
Qualifying Exam Syllabus
Ritvik Ramkumar

November 29, 2017, 9:00am, Evans 891

Committee: David Eisenbud (Advisor), Martin Olsson, Denis Auroux (Chair), Marjorie Shapiro (External)

I. Algebraic Geometry (Major - Algebra)

1. Scheme Theory

- Schemes, Morphisms between schemes, Separated and Proper morphisms, Valuative Criterion

- (Quasi)-coherent sheaves, Invertible sheaves, Weil divisors, Cartier divisors, Divisor Class group, Picard group

- Projective Morphisms, Blowing up, Kähler Differentials, Non-singular varieties, Bertini’s Theorem

2. Cohomology

- Sheaf Cohomology, Grothendieck Vanishing, Cohomology of Noetherian Affine Schemes

- Serre’s Affineness criterion, Čech cohomology, Cohomology of Projective Space

- Cohomological criterion of ampleness, Serre Duality (statement), Higher Direct Images

- Flat morphisms, Flat families, Hilbert polynomials, Smooth morphisms

3. Curves

- Riemann-Roch Theorem, Hurwitz’s Theorem, Linear systems on curves, Embeddings of curves in Pn

- Elliptic Curves (up to group structure), Hyperelliptic Curves, Canonical Embeddings

- Clifford’s Theorem, Castelnuovo’s theorem (statement), Classification of low degree curves in P3

References: [R. Hartshorne, Algebraic Geometry: Chapters, I.1 - I.7, II.1 - II.8, III.1 - III.10, IV.1 - IV.6]

II. Commutative Algebra (Major - Algebra)

1. Basic Constructions

- Noetherian Rings, Localization, Associated Primes, Primary Decomposition

- Integral Extensions, Going-up and Going-down theorems, Noether Normalization, Nakayama’s Lemma

- Artin-Rees Lemma, Krull’s intersection theorem, Flatness, Local Criterion for Flatness

2. Dimension Theory

- Krull Dimension, Principal ideal theorem, Dimension of Base and Fiber

- Normal rings, Discrete Valuation Rings, Dedekind Domains

- Nullstellensatz, Hilbert-Samuel Functions, Main Theorem of Elimination Theory, Differentials

3. Homological Methods

- Ext, Tor, Koszul Complexes, Depth, Cohen-Macaulay Rings

- Serre’s Criterion, Projective Dimension, Minimal Resolutions, Hilbert Syzygy Theorem

- Global dimension, Regular Local Rings, Auslander-Buchsbaum Formula

References: [D. Eisenbud, Commutative Algebra: Chapters, 1 - 6, 8 - 14, 16.1 - 16.3, 17, 18, 19.1-19.3]
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III. Algebraic Topology (Minor - Geometry)

1. Fundamental Group

- van Kampen’s theorem, Covering Spaces, Lifting properties

2. Homology

- Simplicial homology, Singular homology, Cellular homology

- Relative homology, Excision, Long exact sequence in homology, Mayer-Vietoris sequence, Axioms for homology

3. Cohomology

- Universal coefficient theorem, Long exact sequence in cohomology

- Cup products, Künneth formula, Poincare duality

References: [A. Hatcher, Algebraic Topology: Chapters, 1-3 (no Additional Topics)]

Qualifying Exam Transcript
Notes

– My exam was about 2 hours long (9:15am - 11:11am).

– David Eisenbud asked me many questions in our meetings before the qualifying exam. He already had a good understanding
of what I knew, and I presume he was more easily satisfied.

– Not all of the answers presented here were written on the board; a lot of the times a verbal explanation sufficed.

– Since this transcript was written based on memory a few hours after the exam, the exact words used on the exam might differ
from what’s on the transcript. It might look very formal, but they were all asked in a friendly manner.

– We took a 5 minute break between each topic.
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I. Algebraic Geometry (Major - Algebra)

Olsson Let’s warm up by talking about projective morphisms.

Me A morphism of schemes f : X �! Y is projective if it factors as X
f 0�! Pn

Y
p�! Y for some n where f 0 is a closed immersion.

