

Let \(R \equiv R' \ mod \ D, \ R \ even \ and \ S \equiv 1 \ mod \ 6 \). Then we have by definition:
\[\theta_{RS}(z_1) \Theta_R(z_2) = \sum_{n \in \mathbb{Z}} e^{\pi i (n + R/S + D - 1/6)^2 z_1} e^{\pi i n} \sum_{m \in \mathbb{Z}} e^{\pi i (m + R/D - 1/6)^2 z_2} e^{\pi i m} \]

By changing \(n \to n + S \) and \(m \to m + 1 \), we change \(R \to D + R \) and \(R + D \equiv R' \ mod \ 2D \). We get
\[\theta_{RS}(z_1) \Theta_R(z_2) = \sum_{n \in \mathbb{Z}} e^{\pi i (n + R'S/D - 1/6)^2 z_1} e^{\pi i n} (-1)^S \sum_{m \in \mathbb{Z}} e^{\pi i (m + R'/D - 1/6)^2 z_2} e^{\pi i m} (-1) = \theta_{R'S}(z_1) \Theta_R'(z_2) \]

41
Thus we can choose in the formulas above all r to be actually odd. Furthermore, by making a change of $r \pm 2D$ we can also choose $r \equiv 1 \mod 3$. Then we can rewrite the equation as:

\[
\sum_{s \in \mathbb{Z}/DZ} \sum_{r \equiv 6} \frac{\Theta \left(D \frac{b + \sqrt{-3}}{2a} \right)}{\Theta \left(\frac{b + \sqrt{-3}}{2a} \right)} \chi(\mathcal{A}_s) = \frac{1}{D} \sum_{s \in \mathbb{Z}/DZ} \sum_{r \equiv 6} \theta_{s/D} \left(\frac{b + \sqrt{-3}}{2} \right) \theta_{r/D} \left(\frac{b + \sqrt{-3}}{2} \right) \chi(\mathcal{A}_s)
\]

(20)

Denote $\tau_D = \frac{b + \sqrt{-3}}{2}$. Note that we are summing over all residues $r \mod D$. We can separate the terms, depending on whether a prime divisor p_i divides both D and r. We do this by using the Inclusion-Exclusion principle and note that the sum gets rewritten as:

\[
\sum_{s \in \mathbb{Z}/DZ} \sum_{r \equiv 6} \theta_{s/D}(\tau_D)\theta_{r/D}(\tau_D)\chi(\mathcal{A}_s) = \sum_{s \in \mathbb{Z}/DZ} \sum_{r \equiv 6} \theta_{s/D}(\tau_D)\theta_{r/D}(\tau_D)\chi(\mathcal{A}_s) - \sum_{p_i | D} \sum_{r \equiv 6} \frac{\Theta \left(\frac{b + \sqrt{-3}}{2} \right)}{\Theta \left(\frac{b + \sqrt{-3}}{2} \right)} \chi(\mathcal{A}_s)
\]

\[
\sum_{p_i | D} \sum_{r \equiv 6} \theta_{s/D}(\tau_D)\theta_{r/D}(\tau_D)\chi(\mathcal{A}_s) - \sum_{p_i | D} \sum_{r \equiv 6} \frac{\Theta \left(\frac{b + \sqrt{-3}}{2} \right)}{\Theta \left(\frac{b + \sqrt{-3}}{2} \right)} \chi(\mathcal{A}_s) - \sum_{p_i, p_j | D} \sum_{r \equiv 6} \frac{\Theta \left(\frac{b + \sqrt{-3}}{2} \right)}{\Theta \left(\frac{b + \sqrt{-3}}{2} \right)} \chi(\mathcal{A}_s)
\]

\[\vdots\]

\[
+ (-1)^{n-1} \sum_{p_1 \cdots p_n | D} \sum_{r \equiv 6} \frac{\Theta \left(\frac{b + \sqrt{-3}}{2} \right)}{\Theta \left(\frac{b + \sqrt{-3}}{2} \right)} \chi(\mathcal{A}_s)
\]

Using Lemma 5.8 proved below, all of the terms except for the first one equal 0. Thus getting back to the equation (19), we get:

\[
\sum_{s \in \mathbb{Z}/DZ} \sum_{s \equiv r \equiv 6} \frac{\Theta \left(D \frac{b + \sqrt{-3}}{2a} \right)}{\Theta \left(\frac{b + \sqrt{-3}}{2a} \right)} \chi(\mathcal{A}_s) = \frac{1}{D} \sum_{s \equiv r \equiv 6} \theta_{s/D} \left(\frac{b + \sqrt{-3}}{2} \right) \theta_{r/D} \left(\frac{b + \sqrt{-3}}{2} \right) \chi(\mathcal{A}_r)
\]

\[
= \frac{1}{D} \sum_{s \equiv r \equiv 6} \theta_{s/D} \left(\frac{b + \sqrt{-3}}{2} \right) \theta_{r/D} \left(\frac{b + \sqrt{-3}}{2} \right) \chi(\mathcal{A}_s)
\]

Below we prove Lemma 5.8 used in the proof of Proposition 20:
Lemma 5.8. If \(D = p_1 \ldots p_n \) and \(D' = D/(p_1 \ldots p_k) \), then:

\[
\sum_{s \in (\mathbb{Z}/D\mathbb{Z})^\times} \sum_{s \equiv 1 \mod 6, r \equiv 1 \mod 6} \theta_{sr/D'} \left(\frac{-b + \sqrt{-3}}{2} \right) \theta_{r/D'} \left(\frac{b + \sqrt{-3}}{2} \right) \chi(A_s) = 0
\]

Proof: Note that first that we can rewrite the sum in the form:

\[
\sum_{s \in (\mathbb{Z}/D\mathbb{Z})^\times} \sum_{s \equiv 1 \mod 6, r \equiv 1 \mod 6} \theta_{sr/D'} \left(\frac{-b + \sqrt{-3}}{2} \right) \theta_{r/D'} \left(\frac{b + \sqrt{-3}}{2} \right) \chi(A_s) = \theta_0 \left(\frac{-b + \sqrt{-3}}{2D^2} \right) \theta_0 \left(\frac{b + \sqrt{-3}}{2D^2} \right) \sum_{s \equiv 1 \mod 6, r \equiv 1 \mod 6} \theta_{sr/D'} \left(\frac{-b + \sqrt{-3}}{2} \right) \theta_{r/D'} \left(\frac{b + \sqrt{-3}}{2D^2} \right) \chi(A_s)
\]

Using (18) for \(D := D' \), we recognize the sum on the LHS to be:

\[
\sum_{s \equiv 1 \mod 6} \frac{\Theta \left(\frac{-b + \sqrt{-3}}{2D} \right)}{\Theta \left(\frac{-b + \sqrt{-3}}{2a_s} \right)} \chi(D_A) \frac{\Theta \left(\frac{b + \sqrt{-3}}{2D} \right)}{\Theta \left(\frac{b + \sqrt{-3}}{2a_s} \right)} \chi(D_A) = \sum_{s \equiv 1 \mod 6} \frac{\chi(D_A)}{\chi(D_A)} m^{1/3} \chi_m(A_s)
\]

Denote \(m = D/D' = p_1 \ldots p_k \). Moreover, recall that from the definition of the cubic character we have:

\[
D^{1/3} \chi_D(A_s) = (D^{1/3})^\sigma A_s = (D^{1/3})^\sigma A_s (m^{1/3})^\sigma A_s = D^{1/3} \chi_{D'}(A_s) \chi(D_A) m^{1/3} \chi_m(A_s)
\]

Then we can rewrite the sum as:

\[
\sum_{s \in (\mathbb{Z}/D\mathbb{Z})^\times} \frac{\Theta \left(\frac{-b + \sqrt{-3}}{2a_s} \right)}{\Theta \left(\frac{-b + \sqrt{-3}}{2a_s} \right)} \chi(D_A) = \sum_{s' \equiv 1 \mod 6} \frac{\Theta \left(\frac{-b + \sqrt{-3}}{2a_s} \right)}{\Theta \left(\frac{-b + \sqrt{-3}}{2a_s} \right)} \chi(D_A) \sum_{s \equiv 1 \mod 6, s' \equiv 1 \mod 6} \frac{\chi(D_A)}{\chi(D_A)} m^{1/3} \chi_m(A_s)
\]

Note that as \(D = p_1 \ldots p_n \), we have \(\{ s \in (\mathbb{Z}/D\mathbb{Z})^\times, s \equiv 1 \mod D' \} \cong (\mathbb{Z}/m\mathbb{Z})^\times \). Moreover, note that \(\chi_m(A_s) \) depends only on \(s \mod m \). Thus we are summing the character \(\chi_m(A_s) = \chi_m(A_{s''}) \) over \(s'' \in (\mathbb{Z}/m\mathbb{Z})^\times \).

Moreover, \(\chi_m(A_s) \) is a nontrivial character as a function of \(s \), as \(m^{1/3} \chi_m(A_s) = (m^{1/3})^\sigma A_s = m^{1/3} \) for all \(A_s \). As we are summing a non-trivial character over a group, the sum is just 0:

\[
\sum_{s'' \in (\mathbb{Z}/m\mathbb{Z})^\times} \chi_m(A_{s''}) = 0,
\]

thus the whole sum is zero.

