UNCOUNTABILITY OF THE REAL NUMBERS

0 Here's an incomplete proof of the fact that **R** is uncountable. Fill in the details:

Proof We proceed by contradiction: assume that R is countable

a Prove that any subset of a countable set is also countable

Thus, $[0,1) \subseteq \mathbf{R}$ is countable and we can **list** the elements of [0,1) as r_1, r_2, r_3, \ldots

So, let the decimal expansions of the real numbers r_i be

$$\begin{array}{rcl}
 r_1 & = & 0.d_{11}d_{12}d_{13}\cdots \\
 r_2 & = & 0.d_{21}d_{22}d_{23}\cdots \\
 r_3 & = & 0.d_{31}d_{32}d_{33}\cdots \\
 \vdots & \vdots & \vdots \\
 \end{array}$$

with $d_{ij} \in \{0, \dots, 9\}$. We will obtain a contradiction by finding a real number $r \in [0, 1)$ that doesn't occur on our **list**. To this end, consider $r = 0.d_1d_2d_3\cdots$ where $d_i = \begin{cases} 4 & \text{if } d_{ii} \neq 4 \\ 5 & \text{if } d_{ii} = 4 \end{cases}$.

c Show that $r \neq r_i$ for all i, by comparing the i-th term in decimal expansion of r with the i-th term in the decimal expansion of r_i .