Auroux What does Pn
Y mean?

Me We have Pn
Z := Proj Z[x0, . . . , xn] and a map Pn

Z �! Spec Z. Given any other scheme Y there is a unique morphism
Y �! Spec Z. We can base change along this morphism to obtain Pn

Y := Pn
Z ⇥Z Y and p.

Olsson What can you say about maps to projective space?

Me A line bundle L on X and n + 1 sections s0, . . . , sn such that all of the si are not zero in the residue field Lx/mxLx (by
Nakayama’s Lemma this implies that the si generate the stalk Lx as an OX,x-module) is in 1-1 correspondence between
maps j : X �! Pn

A for which j?OPn
A
(1) = L and j?(si) = xi.

This correspondence is obtained by gluing local maps Xsi �! Uxi given by sj
si
 [ xj

xi
.

Olsson Now consider X = An+1
k = Spec k[x0, . . . , xn], L = OX and sections x0, . . . , xn. Does this give you a map to Pn

k ; what
else can you say?

Me The sections x0, . . . , xn all vanish at the point 0 = V(I) where I = (x0, . . . , xn). Thus we only have a map X� 0 �! Pn
k .

Olsson Is there a way to resolve this map?

Me Yes, we can blow up X along V(I) and resolve the map.

Olsson Define blow ups in this case and resolve the map.

Me Since we are blowing up an affine variety we can define the blow-ups locally. Indeed, let X = Spec A and consider a closed
subscheme Y = V(I). We have a graded ring eA = A� tI � t2 I2 � · · · ✓ A[t] with A in degree 0 and t in degree 1. Thus
we can define BlYX := Proj eA and this comes with a map Proj eA �! Spec A induced by the ring map A �! A� tI � · · · .

In our case, I = (x0, . . . , xn) is an ideal generated by a regular sequence and this admits a nice description. Namely, the
map A[y0, . . . , yn] �! A� tI � t2 I2 � · · · given by yi 7! xit has kernel precisely ({xjyi � xiyj}i,j).
Thus, BlYX ' V+({xiyi � xjyi}i,j) ✓ An+1 ⇥k Pn

k and finally the map j : BlYX �! Pn
k is given (in coordinates) by

(x0, . . . , xn)⇥ [y0 : · · · : yn] 7! [y0 : · · · : yn].

Olsson What are the fibers of j?

Me The fibers are isomorphic to A1.

Auroux So what can you say about the map j? In particular, what’s the line bundle associated to j?

Me Well, it corresponds to the exceptional divisor which is O(�1).

Olsson Ok, but can you see that from the explicit map j you’ve written down?

Me By the description in coordinates the map is either O(1) or O(�1). I explained that yi are acting as functionals and thus
the line bundle cannot be O(1).

Olsson Here’s another way to see this: What can you tell me about maps from Pn
k to An+1

k ?

Me Call the morphism y : Pn
k �! An+1

k . Since Pn
k is proper and irreducible, the image y(Pn

k ) is proper and irreducible over k.
Since y(Pn

k ) is closed it’s also affine. The only variety over k that’s both proper, affine and irreducible is a point. Thus, y

is just constant.

Olsson Now what does tell you about the sections of the bundle.

Me Oh, if the line bundle, call it L 0, associated to BlYX �! Pn
k had a section, then we would a map from Pn

k �! An+1
k . But

the only such maps are constant. Thus the global section of L 0 must be the zero section (it lies on the same point in every
A1-fiber). This forces L 0 = O(�1).
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Eisenbud Can you tell us about Hurwitz’s theorem

Me By a curve I mean an integral, one-dimensional, projective scheme defined over k. Consider a finite morphism of curves
f : X �! Y of degree n = [K(X) : K(Y)]. If f is separable, we have 2g(X) � 2 = n(2g(Y) � 2) + deg R where R =

ÂP(length WX/Y)P[P] is the ramification divisor. If f is purely inseparable, then g(X) = g(Y).