We left out the case \(r \equiv 0 \mod D \). In this case we have:
\[
\sum_{s \in \mathbb{Z}/D\mathbb{Z}} \frac{\theta_0 \left(\frac{b + \sqrt{-3}}{2} \right) \theta_0 \left(\frac{b + \sqrt{-3}}{2} \right)}{\chi(A_s)} = \sum_{s \in \mathbb{Z}/D\mathbb{Z}} \frac{1}{D} \chi(A_s) = 0
\]

5.4 Shimura reciprocity applied to \(\theta_r \)

We define:

\[
f_r(z) = \frac{\theta_r(z)}{\theta_0(z)} = \frac{\sum\limits_{n \in \mathbb{Z}} e^{\pi i (n + \frac{3}{2} - \frac{1}{2})^2 z e^{\pi i n}}}{\sum\limits_{n \in \mathbb{Z}} e^{\pi i (n - \frac{1}{2})^2 z e^{\pi i n}}}
\]

Then we can rewrite Proposition 5.2 as:

\[
\sum_{s \in \mathbb{Z}/D\mathbb{Z}} \frac{\Theta \left(D \frac{b + \sqrt{-3}}{2a_s} \right) \chi(A_s)}{\Theta \left(\frac{b + \sqrt{-3}}{2a_s} \right)} = \left| \sum_{s \in \mathbb{Z}/D\mathbb{Z}} f_s(\tau) \chi(A_s) \right|^2 \left| \frac{\theta_0 \left(\frac{b + \sqrt{-3}}{2} \right)}{\theta_0 \left(\frac{-b + \sqrt{-3}}{2D^2} \right)} \right|^2
\]

Note that from the Corollary 5.3, we can compute \(\frac{3}{2} \Theta \left(\frac{-b + \sqrt{-3}}{2} \right) = \frac{3\sqrt{3}}{4} \theta_0 \left(\frac{-b + \sqrt{-3}}{2} \right) \theta_0 \left(\frac{b + \sqrt{-3}}{2} \right) \) as well as \(\frac{3}{2} \Theta \left(\frac{-b + \sqrt{-3}}{2} \right) = \frac{3\sqrt{3}}{4} \theta_0 \left(\frac{-b + \sqrt{-3}}{2D^2} \right) \theta_0 \left(\frac{b + \sqrt{-3}}{2D^2} \right) \). Taking the ratio of the two relations, gives us:

\[
\left| \frac{\theta_0 \left(\frac{-b + \sqrt{-3}}{2} \right)}{\theta_0 \left(\frac{-b + \sqrt{-3}}{2D^2} \right)} \right|^2 = D
\]

Thus we get:

\[
\sum_{s \in \mathbb{Z}/D\mathbb{Z}} \frac{\Theta \left(D \frac{b + \sqrt{-3}}{2a_s} \right) \chi(A_s)}{\Theta \left(\frac{b + \sqrt{-3}}{2a_s} \right)} = D \left| \sum_{s \in \mathbb{Z}/D\mathbb{Z}} f_s(\tau) \chi(A_s) \right|^2.
\]

By further multiplying by \(D^{1/3} \), we have:

\[
\sum_{s \in \mathbb{Z}/D\mathbb{Z}} \frac{\Theta \left(D \frac{-b + \sqrt{-3}}{2a_s} \right) D^{1/3} \chi(A_s)}{\Theta \left(\frac{-b + \sqrt{-3}}{2a_s} \right)} = \left| \sum_{s \in \mathbb{Z}/D\mathbb{Z}} f_s(\tau) \chi(A_s) D^{2/3} \right|^2.
\] \hspace{1cm} (21)

Our goal in this section is to show that all the terms \(f_s(\tau) \chi(A_s) D^{2/3} \) are Galois conjugates of each other.

5.4.1 \(\theta_r \) as an automorphic form

We will first look closer at the function \(\theta_r \). We will rewrite \(\theta_r \) as an automorphic theta function \(\Theta : \text{SL}_2(\mathbb{A}_\mathbb{Q}) \to \mathbb{C} \):
\[\Theta(g) = \sum_{m \in \mathbb{Q}} r(g) \Phi(m), \]

where \(\Phi \in (\mathbb{A}_\mathbb{Q}) \) is a Schwartz-Bruhat function and \(r \) is the Weil representation defined by:

- \(r \left(\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \right) (x) = \chi_0(a)|a|^{1/2} \Phi(ax) \)
- \(r \left(\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \right) (x) = \psi(bx^2) \Phi(x) \)
- \(r \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right) (x) = \gamma \hat{\Phi}(x), \)

where \(\psi_p(x) = e^{-2\pi i \text{Frac}_p(x)} \) and \(\psi_{x_0}(x) = e^{2\pi i x} \), \(\gamma \) is an 8th root of unity, and \(\chi_0 \) is a character.

XXX define \(\chi_0 \) and \(\gamma \)

We define the following Schwartz-Bruhat functions for \(\theta \). Let \(f_p = \prod_{v_p(\mu) < 0} \Phi_{\mu, v} \), where:

\[
\begin{align*}
\Phi^{(r)}_p &= \text{char}_{\mathbb{Z}_p}, & \text{if } p \nmid D \\
\Phi^{(r)}_p &= \text{char}_{\mathbb{Z}_p - \frac{1}{p}}, & \text{if } p | D, p \nmid 2, 3 \\
\Phi^{(r)}_q &= \text{char}_{\mathbb{Z}_p + \frac{1}{p}}, \\
\Phi^{(r)}_2(n) &= e^{\pi i \text{Frac}_2(n)} \text{char}_{\mathbb{Z}_p + \frac{1}{p}}(n), \\
\Phi^{(r)}_\infty(x) &= e^{-2\pi q(x)}.
\end{align*}
\]

We define the theta function:

\[\Theta_{\Phi^{(r)}}(g) = \sum_{n \in \mathbb{Q}} r(g) \Phi^{(r)}(n) \]

Note that \(\Phi^{(r)}_f(n) \neq 0 \) for \(n \in \mathbb{Q} \) implies \(n - \frac{r}{2} + \frac{1}{6} \in \mathbb{Z}_p \) for all \(p \). This implies \(n - \frac{r}{2} + \frac{1}{6} \in \mathbb{Z} \), thus \(n \in \mathbb{Z} + \frac{r}{2} - \frac{1}{6} \). Also note that for \(g_z = \begin{pmatrix} y^{1/2} & 0 \\ 0 & y^{-1/2} \end{pmatrix} \), we have \(r(g_z) \Phi_{\infty}(n) = r \left(\begin{pmatrix} y^{1/2} & 0 \\ 0 & y^{-1/2} \end{pmatrix} \begin{pmatrix} 1 & xy^{-1} \\ 0 & 1 \end{pmatrix} \right) (n) = y^{1/2} e^{2\pi iz(x+y)n^2} \). Then we can compute:

\[\Theta_{\Phi^{(r)}}(g_z, 1f) = \sum_{n \in \mathbb{Z} + \frac{r}{2} - \frac{1}{6}} e^{2\pi izn^2} e^{\pi i \text{Frac}_2(n)} = y^{1/2} \theta_r(2z) \]

Note that: \(\theta_r(2z) = y^{-1/2} \Theta_{\Phi^{(r)}}(g_z, 1f) \) and \(\theta_0(2z) = y^{-1/2} \Theta_{\Phi^{(0)}}(g_z, 1f) \), which implies:

\[\frac{\theta_r(z)}{\theta_0(z)} = \frac{\Theta_{\Phi^{(r)}}(g_z/2, 1f)}{\Theta_{\Phi^{(0)}}(g_z/2, 1f)} \]
5.4.2 Galois action on modular functions (Shimura reciprocity)

Recall the function f_r:

$$f_r(z) = \frac{\theta_r(z)}{\theta_0(z)} = \frac{\Theta_{\Phi^{(r)}(g_{z/2}, 1f)}}{\Theta_{\Phi^{(0)}(g_{z/2}, 1f)}}$$

Lemma 5.9. The theta function $\theta_r(z)$ is modular form of weight $1/2$ for $\Gamma(72D^2)$.

Proof: Recall that $\theta_r(z) = \Theta_{\Phi^{(r)}(g_{z/2})}$. We will compute $\theta_r\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}z\right)$, for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(72D^2)$. Note first that:

$$\theta_r\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}z\right) = \Theta_{\Phi^{(r)}}\left(\begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix}g_z\right) = \Theta_{\Phi^{(r)}}\left(\begin{pmatrix} a & b/2 \\ 2c & d \end{pmatrix}\begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}g_z, \begin{pmatrix} a & b/2 \\ 2c & d \end{pmatrix}\right)$$

As $\Theta_{\Phi^{(r)}}$ is invariant under $\text{SL}_2(\mathbb{Q})$, we can rewrite $\Theta_{\Phi^{(r)}}$ as:

$$\Theta_{\Phi^{(r)}}\left(\begin{pmatrix} a & b/2 \\ 2c & d \end{pmatrix}\begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}g_z, \begin{pmatrix} a & b/2 \\ 2c & d \end{pmatrix}\right) = \Theta_{\Phi^{(r)}}\left(\begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}g_z, \begin{pmatrix} a & b/2 \\ 2c & d \end{pmatrix}\right)$$

We will compute separately the two terms, using the Weil representations. For the RHS, note that we have to compute $r\left(\begin{pmatrix} a & b/2 \\ 2c & d \end{pmatrix}\right)^{-1}\Phi_f^{(r)} = r\left(\begin{pmatrix} d & -b/2 \\ -2c & a \end{pmatrix}\right)\Phi_f^{(r)}$. We will show:

$$\Theta_{\Phi^{(r)}}\left(\begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}g_z, \begin{pmatrix} a & b/2 \\ 2c & d \end{pmatrix}\right) = \prod_{p|6D} \gamma_p^2 \Theta_{\Phi^{(r)}}\left(\begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}g_z, \begin{pmatrix} a & b/2 \\ 2c & d \end{pmatrix}\right)$$

We rewrite the matrix as:

$$\begin{pmatrix} d & -b/2 \\ -2c & a \end{pmatrix} = \begin{pmatrix} 1/a & -b/2a \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2c/a & 1 \end{pmatrix}$$

At $p \nmid 6D$, the action of $\begin{pmatrix} d & -b/2 \\ -2c & a \end{pmatrix}$ is trivial, as it belongs to $\text{SL}_2(\mathbb{Z}_p)$ and $\Phi_p^{(r)}$ is the characteristic function of \mathbb{Z}_p. For $p|6D$, we compute:

First we compute $r\left(\begin{pmatrix} 1 & 0 \\ -2c/d & 1 \end{pmatrix}\right)\Phi_p^{(r)}(x) = \gamma_p^2 \Phi_p^{(r)}(x)$. We rewrite the matrix as:

$$\begin{pmatrix} 1 & 0 \\ -2c/d & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2c/d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

and compute the Weil representation action:

- $r\left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right)\Phi_p^{(r)}(x) = \gamma_p \Phi_p^{(r)}(x)$. Note that we can compute:

$$\Phi_p^{(r)}(x) = \int_{\mathbb{Q}_p} e^{-2\pi i \text{Frac}_p(2xy)} \text{char}_{\mathbb{Z}_p + \frac{r}{p}}(y) dy = \int_{\mathbb{Z}_p} e^{-2\pi i \text{Frac}_p(2x(y+r/D))} dy = e^{-2\pi i \text{Frac}_p(2x/D)} \text{char}_{\mathbb{Z}_p}(x)$$

46
- \(r \begin{pmatrix} 1 & 2c/d \\ 0 & 1 \end{pmatrix} \Phi^{(r)}_p(x) = e^{-2\pi i \text{Frac}_p(2c/d) x^2} e^{-2\pi i \text{Frac}_p(2x/D)} \text{char}_p(x). \) As \(v_p(c/d) \geq 0, \) we have \(e^{-2\pi i \text{Frac}_p(2c/d) x^2} = 1, \) thus the action is trivial on \(\Phi^{(r)}_p(x) \)

- \(r \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Phi^{(r)}_p(x) = \gamma_p \Phi^{(r)}_p(x). \) By the choice of the self-dual Haar measure, this equals \(\gamma_p \Phi^{(r)}_p(-x). \)

- \(r \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Phi^{(r)}_p(-x) = \Phi^{(r)}_p(x) \)

Now we also want to compute the action of \(r \begin{pmatrix} 1/a & -b/2 \\ 0 & a \end{pmatrix} \Phi^{(r)}_p(x). \) We rewrite the matrix as:

\[
\begin{pmatrix} 1/a & -b/2 \\ 0 & a \end{pmatrix} = \begin{pmatrix} 1/a & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & -ba/2 \\ 0 & 1 \end{pmatrix}
\]

and compute the action:

- \(r \begin{pmatrix} 1/a & -ba/2 \\ 0 & 1 \end{pmatrix} \Phi^{(r)}_p(x) = e^{2\pi i \text{Frac}_p(ba/2x^2)} \text{char}_{x+r/D}(x). \) As \(D^2(ba/2), \) we have \(e^{2\pi i \text{Frac}_p(ba/2x^2)}, \) thus we have trivial action.

- \(r \begin{pmatrix} 1/a & 0 \\ 0 & a \end{pmatrix} \Phi^{(r)}_p(x) = \chi_0(a)|a|^{1/2} \Phi^{(r)}_p(x/a). \) As \(a \equiv 1 \mod D, \) we get \(\Phi^{(r)}_p(x/a) = \Phi^{(r)}_p(x), \)

as well as \(\chi_0(a) = |a|^{1/2} = 1. \)

For \(p = 3 \) the computation is similar. For \(p = 2, \) we compute again the action of \(r \begin{pmatrix} 1 & 0 \\ -2c/d & 1 \end{pmatrix} \Phi^{(r)}_p(x) = \gamma_p^{2} \Phi^{(r)}_p(x): \)

- \(r \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Phi^{(r)}_2(x) = \gamma_2 \Phi^{(r)}_2(x). \) Note that we can compute:

\[
\Phi^{(r)}_2(x) = \int_{\mathbb{Q}_2} e^{-2\pi i \text{Frac}_2(2xy)} \text{char}_{x+1/2}(y) e^{\pi i \text{Frac}_2(y)} dy = e^{\pi i/2} \int_{\mathbb{Q}_2} e^{-2\pi i \text{Frac}_2(2xy+1/2)} e^{\pi i \text{Frac}_2(y)} dy =
\]

\[
e^{\pi i/2} e^{-2\pi i \text{Frac}_2(x)} \int_{\mathbb{Z}_2} e^{-2\pi i \text{Frac}_2((2x-1/2)y)} dy = e^{\pi i/2} e^{-2\pi i \text{Frac}_2(x)} \text{char}_{1/2}(x+1/2)(x)
\]

- \(r \begin{pmatrix} 1 & 2c/d \\ 0 & 1 \end{pmatrix} \Phi^{(r)}_2(x) = e^{-2\pi i \text{Frac}_2(2c/dx^2) \Phi^{(r)}_2(x). \) As \(v_p(2c/d) \geq 4, \) we have \(e^{-2\pi i \text{Frac}_p(2c/dx^2) = 1, \) thus the action is trivial on \(\Phi^{(r)}_p(x) \)

- \(r \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Phi^{(2)}_2(x) = \gamma_2 \Phi^{(2)}_2(x). \) By the choice of the self-dual Haar measure, this equals \(\gamma_2 \Phi^{(2)}_2(-x). \)

- \(r \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \Phi^{(r)}_2(-x) = \Phi^{(r)}_2(x) \)
We compute similarly the action of \(r \begin{pmatrix} 1/a & -b/2 \\ 0 & a \end{pmatrix} \Phi_2^{(r)}(x): \)

- \(r \begin{pmatrix} 1 & -ba/2 \\ 0 & 1 \end{pmatrix} \Phi_2^{(r)}(x) = e^{2\pi i \text{Frac}_2(ba/2\pi^2)} e^{2\pi i \text{Frac}_2(x)} \text{char}_{\mathbb{Z} + 1/2}(x). \) As \(4|ba/2, \) we have \(e^{2\pi i \text{Frac}_2(ba/2\pi^2)} = 1, \) thus we have trivial action.

- \(r \begin{pmatrix} 1/a & 0 \\ 0 & a \end{pmatrix} \Phi_2^{(r)}(x) = \chi_0(a)|a|^{1/2} \Phi_2^{(r)}(x/a). \) As \(a \equiv 1 \mod 8, \) we get \(\Phi_2^{(r)}(x/a) = \Phi_2^{(r)}(x), \)
 as well as \(\chi_0(a) = |a|^{1/2} = 1. \)

This finishes the computation of the finite part. We get:

\[
\Theta_{\Phi^{(r)}} \left(\begin{pmatrix} 1/\sqrt{2} \\ 0 \\ \sqrt{2} \end{pmatrix} g_z, \begin{pmatrix} a & b/2 \\ 2c & d \end{pmatrix}^{-1} \right) = 2^{-1/4} y^{1/2} \sum_{m \in \mathbb{Z} + \frac{a}{2}} e^{2\pi im^2z} (-1)^m = 2^{-1/4} y^{1/2} \theta_r(z) \tag{22}
\]

We will compute now the infinite part. Note first that \(r(g_z) \Phi_\infty(m) = y^{1/4} e^{2\pi iz|m|^2} \) We rewrite the matrix:

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & b/d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/d & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -c/d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
\]

We compute the Weil representation action:

- \(F_1(m) := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} e^{2\pi i z m^2} = \gamma_\infty \frac{1}{\sqrt{8}} e^{-2\pi i \frac{z}{8}} \)

- \(F_2(m) := r \begin{pmatrix} 1 & -c/d \\ 0 & 1 \end{pmatrix} F_1(m) = e^{-2\pi i \frac{z}{4} m^2} F_1(m) = \gamma_\infty \frac{1}{\sqrt{2}} e^{-2\pi i \frac{z}{4} m^2} \)

- \(F_3(m) := r \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} F_3(m) = \gamma_\infty F_3(m) = \gamma_\infty \frac{1}{\sqrt{8}} e^{2\pi i \frac{(d \chi_2 + d \chi_4)}{(8 \pi i \chi_2 \chi_4)}} (\gamma_\infty \frac{1}{\sqrt{8}}) \sqrt{\frac{dz}{cz+d}} = \gamma_\infty \frac{1}{\sqrt{8}} e^{2\pi i \frac{d \chi_2 + d \chi_4}{cz+d} m^2} \)

- \(F_4(m) := r \begin{pmatrix} 1/d & 0 \\ 0 & d \end{pmatrix} F_4(m) = \text{sgn}(d) d^{1/2} F_3(m/d) = \text{sgn}(d) d^{1/2} F_3(m/d) \gamma_\infty^2 (\gamma_\infty \frac{1}{\sqrt{8}}) \sqrt{\frac{dz}{cz+d}} = \text{sgn}(d) F_3(m/d) \gamma_\infty (\gamma_\infty \frac{1}{\sqrt{8}}) \sqrt{\frac{dz}{cz+d}} e^{2\pi i \frac{d \chi_2 + d \chi_4}{cz+d} m^2} \)

- \(F_5(m) := r \begin{pmatrix} 1 & b/d \\ 0 & 1 \end{pmatrix} F_5(m) = e^{2\pi i \frac{b}{4} m^2} F_4(m) = \text{sgn}(d) \gamma_\infty^2 (\gamma_\infty \frac{1}{\sqrt{8}}) \sqrt{\frac{dz}{cz+d}} e^{2\pi i \frac{(b \chi_2 + b \chi_4)}{(c \chi_2 + d \chi_4)}} m^2 \)

- \(r \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} F_5(m) = -F_5(-m) = -\text{sgn}(d) \gamma_\infty^2 (\gamma_\infty \frac{1}{\sqrt{8}}) \sqrt{\frac{dz}{cz+d}} e^{2\pi i \frac{a+b}{c \chi_2 + d \chi_4} m^2} \)

We still have to compute the action of \(r \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ \sqrt{2} \end{pmatrix} \) on \(-y^{1/2} \text{sgn}(d) \gamma_\infty^2 (\gamma_\infty \frac{1}{\sqrt{8}}) \sqrt{\frac{dz}{cz+d}} e^{2\pi i \frac{a+b}{c \chi_2 + d \chi_4} m^2}. \)

This gives us just:
\[2^{-1/4}y^{1/2} \text{sgn}(d)\gamma_{Z, \gamma}^2(*) = 2^{-1/4}y^{1/2} \text{sgn}(d)\gamma_{Z, \gamma}^2(*) \sqrt{\frac{1}{cz + d}} e^{\pi i \left(\frac{az + b}{cz + d} \right)^2} \]

Thus we have:

\[\Theta \left(\begin{pmatrix} 1/\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} z, 1 \right) = 2^{-1/4}y^{1/2} \text{sgn}(d)\gamma_{Z, \gamma}^2(*) \sqrt{\frac{1}{cz + d}} \sum_{m \in \mathbb{Z}^+) \frac{1}{cz + d} e^{\pi i \left(\frac{az + b}{cz + d} \right)^2} (-1)^m \]

Note that this is exactly:

\[2^{-1/4}y^{1/2} \text{sgn}(d)\gamma_{Z, \gamma}^2(*) \sqrt{\frac{1}{cz + d}} \theta_r \left(\frac{az + b}{cz + d} \right) = \gamma_0 \theta_r(z) \]

(23)

From (21) and (22) we get that:

\[\text{sgn}(d)\gamma_{Z, \gamma}^2(*) \sqrt{\frac{1}{cz + d}} \theta_r \left(\frac{az + b}{cz + d} \right) = \gamma_0 \theta_r(z) \]

Lemma 5.11. The modular function \(f_\tau \) has rational Fourier coefficients.