Eisenbud What’s an example of an unramified map?

Me Well, take any isomorphism of P1
k �! P1

k .

(Everyone starts laughing. Martin comments that’s the Bourbaki example!)

Eisenbud How about something that’s not an isomorphism.

Me We clearly can’t take maps to P1.

Olsson Why can’t you do that?

Me Well, g(P1) = 0 so we have deg R = 2g(X)� 2 + 2n > 0 unless n = 1 and g(X) = 0; this was my first example.

Auroux So try a higher genus.

Me Oh, if g(X) = g(Y) = 1, then by Hurwitz’s theorem, deg R = 0. So we want to find an isogeny of an elliptic curve E that’s
not an isomorphism. One can take the squaring map 2E : E �! E; this has non trivial kernel.

Auroux What’s the kernel?

Me There are many ways to find this; here’s a nice way to see this pictorially assume k = C. Represent E as a torus C/L
with L = spanZ{w1, w2} the lattice. Then we want to find the number of points P in the fundamental parallelogram
such that P + P = 0. There are clearly four points; 0, 1

2 w1, 1
2 w2, 1

2 w1 +
1
2 w2. This also shows that the kernel is the group

Z/2Z� Z/2Z.

More generally multiplication by nE : E �! E has degree n2 and this is the size of the kernel in “most” cases. So as long
as char k 6= 2 we still have Z/2Z� Z/2Z as the kernel.

Auroux What can you say about degree 3, genus 1 curves X in P3.

Me They are all embedded as plane cubic curves (in particular, it’s more than an abstract isomorphism). The overkill way to
see this is to use Castelnuovo’s bound. It states that if X ,! P3 is a degree d � 3 curve of genus g that does not lie in a
plane, then g  1

4 (d
2 � 1)� d + 1 (when d is odd). Plugging in d = 3 we obtain, g  1

4 (3
2 � 1)� 3 + 1 = 0. Thus the only

non-planar degree 3 space curve is projectively isomorphic to the twisted cubic.

Auroux What’s a more elementary way to see this?

Me Let D be the degree 3 divisor on X corresponding to the embedding X ,! P3. Note that KX has degree 0 and Riemann-Roch
implies that,

h0(D) = h1(KX � D) + deg D + 1� g(X) = 0 + deg D + 1� 1 = deg D.

In other words, D has only deg D = 3 linearly independent sections. Thus the corresponding map to P3 factors as
X ,! P2 �! P3.
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II. Commutative Algebra (Major - Algebra)

Eisenbud Define Krull dimension of a ring R.

Me It’s the length of the “longest” chain of prime ideal i.e. dim R = sup{n : P0 ( P1 ( · · · ( Pn : Pi prime}.

Eisenbud Is there another characterization of this when R is an affine domain (over k)?

Me Using noether normalization one can show that dim R = trdegkK(R).

Eisenbud Now consider I = (x, y) · (u, v, w) ✓ k[x, y, u, v, w]. What’s the dimension of k[x, y, u, v, w]/I?

Me I is the product of the ideal cutting out a 3 dimensional plane and a 2 dimensional plane. Their product, set theoretically,
cuts out the union of a 3-plane and a 2-plane. Thus the dimension is just 3.

Eisenbud That’s the set theoretic locus, is it also the scheme theoretic locus?

Me In this case, (x, y) · (u, v, w) = (x, y) \ (u, v, w), so it’s indeed the scheme theoretic locus.

Eisenbud Now let’s consider I = (x, y) · (x, v, w) ✓ k[x, y, v, w]. What is k[x, y, v, w]/I as a scheme?

Me Let’s write out the generators of I and find a primary decomposition. Since we are dealing with monomial ideals, recall that
a monomial ideal J ✓ k[x1, . . . , xp] is (xa1 , . . . , xak )�primary if it’s of the form (xb1

a1 , . . . , xbk
ak , m1, . . . , m`) with bi > 0 and

mi just monomials in xa1 , . . . , xak . Moreover, for monomial ideals, if uv 2 I with u, v coprime, then I = (I + u) \ (I + v).
Using these we can find a primary decomposition for I as follows,

I = (x2, xv, xw, yx, vy, wy)

= (I + x) \ (I + y)

= (x, vy, wy) \ (x2, xv, xw, y)
...