Proof: Note that \(\theta_r(z) = q^{(D-r)^2/72} \left(1 + \sum_{M \geq 1} a_M q^{M/(72D^2)} \right) \), where \(a_m \in \mathbb{Z} \) and \(\theta_0(z) = q^{1/72} \). Then we can compute \(f_\tau(z) = q^{(D-r)^2/72} \left(1 + \sum_m a_m q^{m/72D^2} \right) \) with \(a_m \in \mathbb{Z} \).
for $x \in \mathbb{A}_{K,f}^\times$, $g_r(x) = \left(\frac{t - sB}{s} - sC \right)$.

In our case, we want to compute the Galois conjugates of $f_r(\tau)$, where $\tau = \frac{-k + \sqrt{-3}}{2}$. Note that it has the minimum polynomial $X^2 + bX + \frac{b^2 + 3}{4}$. Thus we have to compute the action of all $g_r((x_p)_p) = \prod_p \left(\frac{t_p - s_p b}{s_p} - s_p \frac{\sqrt{b^2 + 3}}{4} \right)$.

We will compute all these actions. However, we claim that it is enough to compute the action of the ideals \mathcal{A} through the correspondence:

$$I(3) \to \mathbb{A}_{K,f}^\times / K^\times$$

$$\mathcal{A} = (A + B\omega) \to (A + B\omega)_{p \mid 6D},$$

where $A + B\omega \equiv 1 \mod 3$ is the generator of the ideal \mathcal{A}.

More precisely, in order to find the Galois conjugates over K, we will compute the action of all Galois actions corresponding to $(A_p + B_p\omega)_p \in \mathbb{A}_{K}^\times$ and we will prove that the Galois action from Shimura reciprocity law is:

Proposition 5.3. For $A = (n_a a + m_a \frac{-b + \sqrt{-3}}{2})$, where $b^2 \equiv -3 \mod 4Db^2$ is an ideal prime to $6D$, we have:

$$f_1(\tau)^{\mathcal{A}} = f_{n_a}(\tau)$$

and $f_r(\tau)$ are all the Galois conjugates of $f(\tau)$, where $r \in (\mathbb{Z}/D\mathbb{Z})^\times$. Moreover, this implies that $f_1(\tau) \in H_{6D}$.

Proof: First we note that we do not have to consider the action of all $(x_p)_p \in \mathbb{A}_{K}^\times$. By applying the Strong Approximation Theorem for GL_1 and the number field K that is a PID, we have:

$$\mathbb{A}_{K}^\times = K^\times \times \prod_{v \mid \mathcal{O}} \mathcal{O}_{K_v}^\times \times \mathbb{C}^\times$$

This implies:

$$\mathbb{A}_{K,f}^\times = K^\times \times \prod_{v \mid \mathcal{O}} \mathcal{O}_{K_v}^\times$$

Then any $x = (x_v) \in \mathbb{A}_{K,f}^\times$ can be written as $x = k(l_v)$, where $k \in K^\times$, $(l_v)_v \in \prod_{v \mid \mathcal{O}} \mathcal{O}_{K_v}^\times$.

Since $\text{Nm} k > 0$, we have the embedding:

$$k \in K^\times \hookrightarrow \text{GL}_2(\mathbb{Q})^+$$

50
We also have the embedding:

\[(l_v)_v \in \prod_{v \mid \infty} \mathcal{O}_{K_v}^\times \to \prod_p \text{GL}_2(\mathbb{Z}_p)\]

Thus if we know the Galois action of \(K^\times\) and of \(\hat{\mathcal{O}}_{K_v}^\times\), we will know the Galois action of \(\hat{\mathbb{A}}_{K,f}^\times\).

We recall the way the action of \(g_r(x)\) is defined for. For \(\alpha \in \text{GL}_2(\mathbb{Q})^+\), \(f^\alpha\) is defined by \(f^\alpha(\tau) = f(\alpha \tau)\). In our case we only need to look at the action of \(K^\times\). Recall that \(k \in K^\times\) embeds into \(\text{GL}_2(\mathbb{Q})^+\) under the map:

\[k = t + s \frac{-b + \sqrt{-3}}{2} \mapsto g_r(k) = \begin{pmatrix} t - sb & -sc \\ s & t \end{pmatrix}\]

Then the Galois action from Shimura reciprocity is:

\[f(\tau)^{k^{-1}} = f^{g_r(k)}(\tau) = f(g_r(k)\tau)\]

Note that \(t + s\tau \mapsto (\frac{t - sb}{s}, \frac{-sc}{t})\) is the torus that preserves \(\tau\), thus we have:

\[f(\tau)^{k^{-1}} = f(g_r(k)\tau) = f(\tau)\]

Now all we have left is to compute the action of \(\prod_v \mathcal{O}_{K_v}^\times\). Note that for all \(v \nmid 6D\) the action is trivial. For \(v \mid 6D\) we project the action of \((g_r(x_v))_v \to g_r(x') \in \text{GL}_2(\mathbb{Z}/6D^2\mathbb{Z})\).

Remark 5.2. Note that we have for \((\pm \omega^i)_p \mapsto \hat{\mathbb{A}}_{K,j}^\times\) acting trivially. Thus we have for \(x \in \hat{\mathbb{A}}_{K,j}^\times\):

\[(f_r(\tau))^{\sigma_{\pm \omega^i}} = ((f_r(\tau))^{\sigma_{\pm \omega^i}})^{\sigma_x} = (f_r^{g_r(\pm \omega^i)}(\tau))^{\sigma_x} = f_r(\tau)^{\sigma_x}\]

Lemma 5.12. For \(x \in \prod_v \mathcal{O}_{K_v}^\times\) we can find \(\omega^i, i = 0, \pm 1\) such that:

\[(x_2 \pm \omega^i)_2 = (t_2 + s_2 \omega)\]

with \(v_2(t_2) = 0, v_2(s_2) \geq 1\) and

\[(x_3 \pm \omega^i)_3 = (t_3 + s_3 \omega)\]

with \(t_3 + s_3 \equiv 1 \pmod{3}\).

Proof: Note first that if \(v_2(s) \geq 1\), then we must have \(v_2(t_2) = 0\), as we need \(x_2 \omega^i \in (\mathbb{Z}_2[\omega])^\times\). Thus we must find \(x \omega^i\) such that \(v_2(s) \geq 1\). We write \(x = t'_2 + s'_2 \omega\). Then:

\[x_2 \omega = t'_2 \omega + s'_2 \omega^2 = (t'_2 - s'_2) \omega + s'_2 \]

\[x_2 \omega^2 = t'_2 \omega^2 + s'_2 = (-t'_2) \omega + (s'_2 - t'_2)\]

One of \(t'_2, s'_2, t'_2 - s'_2\) must have positive valuation. Assume this is not true: \(v_2(t'_2) = v_2(s'_2) = 0\). Then \(s'_2, t'_2 \equiv 1 \pmod{2}\), thus \(s'_2 - t'_2 \equiv 0 \pmod{2}\) and has positive valuation. Thus we can always pick \(x \omega^i\) as claimed above at the place 2.
Now since take \(x_3 \omega^i = s'_3 \omega + t'_3 = s'_3 - \frac{3+\sqrt{3}}{2} + (t'_3 + s'_3) \). Then, since \(x_3 \) is a unit in \(\mathbb{Z}_3[\omega] \), we must have \(t_3(s'_3 + t'_3) = 0 \), thus \(s'_3 + t'_3 \equiv \pm 1 \mod 3 \). We pick \(x_3 \omega \) or \(-x_3 \omega\) to get the condition \(s'_3 + t'_3 \equiv 1 \mod 3 \).

Since from the remark above \(x \) and \(\pm \omega^i x \) act the same, we can consider the Galois action of \(\sigma_{x\omega^i} \) as in the lemma above. We compute it below.

Let \(x_p \in \prod_v O^\times_{K_v} \) chosen as above. Then:

\[
x_p = t_p + s_p \frac{-b + \sqrt{3}}{2} \quad \iff \quad g_r(x_p) = \begin{pmatrix} t_p - s_p b & s_p c \\ s_p & t_p \end{pmatrix}
\]

Elements of \(\prod_v \text{GL}_2(\mathbb{Z}_p) \) project to \(\text{GL}_2(\mathbb{Z}/6D^2\mathbb{Z}) \), which is the action we care about. From Chinese remainder theorem, we can find \(k_0 \in K \) such that \(k_0 \equiv x_p \mod 6D^2\mathbb{Z}_p \) for all \(p \mid 6D \).

Note that \(k_0 \) is independent of the choice of \(\tau \).

Then we only need to compute the action of:

\[
f_r(\tau)^{\sigma_{x\omega^i}^{-1}} = f_{g_r(x)}(\tau) = f_r^{g_r(x), \psi|6D}(\tau) = f_r^{g_r(t + \sigma \tau), \psi|6D}(\tau)
\]

We will now compute \(f_r^{g_r(x), \psi|6D}(\tau) \). Note that, for \(c' = \frac{b^2 + 3}{4} \), we have the map:

\[
k_0 = s\tau + t \rightarrow g_r(k_0) = \begin{pmatrix} t - sb' & -sc \\ s & t \end{pmatrix}
\]

Let \(\text{Nm}(k_0) = a \). We write the action:

\[
f(\tau)^{\sigma_{x\omega^i}} = f \begin{pmatrix} t - sb & -sc/a \\ s & t/a \end{pmatrix}_{\psi|6D} \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}_{\psi|6D}
\]

Note that \(\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}_{\psi|6D} \) acts trivially on \(f_r \) as both functions \(\theta \left[\begin{smallmatrix} \frac{-1}{6} + \frac{\tau}{2} \\ \frac{1}{2} \end{smallmatrix} \right] e^{-\pi i (\tau/6 - 1/6)} \) and \(\theta \left[\begin{smallmatrix} -\frac{1}{6} \\ \frac{1}{2} \end{smallmatrix} \right] e^{\pi i /6} \) have rational Fourier coefficients.

Thus we need to compute the action:

\[
f_r \begin{pmatrix} t - sb & -sc/a \\ s & t/a \end{pmatrix}_{\psi|6D}(\tau)
\]

Note that \(\begin{pmatrix} t - sb & -sc/a \\ s & ta* \end{pmatrix} \begin{pmatrix} t - sb & -sca* \\ s & ta* \end{pmatrix} \in \text{SL}_2(\mathbb{Z}/6D^2\mathbb{Z}) \) and we can lift it to an element of \(\text{SL}_2(\mathbb{Z}) \).

Lift from \(\text{SL}_2(\mathbb{Z}/6D^2) \) to \(\text{SL}_2(\mathbb{Z}) \).

Lemma 5.13. We can always lift a matrix in \(\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{SL}_2(\mathbb{Z}/NZ) \) to \(\text{SL}_2(\mathbb{Z}) \).

Proof: Take \(\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{SL}_2(\mathbb{Z}/NZ) \), \(A, B, C, D \in \mathbb{Z} \). We can further assume \((C, D) = 1 \). Let \(AD - BC = k \in \mathbb{Z} \). Then we can take:
$A_0 = A + NA_1$
$B_0 = B + NB_1$
$C_0 = C + NC_1$
$D_0 = D + ND_1$

We want to have the condition:

$$1 = A_0D_0 - B_0C_0 = AB - CD + N(AD_1 + A_1D - BC_1 - B_1C) + N^2(A_1D_1 - B_1C_1) = 1 + Nk + N(AD_1 + A_1D - BC_1 - B_1C) + N^2(A_1D_1 - B_1C_1)$$

For example, pick $D_1 = C_1 = 0$. Then we only need:

$$(A_1D - B_1C) = -k$$

Note that since $(C, D) = 1$, we can find $mC + nD = 1$. Then $(-kn)D - kmC = -k$, thus pick $A_1 = -kn$ and $B_1 = km$.

We look at such a matrix

$$
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\in \text{SL}_2(\mathbb{Z})
$$

such that:

$$
\begin{pmatrix}
 a_0 & b_0 \\
 c_0 & d_0
\end{pmatrix}
\equiv
\begin{pmatrix}
 s - tb & -s \frac{b^2 + 3}{2} a^* \\
 s & \frac{t}{2}
\end{pmatrix}
\pmod{6D^2}
$$

Conditions obtained:

- $v_2(s) \geq 0$ and $v_2(t) = 0$ imply $b_0, c_0 \equiv 0 \pmod{2}$, $a_0, d_0 \equiv 1 \pmod{2}$.
- From the choice $3|b$ we also have $a_0 \equiv d_0 \pmod{3}$ and $b_0 \equiv 0 \pmod{3}$. Since we picked $k_0 = t_0 + s_0 \omega \equiv s \frac{b^2 + 3}{2} + t$ with $s_0 + t_0 \equiv 1 \pmod{3}$, we must have $t \equiv t_0 + s_0 \pmod{3}$, thus $d_0 \equiv t_0 \pmod{3}$.
- From the choice of $t + s \frac{b^2 + 3}{2}$ unit in $\prod_{v|6D} \mathcal{O}^\times_{K_v}$, we have $(t, D) = 1$. Otherwise note that the norm is $t^2 - tsb + s^2 \frac{b^2 + 3}{4}$ is divisible by $p|D$, a contradiction.

We will find the action using the following lemma:

Lemma 5.14. For

$$
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\in \text{SL}_2(\mathbb{Z})
$$

such that $v_p(d) = 0$ and $d \equiv 1 \pmod{6}$, we have:

$$
\Theta_{\Phi, r} \left(\begin{pmatrix}
 1 & 0 \\
 0 & 2
\end{pmatrix}
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
z
\right) = \Theta_{\Phi, (d^{-1}, r)}(z/2)
$$

Here by d^{-1} we mean $d^{-1} \pmod{D}$.

Proof: We compute:

$$
\Theta_{\Phi, r} \left(\begin{pmatrix}
 1 & 0 \\
 0 & 2
\end{pmatrix}
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\right) = \Theta_{\Phi, (c, 2, r)} \left(\begin{pmatrix}
 a & b/2 \\
 2c & d
\end{pmatrix}
\begin{pmatrix}
 1 & 0 \\
 0 & 2
\end{pmatrix}
\right)
$$

Moreover, it equals:

$$
\Theta_{\Phi, r} \left[z/2, \left(\begin{array}{cc}
 d & -b/2 \\
 -2c & a
\end{array} \right) \right]
$$

Note that for $p \nmid 6D$ we have $\left(\begin{array}{cc}
 d & -b/2 \\
 -2c & a
\end{array} \right)_p$ in $\text{SL}_2(\mathbb{Z}_p)$, thus acts trivially.
For $p|3D$, we have $\Phi_p = \text{char}_{\mathbb{Z}_p - \frac{1}{6} + \frac{r}{6}}$. For now, we will call $\mu_r := -\frac{1}{6} + \frac{r}{6}$.

If $v_p(d) = 0$, we rewrite:

$$\begin{pmatrix} d & -b/2 \\ -2c & a \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -2c/d & 1 \end{pmatrix} \begin{pmatrix} d & -b/2 \\ 0 & d^{-1} \end{pmatrix}$$

We can further write it in the form:

$$\begin{pmatrix} d & -b/2 \\ -2c & a \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2c/d & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} d & 0 \\ 0 & d^{-1} \end{pmatrix} \begin{pmatrix} 1 & -b/(2d) \\ 0 & 1 \end{pmatrix}$$

- $r \begin{pmatrix} 1 & -b/(2d) \\ 0 & 1 \end{pmatrix} \Phi_p(x) = e^{-2\pi i \text{Frac}(b/(2d)x^2)} \Phi_p(x) = \Phi_p(x)$

- $r \begin{pmatrix} d & 0 \\ 0 & d^{-1} \end{pmatrix} \Phi_p(x) = |d|_p \chi_p(d) \Phi_p(dx) = \Phi_p^{(d^{-1})}(x)$

Note that $\Phi_p(dx) \neq 0$ iff $dx \in \mathbb{Z}_p + \mu_r$ iff $x \in d^{-1}\mathbb{Z}_p + d^{-1}\mu_r = \mathbb{Z}_p + d^{-1}\mu_r$. Note that $d^{-1}\mu_r = d^{-1}r/D - d^{-1}/6$. Since we picked $d \equiv 1 \mod 6$, this is the same as $\mu_{d^{-1}}$.

Note: We need to check that the character corresponding to Q is trivial on units ($\chi_p(d) = 1$).

- $r \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Phi_p^{d^{-1}}(x) = e^{2\pi i \text{Frac}(2d^{-1}xr/D)} \text{char}_{\mathbb{Z}_p + 1/2}(x)$

- $r \begin{pmatrix} 1 & 2c/d \\ 0 & 1 \end{pmatrix} (e^{2\pi i \text{Frac}(2xd^{-1}r/D)} \text{char}_{\mathbb{Z}_p + 1/2}(x)) = e^{2\pi i \text{Frac}(2c/dx^2)} (e^{2\pi i \text{Frac}(2xd^{-1}r/D)} \text{char}_{\mathbb{Z}_p}(x))$

- $r \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (e^{2\pi i \text{Frac}(2xd^{-1}r/D)} \text{char}_{\mathbb{Z}_p}(x)) = \Phi_p^{(d^{-1})}(-x)$

- $r \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \Phi_p^{(d^{-1})}(-x) = \Phi_p^{(d^{-1})}(x)$

In here we have used the Fourier transform:

$$\hat{\Phi}_3^{(r)}(x) = \int_{\mathbb{Q}_p} \Phi_p^{(r)}(y) e^{-2\pi i \text{Frac}(2xy)} dy = \int_{\mathbb{Z}_p + \frac{r}{6}} \Phi_p^{(r)}(y) e^{2\pi i 2xy} dy = \int_{\mathbb{Z}_p} e^{-2\pi i \text{Frac}(2x(y+r/D))} dy$$

$$= \int_{\mathbb{Z}_p} e^{-2\pi i \text{Frac}(2xy)} e^{-2\pi i \text{Frac}(xrt/D)} dy = e^{-2\pi i \text{Frac}(2xr/D)} \int_{\mathbb{Z}_p} e^{-2\pi i \text{Frac}(2xy)} dy$$

$$= e^{-2\pi i \text{Frac}(2xr/D)} \text{char}_{\mathbb{Z}_p-1/2}(x) = e^{-2\pi i \text{Frac}(2xr/D)} \text{char}_{\mathbb{Z}_p}(x)$$

Similarly we get $\hat{\Phi}_3^{(r)}(x) = e^{-2\pi i \text{Frac}(x/3)} \text{char}_{\mathbb{Z}_p}(x)$
Note that the only difference for \(p = 3 \) in the action of \(\begin{pmatrix} d & -b/2 \\ -2c & a \end{pmatrix} \) is that it does not modify \(r/D \). Instead, it leaves \(\Phi^{(r)} \) unchanged.

At the place \(p = 2 \), we have \(\Phi_2 = e^{\pi i \text{Frac}(x)} \text{char}_{Z_2-1/2}(x) \). We can compute:

\[r \begin{pmatrix} 1 & -b/(2d) \\ 0 & 1 \end{pmatrix} \Phi_p(x) = e^{-\pi i \text{Frac}(-b/(2d)x^2)} e^{\pi i x} \text{char}_{Z_2-1/2}(x) = e^{2\pi ib/8d} e^{\pi i x} \text{char}_{Z_2-1/2}(x) \Phi_p(x) \]

Note that we picked \(2|b \). Then we have \(x \in Z_2 - 1/2 \) iff \(x = n - 1/2 \) for \(n \in Z_2 \). Then \(-b/2d(n - 1/2)^2 = -b/(2d)n^2 + b/(2d)n - b/(8d) \in Z_2 - b/8d \).

\[r \begin{pmatrix} d & 0 \\ 0 & d^{-1} \end{pmatrix} e^{\pi i b/8d} e^{\pi i x} \text{char}_{Z_2-1/2}(x) = e^{2\pi ib/8d} e^{\pi i dx} \text{char}_{Z_2-1/2}(dx) = e^{2\pi ib/8d} e^{\pi i x} \text{char}_{Z_2-1/2}(x) \]

Note that we have used above \(\nu_2(d) = 0 \).

\[r \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Phi_2(r)(x) = e^{2\pi ib/8d} e^{\pi i x} \text{char}_{Z_2-1/2}(x) = e^{2\pi ib/8d} e^{\pi i \text{Frac}(x^2+1/4)} \text{char}_{Z_2-1/2}(x) \]

Below we compute the Fourier transform:

\[\int_{Z_2} e^{\pi i \text{Frac}(y)} \text{char}_{Z_2-1/2}(y) e^{-\pi i \text{Frac}(2xy)} dy = \int_{Z_2} e^{2\pi i \text{Frac}(y^2 + 2xy + x)} dy = \int_{Z_2} e^{2\pi i \text{Frac}(y/2 + 1/4 + 2xy + x)} dy = e^{2\pi i \text{Frac}(x+1/4)} \text{char}_{Z_2-1/4}(x) \]

\[r \begin{pmatrix} 1 & 0 \\ 2c/d & 1 \end{pmatrix} e^{2\pi i \text{Frac}(x+1/4)} \text{char}_{Z_2-1/4}(x) = e^{2\pi i \text{Frac}(2c/dx)} e^{2\pi i \text{Frac}(x+1/4)} \text{char}_{Z_2-1/4}(x) \]