...

= (x, y) \ (x, v, w) \ (x2, v, w, y).

Eisenbud Consider the subalgebra R = k[s4, s3t, st3, t4] (homogenous coordinate ring) associated to the rational quartic in P3.
Find a noether normalization.

Me The subring S = k[s4, t4] ✓ R gives us the noether normalization. Indeed, s3t is annihilated by p(T) = T4� (s4)3(t4) 2 R[T]
and ts3 is annihilated by q(T) = T4 � (s4)(t4)3 2 R[T].

Olsson Is there something special about the choices s4, t4? Could we have chosen s3t instead of s4?

Me We have to be slightly careful if we want to choose other monomials. For example k[s3t, t4] ✓ R is not a noether normal-
ization as s4 is NOT integral over this subring (consider the degree of t’s appearing in the coefficients of any polynomial
over this subring). By choosing the monomial with the lowest degree in t and lowest degree in s we are guaranteed to not
run into this issue.

Eisenbud What’s the integral closure of R?

Me Notice that s2t2 2 K(R); in particular, s2t2 = (s3t)(st3)�1t4 = s2

t2 t4 = s2t2. It’s also annihilated by T2 � (s4)(t4) 2 R[T].
Thus, k[s4, s3t, s2t2, st3, t4] is the integral closure of R.

Eisenbud What does Serre’s criterion say?

Me It states that a ring R is a normal ring iff R satisfies the following two conditions:

(R1) This means that RP is regular for all codimension 1 primes P.

(S2) This means that depth(P, R) � 2 for all primes P of codimension (at least) 2.

The parenthetical remark in (S2) follows from the fact that depth(�, R) can only increase when you localize.

5



Eisenbud Why does it not apply to our algebra R?

Me Since the projection of the rational quartic from P4 99K P3 is non-singular, (R1) is satisfied for R. Let P = (s4, s3t, st3, t4) be
the codimension 2 maximal ideal of R. To show that (S2) fails, it suffices to show that depth(P, R) = 1. This will be true if
we find an element a 2 R such that depth(P + (a), R/(a)) = 0.

Before we do that it might be helpful to have some equations for R as a subvariety of P3 i.e. write I as an ideal of
k[x, y, z, w]. (Now everyone joined in on the fun and started to find minimal equations for the quartic!)

After a few minutes we found that I = (x2z� y3, xw� yz, y2w� xz2, yw2 � z3). So let’s quotient by x and obtain,

R/(x) = k[x, y, z, w]/(I, x) = k[y, z, w]/(y3, yz, y2w, yw2 � z3).

Showing that depth((y, z, w), R/(x)) = 0 is equivalent to showing that (y, z, w) is associated. In other words, we want
` 2 R/(x) such that ann(`) = (y, z, w). Looking at our relations we see that we can take ` = (yw2)!

Auroux Geometrically what went wrong? In other words, what happened when we quotiented out by x = s4?

Me The main issue is that we embedded P1 ,! P3 by an incomplete linear series. More generally, any such incomplete linear se-
ries is not going to be projectively normal. In our case, since dim R = 2, normality is equivalent to being Cohen-Macaulay.
So if R were Cohen-Macaulay, we could find a regular sequence of length 2 which would act like our “parameters” up to
some artinian quotient. We took x to be our first one and then found no others.

Eisenbud Is R! S (normalization denoted above) flat?

Me More generally, any non-trivial normalization j : A �! eA is never flat. My favorite way to see this to prove the more
general fact that the properties (R1) and (S2) descend via faithfully flat extensions. In particular, let (A, P) �! (B, Q) be
a local homomorphism that’s flat.