Note that we have the assumptions \(2|c \) and \(2 \nmid d \). We have \(x + 1/4 = 1/2n, n \in Z_2 \). Note \(x^2 = (n - 1/2)^2 = (n^2 - n + 1/4)/4 \) and then \(e^{2\pi i \text{Frac}(2c/dx^2)} = e^{2\pi i \text{Frac}(c/2d(n^2 - n + 1/4))} = e^{2\pi i \text{Frac}(c/8d)} \). Here we have used the fact that \(c/2d(n^2 - n) \in Z_2 \). Thus we get:

\[e^{2\pi i \text{Frac}(c+b)/8d} e^{2\pi i \text{Frac}(x+1/4)} \text{char}_{Z_2-1/4}(x) \]

\[r \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} e^{2\pi i \text{Frac}((c+b)/8d)} e^{2\pi i \text{Frac}(x+1/4)} \text{char}_{Z_2-1/4}(x) = e^{2\pi i \text{Frac}((c+b)/8d)} e^{2\pi i \text{Frac}(-x)} \text{char}_{Z_2-1/2}(-x) \]

\[r \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} e^{2\pi i \text{Frac}((c+b)/8d)} e^{2\pi i \text{Frac}(-x)} \text{char}_{Z_2-1/2}(-x) = e^{2\pi i \text{Frac}((c+b)/8d)} e^{2\pi i \text{Frac}(x)} \text{char}_{Z_2-1/2}(x) = e^{2\pi i \text{Frac}((c+b)/8d)} \Phi_2(x) \]

Finally we are ready to prove the proposition. We have showed so far that:

\[f_r(\tau) \gamma_x^{-1} = f_r^{g_r(x)}(\tau) = f_r^{(g_r(\text{Frac}))_r} \text{char}_{D^{1/2}}(\tau) = \begin{pmatrix} t - sb & -sc \\ s & t \end{pmatrix} \rho^{(\sigma)}(\tau) = f_r(\begin{pmatrix} a_0 & b_0 \\ c_0 & d_0 \end{pmatrix}) \rho^{(\sigma)}(\tau) \]

From the above lemma we get immediately:

\[\left(\frac{\Theta^{(\tau)}(\tau/2)}{\Theta^{(0)}(\tau/2)} \right)^{\gamma_x} = f_r \left(\begin{pmatrix} a_0 & b_0 \\ c_0 & d_0 \end{pmatrix} \right) \left(\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} a_0 & b_0 \\ c_0 & d_0 \end{pmatrix} \right) \left(\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} a_0 & b_0 \\ c_0 & d_0 \end{pmatrix} \right)^{-1} = \frac{\Theta^{(\tau+\pi)}(\tau/2)}{\Theta^{(\tau)}(\tau/2)} = f_r^{(g_r(\phi))}(\tau) \]

55
For $\mathcal{A} \in Cl(O_{3D})$, $\mathcal{A} = (k, \mathcal{A}) = (na + m_n\frac{b + \sqrt{3}}{2})$, where $a = Nm\mathcal{A}$, we take the map:

$$x = (k, \mathcal{A})_{p|D} \leftrightarrow \mathcal{A}$$

This gives us:

$$x^{-1} \leftrightarrow \mathcal{A}^{-1}$$

Then we have:

$$f_r(\tau)^{\sigma_{\mathcal{A}^{-1}}} = f_r(\tau)^{\sigma_{\mathcal{A}}} = f_r^{g_r(x_p)}(\tau) = f_r^{g_r(k, \mathcal{A})_{p|D}}(\tau) = f_r^{n_{\mathcal{A}}}^{-1}(\tau)$$

This implies for $r \equiv n_{\mathcal{A}} \ mod \ D$ that we have $f_{n_{\mathcal{A}}}(\tau)^{\sigma_{\mathcal{A}}} = f_1(\tau)$, or equivalently:

$$f_1(\tau)^{\sigma_{\mathcal{A}}} = f_{n_{\mathcal{A}}}(\tau)$$

Remark. This implies that for $\mathcal{A}_r = (1 + b^*(r - 1) \frac{b + \sqrt{3}}{2})$ we have:

$$f_1(\tau)^{\sigma_{\mathcal{A}_r}} = f_1(\tau)$$

Also it implies that $a_r = (r^{-1}) = (r \cdot r^{-2} + \frac{b + \sqrt{3}}{2})$ we have:

$$f_1(\tau)^{\sigma_{a_r}} = f_r(\tau)$$

5.5 The square is invariant under Galois action

We are finally ready to prove Theorem 5.1.

We define $\mathcal{A}_r^c = \left(1 + b^*(1 - r) \frac{b + \sqrt{3}}{2}\right)$. Note $n_r = r^{-1}$. Note that $\mathcal{A}_r^c = \mathcal{A}_r(r^{-1})$, thus \mathcal{A}_r and \mathcal{A}_r^c are in the same class in $Cl(O_{3D})$. This implies:

$$\chi_D(\mathcal{A}_r) = \chi_D(\mathcal{A}_r^c)$$

Moreover, from the definition of χ_D we have: $(D^{2/3})^{\sigma_{\mathcal{A}_r}} = D^{2/3}\chi_D(\mathcal{A}_r)$

Moreover, from Proposition 5.3:

$$f_1(\tau)^{\sigma_{\mathcal{A}_r}} = f_{n_{\mathcal{A}_r}}(\tau) = f_r(\tau)$$

Then we can rewrite the term in Proposition 20:

$$\kappa := \sum_{r \in (\mathbb{Z}/D\mathbb{Z})^*} f_r(\tau)D^{2/3}\chi(\mathcal{A}_r) = \sum_{r \in (\mathbb{Z}/D\mathbb{Z})^*} f_r(\tau)D^{2/3}\chi(\mathcal{A}_r^c) = \sum_{r \in (\mathbb{Z}/D\mathbb{Z})^*} f_1(\tau)^{\sigma_{\mathcal{A}_r}}(D^{2/3})^{\sigma_{\mathcal{A}_r}}$$

$$= \sum_{r \in (\mathbb{Z}/D\mathbb{Z})^*} (f_1(\tau)D^{2/3})^{\sigma_{\mathcal{A}_r}}$$

We want to write κ as a Galois trace of a modular function at a CM-point. Note that the ideals $\{\mathcal{A}_{r,r}^c, (r\mathbb{Z}/D\mathbb{Z})^*\}$ for a group, as we have $\mathcal{A}_r^c, \mathcal{A}_{r,r}^c = \mathcal{A}_{r,r}^c$. Then take $G_0 = \{r \in (\mathbb{Z}/D\mathbb{Z})^* :$
that is a subgroup of $\text{Gal}(H_\mathcal{O}/K)$, where $H_\mathcal{O}$ is the ray class field of conductor $3D$.

We define fixed field of G_0 in H:

$$H_0 = \{ h \in H_\mathcal{O} : \sigma(h) = h, \forall \sigma \in G_0 \}$$

From abelian Galois theory this implies $\text{Gal}(H_\mathcal{O}/H_0) \cong G_0$. Then we got:

$$\kappa = \text{Tr}_{H_\mathcal{O}/H_0}(f_1(\tau)D^{2/3})$$

Thus we have proved so far that:

$$S_D = |\kappa|^2,$$

where $\kappa \in H_0$. We claim that actually $|\kappa|^2 \in \mathbb{Q}$. To prove this, it is enough to show that $|\kappa|^2 \in K^\times$, as

Lemma 5.15. We have $\kappa^3 \in K$.

Proof: We will show that the Galois conjugates of κ over K are $\kappa \omega$ and $\kappa \omega^2$.

Take $\mathcal{A} \in \text{Cl}(\mathcal{O})$. Then we have:

$$\kappa^{\mathcal{A}} = \sum_{r \in (\mathbb{Z}/D\mathbb{Z})^\times} (f_1(\tau)D^{2/3})^{\mathcal{A}_r^{\mathcal{A}} \mathcal{A}}$$

We can write $\mathcal{A} = A_5^\circ(m)$. Then we have:

$$\kappa^{\mathcal{A}} = \sum_{r \in (\mathbb{Z}/D\mathbb{Z})^\times} (f_1(\tau)D^{2/3})^{\mathcal{A}_r^{\mathcal{A}} \mathcal{A}}$$

Note that (m) acts trivially on $D^{2/3}$, but acts as A_m° on $f_1(\tau)$. Then we have:

$$\kappa^{\mathcal{A}} = \sum_{r \in (\mathbb{Z}/D\mathbb{Z})^\times} (f_1(\tau))^{\mathcal{A}_r \mathcal{A}} D^{2/3}\chi(A_r^\circ) = \chi(A_m^\circ) \sum_{r \in (\mathbb{Z}/D\mathbb{Z})^\times} (f_1(\tau))^{\mathcal{A}_r \mathcal{A}} D^{2/3}\chi(A_r^\circ) = \chi(A_m^\circ)\kappa$$

Remark 5.3. Recall that $|\kappa|^2 \in \mathbb{Q}$. Let $\kappa^3 = a + b\sqrt{-3} \in K$. Then $|\kappa|^6 = a^2 + 3b^2$ and we must have $a^2 + 3b^2 = m^3$ for some $m \in \mathbb{Q}$. With this notation we have $|\kappa|^2 = m = \sqrt{a^2 + 3b^2}$.

Remark 5.4. If we try to apply π, this implies:

$$\pi^{\mathcal{A}_r} = (\kappa^{\mathcal{A}_r \mathcal{A}})^{-1} = \pi$$

$$\pi^{\mathcal{A}_r \mathcal{A}} = (\kappa^{\mathcal{A}_r \mathcal{A}}) = \chi(A_r^{\mathcal{A}_r})$$

$$\pi^{\mathcal{A}_r \mathcal{A}} = \kappa \chi(A_r) = \kappa \chi(A_r)$$

6 Appendix A: properties of Θ_K

In this appendix we would like to present a few properties of Θ_K. First, we have a functional equation for the theta function (see [9]):
\[\Theta_K(-1/3z) = \frac{3}{\sqrt{-3}} z \Theta_K(z) \] (25)

Furthermore, we can compute the transformation of \(\Theta_K(z \pm 1/3) \) in the lemma below:

Lemma 6.1. We have the following relations:

(i) \(\Theta \left(z + \frac{1}{3} \right) = (1 - \omega) \Theta(3z) + \omega \Theta(z) \)

(ii) \(\Theta \left(z - \frac{1}{3} \right) = (1 - \omega^2) \Theta(3z) + \omega^2 \Theta(z) \)

Proof: We will rewrite the Fourier expansion of \(\Theta(z) \) for \(z := z + 1/3 \):

\[\Theta \left(z + \frac{1}{3} \right) = \sum_{m,n \in \mathbb{Z}} e^{2\pi i (m^2 + n^2 - mn)} \left(z + \frac{1}{3} \right). \]

We split the sum in two parts, depending on whether the ideal \((m + n \omega)\) is prime to \((\sqrt{-3})\). Then we have:

\[\Theta \left(z + \frac{1}{3} \right) = \sum_{m,n \in \mathbb{Z}, (\sqrt{-3})(m+n\omega)} e^{2\pi i (m^2 + n^2 - mn)} (z + \frac{1}{3}) + \sum_{m,n \in \mathbb{Z}, (\sqrt{-3})(m+n\omega)} e^{2\pi i (m^2 + n^2 - mn)} (z + \frac{1}{3}). \]

Note that on the RHS we can rewrite the first term as:

\[\sum_{m,n \in \mathbb{Z}, (\sqrt{-3})(m+n\omega)} e^{2\pi i (m^2 + n^2 - mn)} (z + \frac{1}{3}) = \sum_{m,n \in \mathbb{Z}} e^{2\pi i (m^2 + n^2 - mn)(3z+1)} = \Theta(3z + 1) = \Theta(3z) \]

Also note that when \(3 \nmid m^2 + n^2 - mn \), then we have \(m^2 + n^2 - mn \equiv 1 \mod 3 \). Then the second term on the RHS can be rewritten as:

\[\sum_{m,n \in \mathbb{Z}, (\sqrt{-3})(m+n\omega)} e^{2\pi i (m^2 + n^2 - mn)} \left(z + \frac{1}{3} \right) = \sum_{m,n \in \mathbb{Z}, (\sqrt{-3})(m+n\omega)} e^{2\pi i (m^2 + n^2 - mn)z} \cdot \overline{\omega}. \]

We rewrite this:

\[\sum_{m,n \in \mathbb{Z}, (\sqrt{-3})(m+n\omega)} e^{2\pi i (m^2 + n^2 - mn)} (z + \frac{1}{3}) = \omega \sum_{m,n \in \mathbb{Z}} e^{2\pi i (m^2 + n^2 - mn)z} - \omega \sum_{m,n \in \mathbb{Z}, (\sqrt{-3})(m+n\omega)} e^{2\pi i (m^2 + n^2 - mn)z} \]

Finally we recognize the two terms as theta functions \(\Theta_K \):

\[\sum_{m,n \in \mathbb{Z}, (\sqrt{-3})(m+n\omega)} e^{2\pi i (m^2 + n^2 - mn)} (z + \frac{1}{3}) = \omega \Theta(z) - \omega \Theta(3z) \]

Now going back to our initial computation, we get:
\[\Theta \left(z + \frac{1}{3} \right) = \Theta(3z) + \omega \Theta(z) - \omega \Theta(3z) = (1 - \omega) \Theta(3z) + \omega \Theta(z) \]

This finishes the proof of the first formula. We get the second formula by applying the first formula for \(z := z - 1/3 \). We get \(\Theta(z) = (1 - \omega) \Theta(3z - 1) + \omega \Theta(z - 1/3) \) and this is easily rewritten to give us the second formula.

6.1 Properties of \(\Theta_K((-b + \sqrt{3})/6) \).

Lemma 6.2. \(\Theta_K \left(\frac{-3 + \sqrt{3}}{6} \right) = 0 \)

Proof: We apply the functional equation 24 for \(z = \frac{-3 + \sqrt{3}}{6} \):

\[\Theta \left(\frac{-3 + \sqrt{3}}{6} \right) = (-\sqrt{-3}) \frac{-3 + \sqrt{3}}{6} \Theta \left(\frac{3 + \sqrt{3}}{6} \right). \]

Since \(\Theta \left(\frac{-3 + \sqrt{3}}{6} \right) = \Theta \left(\frac{3 + \sqrt{3}}{6} \right) \), we get the result of the lemma.

Lemma 6.3. For the primitive ideal \(\mathcal{A} = [a, \frac{-b + \sqrt{3}}{2}] \) prime to 3, where \(a = \text{Nm} \mathcal{A}, b \equiv 0 \mod 3 \) and \(b^2 \equiv -3 \mod 4a \), we have:

\[\Theta_K \left(\frac{-b + \sqrt{3}}{6a} \right) = 0 \]

Proof: The proof is similar to that of Lemma 3.5. We can write the generator of primitive ideal \(\mathcal{A} = [a, \frac{-b + \sqrt{3}}{2}] \) in the form \(k_A = ma + n \frac{-b + \sqrt{3}}{2} \) for some integers \(m, n \). Note that \((m, 3) = 1 \), thus we can find through the Euclidean algorithm integers \(A, B \) such that \(mA + 3nB = 1 \), which makes \(\begin{pmatrix} A & B \\ -3n & m \end{pmatrix} \) a matrix in \(\Gamma_0(3) \). Since \(\Theta \) is a modular form of weight 1 for \(\Gamma_0(3) \), we have:

\[\Theta_K \left(\frac{A \frac{-b + \sqrt{3}}{6a} + B}{-3n \frac{-b + \sqrt{3}}{6a} + m} \right) = \left(m - n \frac{-b + \sqrt{3}}{2a} \right) \Theta_K \left(\frac{-b + \sqrt{3}}{6a} \right) \]

Noting that \(-3n \frac{-b + \sqrt{3}}{6a} + m = k_A/a = 1/\mathcal{F}_A \), we can compute \(\frac{A \frac{-b + \sqrt{3}}{6a} + B}{-n \frac{-b + \sqrt{3}}{6a} + m} = \frac{(A \frac{-b + \sqrt{3}}{6a} + B)}{3a} \). This is \((3aB + A \frac{-b + \sqrt{3}}{2})(ma + n \frac{-b + \sqrt{3}}{2})/(3a) \). After expanding, we get:

\[\frac{-nA}{4a} b^2 + 3 + abB/3 + \frac{b(-mA + 3nB)}{6} + \frac{\sqrt{3}}{6} \]

Note that \(mA + 3nB = 1 \) implies that \(mA \) and \(3nB \) have different parities. Also we chose \(b \) odd, since \(b^2 + 3 \equiv 0 \mod 4a \). Finally, recall \(3|b \) and thus using the period 1 of \(\Theta_K \) we get:

\[\Theta_K \left(\frac{A \frac{-b + \sqrt{3}}{6a} + B}{-3n \frac{-b + \sqrt{3}}{2a} + m} \right) = \Theta_K \left(\frac{-3 + \sqrt{3}}{6} \right) \]
From the previous Lemma, we have \(\Theta_K \left(\frac{-3+\sqrt{-3}}{6} \right) \), thus \(\Theta_K \left(\frac{-b+\sqrt{-3}}{6a} \right) = 0 \) which finishes the proof.

6.2 About \(\Theta_K(D(-3 + \sqrt{-3})/6) \).

In this section we will show that for \(D \) a product of split primes \(p \equiv 1 \mod 3 \) and for the representative ideals \(A = [a, \frac{-b+\sqrt{-3}}{2}] \) of \(\text{Cl}(\mathcal{O}_D) \) with \(b \equiv 0 \mod 3 \), we have:

\[
\sum_{A \in \text{Cl}(\mathcal{O}_D)} \frac{\Theta \left(\frac{-b+\sqrt{-3}}{6a} \right)}{\Theta \left(\frac{-b+\sqrt{-3}}{2a} \right)} \chi_D(A) D^{1/3} = 0
\]

We will first show that the LHS is equal to the trace of \(\frac{\Theta_K(D \frac{-b+\sqrt{-3}}{3})}{\Theta(z)} D^{1/3} \) with \(b \equiv 0 \mod 3 \). We will show this by using Shimura reciprocity law. Note first that:

Lemma 6.4. The modular function \(f_0(z) = \frac{\Theta(Dz/3)}{\Theta(z)} \) is a modular function for \(\Gamma(3D) \) and \(f_0(z) \) has rational Fourier coefficients at the cusp \(\infty \).

Proof: The proof that \(f_0 \) is invariant under \(\Gamma(3D) \) is straightforward. The proof that the Fourier coefficients are rational is also similar to the proof of Lemma ??.

Lemma 6.5. For \(f_0 \) as above and \(\tau = \frac{-b_0+\sqrt{-3}}{2} \), we have \(f_0(\tau) \in H_{3D} \).

Proof: To show that \(f(\tau) \in H_{3D} \), we need to look at action of \(U(3D) \). We follow closely the proof of Lemma ???. We rewrite the primitive ideal \(A = (A + B \omega) \) as \(A = [a, \frac{-b+\sqrt{-3}}{2}] \) with \(b \equiv b_0 \mod 3 \). The only difference is computing:

\[
f_0 \left(\frac{ta-sb-sc/a}{t} \right) = \frac{\Theta_K \left(\left(\frac{D}{3} \right) \left(\frac{ta-sb-sc/a}{t} \right) \right)}{\Theta_K \left(\left(\frac{ta-sb-sc/a}{t} \right) \right)} = \frac{\Theta_K \left(\left(\frac{ta-sb-scD/(3a)}{3s/D} \right) \left(\frac{Dz}{3} \right) \right)}{\Theta_K \left(\left(\frac{ta-sb-sc/a}{t} \right) \right)}.
\]

Note that we still have \(\left(\frac{ta-sb-scD/(3a)}{3s/D} \right), \left(\frac{ta-sb-sc/a}{t} \right) \in \Gamma_0(3) \), thus we simply get \(f_0(z) \) and all the arguments from Lemma ?? follow.

Lemma 6.6. For \(A = \left[a, \frac{-b+\sqrt{-3}}{2} \right] \) a primitive ideal ideal with \(a = \text{Nm} A \) and \(b^2 \equiv -3 \mod 4a \), we have:

\[
\frac{\Theta \left(\frac{-b+\sqrt{-3}}{6a} \right)}{\Theta \left(\frac{-b+\sqrt{-3}}{2a} \right)} = \left(\frac{\Theta \left(\frac{-b+\sqrt{-3}}{6} \right)}{\Theta(\omega)} \right)^{\sigma_A^{-1}}
\]

Proof: Note that \(f_0(z) \) satisfies the properties of Lemma ??, thus applying its result for \(f_0 \left(\frac{-b+\sqrt{-3}}{2} \right) \) gives us the result.

From the previous two lemmas, we immediately get the following Corollary:
Corollary 6.1. For $A = \left[a, \frac{-b + \sqrt{-3}}{2} \right]$ primitive ideals that are representatives of $\text{Cl}(O_{3D})$ as in Lemma ??, we have:

$$\text{Tr}_{H_{3D}/K} \frac{\Theta(D - \frac{b + \sqrt{-3}}{6a})}{\Theta\left(\frac{-b + \sqrt{-3}}{2a}\right)} D^{1/3} = \sum_{A \in \text{Cl}(O_{3D})} \frac{\Theta\left(\frac{-b + \sqrt{-3}}{6a}\right)}{\Theta\left(\frac{-b + \sqrt{-3}}{2a}\right)} \chi_D(A) D^{1/3}$$

6.2.1 Traces of theta functions

We will show the following lemma:

Lemma 6.7. For $D \equiv 1 \mod 3$, $b_0 \equiv 0 \mod 3$ as before, we have:

$$\text{Tr}_{H_{3D}/K} \frac{\Theta\left(D - \frac{3}{6D}\right)}{\Theta(\omega)} D^{1/3} = \sum_{A \in \text{Cl}(O_{3D})} \frac{\Theta_K\left(D - \frac{b_0 + \sqrt{-3}}{6a}\right)}{\Theta_K\left(D - \frac{b_0 + \sqrt{-3}}{2a}\right)} \chi_D(A) D^{1/3} = 0.$$

Proof: The method will be to apply Lemma 6.1 two times. We first apply Lemma ?? (i) for $z = \frac{1 - 2D}{6D}$ to get:

$$\Theta\left(\frac{1 + \sqrt{-3}}{6D}\right) = (1 - \omega)\Theta\left(\frac{1 + \sqrt{-3}}{2D}\right) + \omega\Theta\left(\frac{1 - 2D + \sqrt{-3}}{6D}\right)$$

This can be rewritten as:

$$\frac{\Theta\left(\frac{1 + \sqrt{-3}}{6D}\right)}{\Theta(\omega)} = (1 - \omega)\frac{\Theta\left(\frac{1 + \sqrt{-3}}{2D}\right)}{\Theta(\omega)} + \omega\frac{\Theta\left(\frac{1 - 2D + \sqrt{-3}}{6D}\right)}{\Theta(\omega)}$$

By taking the inverses and denoting $B_1 := -1 + 2D$, $a_1 := (B_1^2 + 3)/4$, we have:

$$3D \frac{\Theta\left(D - \frac{1 + \sqrt{-3}}{2a_1}\right)}{\Theta(\omega/3)} = (1 - \omega)\frac{\Theta\left(\frac{1 + \sqrt{-3}}{2D}\right)}{\Theta(\omega)} + 3D\omega\frac{\Theta\left(D - \frac{B_1 + \sqrt{-3}}{2a_1}\right)}{\Theta\left(\frac{B_1 + \sqrt{-3}}{6a}\right)}$$

Note that $B_1 \equiv 1 - 2D \equiv 1 \mod 3$. Furthermore, noting that $\Theta(\omega/3) = (1 - \omega)\Theta(\omega)$ and $\Theta\left(\frac{B_1 + \sqrt{-3}}{6a}\right) = (1 - \omega^2)\Theta\left(\frac{B_1 + \sqrt{-3}}{2a_1}\right)$, we get:

$$3D \frac{\Theta\left(D - \frac{1 + \sqrt{-3}}{2a_1}\right)}{\Theta(\omega)} = (1 - \omega)\frac{\Theta\left(\frac{1 + \sqrt{-3}}{2D}\right)}{\Theta(\omega)} + 3D\omega\frac{\Theta\left(D - \frac{B_1 + \sqrt{-3}}{2a_1}\right)}{1 - \omega^2}$$

Multiplying by $D^{1/3}$ and rewriting the first term on the RHS, we have:

$$\frac{3D}{1 - \omega} \frac{\Theta\left(D - \frac{1 + \sqrt{-3}}{2a_1}\right)}{\Theta(\omega)} D^{1/3} = (1 - \omega)(1 - \omega^2) \frac{\Theta\left(\frac{1 + \sqrt{-3}}{2D}\right)}{(1 - \omega^2)\Theta(\omega)} D^{1/3} + 3D\omega \frac{\Theta\left(D - \frac{B_1 + \sqrt{-3}}{2a_1}\right)}{1 - \omega^2} \chi_D(A_1)^{-1} \frac{\Theta\left(D - \frac{B_1 + \sqrt{-3}}{2a_1}\right)}{\Theta\left(\frac{B_1 + \sqrt{-3}}{2a_1}\right)} D^{1/3} \chi_D(A_1)$$

61
By taking the trace from H_{3D} to K and denoting by $A_1 := \left(\frac{B_1 + \sqrt{-3}}{2} \right)$, we have:

\[
\frac{3D}{1 - \omega} \text{Tr}_{H_{3D}/K} \frac{\Theta(D\omega)}{\Theta(\omega)} D^{1/3} = 3 \text{Tr}_{H_{3D}/K} \frac{\Theta(-D\omega^2)}{\Theta(-\omega^2/3)} D^{1/3} + 3D\omega \frac{\Theta(\omega)}{1 - \omega^2} \text{Tr}_{H_{3D}/K} \frac{\Theta(D\omega)}{\Theta(\omega)} D^{1/3} \chi_D(A_1).
\]

Note that by definition we have $\chi_D(A_1) = \chi_D \left(\frac{B_1 + \sqrt{-3}}{2} \right)$. We can compute the value of the character using Lemma ?? . For each $p | D$, we have:

\[
\chi_p \left(\frac{B_1 + \sqrt{-3}}{2} \omega \right) = \left(\frac{(1 - 2D - \sqrt{-3})\omega^2}{1 - 2D + \sqrt{-3}} \right)^{N\text{m}p^{-1}/3} = \left(\frac{1}{1} \right)^{N\text{m}p^{-1}/3} = 1.
\]

Thus we get $\chi_D(A_1) = 1$, and we can rewrite the equation above as:

\[
\frac{3D}{1 - \omega} \text{Tr}_{H_{3D}/K} \frac{\Theta(D\omega)}{\Theta(\omega)} D^{1/3} = 3 \text{Tr}_{H_{3D}/K} \frac{\Theta(-D\omega^2)}{\Theta(-\omega^2/3)} D^{1/3} + 3D\omega \text{Tr}_{H_{3D}/K} \frac{\Theta(D\omega)}{\Theta(\omega)} D^{1/3} \chi_D(A_1).
\]

Furthermore, from Lemma ??, we have $\frac{\Theta(D\omega)}{\Theta(\omega)} D^{1/3} \chi_D(A_1) = \left(\frac{\Theta(D\omega)}{\Theta(\omega)} D^{1/3} \right)^\sigma_{\chi_D(A_1)}$, thus:

\[
\text{Tr}_{H_{3D}/K} \frac{\Theta(D\omega)}{\Theta(\omega)} D^{1/3} \chi_D(A_1) = \text{Tr}_{H_{3D}/K} \frac{\Theta(D\omega)}{\Theta(\omega)} D^{1/3}.
\]

Denoting $S := \text{Tr}_{H_{3D}/K} \frac{\Theta(D\omega)}{\Theta(\omega)} D^{1/3}$, we get the relation:

\[
\frac{3D}{1 - \omega} S = 3 \text{Tr}_{H_{3D}/K} \frac{\Theta(1 + \sqrt{-3})}{2D} D^{1/3} + 3D\omega \frac{\Theta(\omega)}{1 - \omega^2} S
\]

This implies:

\[
\frac{3D}{1 - \omega^2} S = 3 \text{Tr}_{H_{3D}/K} \frac{\Theta(1 + \sqrt{-3})}{2D} D^{1/3}
\]

This is equivalent to:

\[
\frac{D}{1 - \omega^2} S = \text{Tr}_{H_{3D}/K} \frac{\Theta(1 + \sqrt{-3})}{2D} D^{1/3}
\]

Note that if we apply the transformation $z \rightarrow -1/3z$ given by the functional equation (24) to both theta functions on the RHS we get:

\[
\frac{1}{1 - \omega^2} S = \frac{1}{3} \text{Tr}_{H_{3D}/K} \frac{\Theta(D - 1 + \sqrt{-3})}{6\Theta(\omega)} D^{1/3}
\]
This is equivalent to:

\[(1 - \omega)S = \text{Tr}_{H^D/K} \frac{\Theta \left(D \frac{-1 + \sqrt{-3}}{6}\right)}{\Theta(\omega)} D^{1/3}.\]

(26)

We will apply now Lemma 6.1 (ii) for \(z = D \frac{-b_1 + \sqrt{-3}}{2a}\), where \(b_1 \equiv 1 \mod 3\). We denote by \(b_0\) an integer \(b_0 \equiv 0 \mod 3\) such that \(b_0 \equiv b_1 \mod 4a\). Then we have:

\[\Theta \left(D \frac{-b_0 + \sqrt{-3}}{6a}\right) = (1 - \omega^2)\Theta \left(D \frac{-1 + \sqrt{-3}}{2a}\right) + \omega^2 \Theta \left(D \frac{-b_1 + \sqrt{-3}}{6a}\right)\]

This can be rewritten as:

\[\frac{\Theta \left(D \frac{-b_0 + \sqrt{-3}}{6a}\right)}{\Theta \left(D \frac{-b_0 + \sqrt{-3}}{2a}\right)} D^{1/3} \chi_D(A) = (1 - \omega^2) \frac{\Theta \left(D \frac{-b_0 + \sqrt{-3}}{2a}\right)}{\Theta \left(D \frac{-b_0 + \sqrt{-3}}{2a}\right)} D^{1/3} \chi_D(A) + \omega^2 \frac{\Theta \left(D \frac{-b_1 + \sqrt{-3}}{6a}\right)}{\Theta \left(D \frac{-b_1 + \sqrt{-3}}{2a}\right)} D^{1/3} \chi_D(A)\]

By taking the sums, we get:

\[M = (1 - \omega^2)S + \omega^2(1 - \omega)S = 0\]

References