(R1) Assume that (B, Q) satisfies (R1). Then for any codimension 1 prime P1 2 Spec A we can find a prime Q1 lying over
it in B of codimension 1 (faithfully flat). By localizing we may assume P1 = P and Q1 = Q. To show that A is regular
it suffices to show that it has finite global dimension. This is equivalent to showing that TorA

i (A/P, A/P) = 0 for
i� 0. On the other hand since B is regular it has finite global dimension and thus we have, TorA

i (A/P, A/P)⌦A B =

TorB
i (B/PB, B/PB) = 0 for i� 0. Since A �! B is faithfully flat we obtain the desired result.

(S2) Now assume (B, Q) satisfied (S2). Without loss of generality assume P is a codimension 2 prime and Q is a codimen-
sion 2 prime minimal with respect to lying over P. Then we have depth(Q + PB, B/PB)  codimB/PB(Q + PB) = 0.
Thus we obtain,

2  depth(Q, B) = depth(Q, A) + depth(Q + PB, B/PB) = depth(Q, A).

This shows that (A, P) also satisfies (S2).

In our case, if j : A �! eA were flat, every localization AP �! eAQ with j�1(Q) = P would be flat. Since eAQ satisfies
Serre’s criterion so would AP. Thus AP

⇠�! eAQ and we have that all the local rings of A are integrally closed. This implies
that A ' eA.

Olsson Isn’t there a simpler answer in our case as A �! eA is finite?

Me Sure, since j : A �! eA is finite, it’s locally finite and flat. Since flatness and freeness are equivalent for finite modules over
local rings, eA is a locally free A�module. Thus ( eA)P is a free AP module for all P 2 Spec A. Since the normalization map
is birational, AP �! ( eA)P is an isomorphism on a dense open subset of Spec A. Thus, eA is a locally free A�module of
rank 1; this forces eA ' A.

Eisenbud Can you talk about the Artin-Rees Lemma.

Me A filtration M• : M = M0 ◆ M1 ◆ · · · is said to be an I-filtration if IMn ✓ Mn+1 for all n. The filtration M• is said to
be I-stable if IMn = Mn+1 for all n � 0. Given a noetherian ring, finitely generated modules M0 ✓ M , the Artin-Rees
Lemma states that the I�stable filtration M• of M restricts to an I�stable filtration M0 \M• of M0.

A nice applications of this is in the proof of Krull’s intersection theorem.
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Eisenbud This is not on your syllabus, but can you say something about an application of Artin-Rees Lemma to completions?

Me It can be used to show that taking completions with respect to the m�adic filtration is exact.

III. Algebraic Topology (Minor - Geometry)

Shapiro What is a fundamental group? (Outside member)

A A loop based at x0 2 X is a morphism g : [0, 1] �! X such that g(0) = g(1) = x0. The fundamental group p1(X, x0) is a
group on the set of all loops based at x0 up to homotopy. The multiplication operation is concatenation of loops (I drew a
few pictures).

Auroux Okay tell me about the fundamental group of the three spaces on the board?

Me While I was explaining the fundamental group, I “drew” R2, S1 with a generating loop x, and T2 with generators x, y. Well,
p1(R2) = {0}, p1(S1) = Zx and p1(T2) =

⌦
x, y : xyx�1y�1↵.

(Everyone found my presentation of p1(T2) very entertaining (because it’s just Z�Z). So Auroux asked the following question)

Auroux Present the universal cover of T2 in a nice geometric way.

Me The universal cover of T2 is R2. I drew the plane, subdivided it into tori and identified edges. In this way, the covering
map is given by R2 �! R2/Ze1 � Ze2.

Auroux Now can you see what the fundamental group of T2 is from the picture?

Me Sure, it’s Z� Z and the loop is e1e2e�1
1 e�1

2 .

Olsson The fundamental group has a natural action. What is it?

Me If f : ( eX, ex) �! (X, x) is the universal cover, p1(X, x) has an action on the fibers of f�1(x).

Eisenbud Is the universal cover unique?

Me Yes, this follows from the homotopy lifting property.

Auroux State that more precisely. In general if you have a covering map S �! X what can you say about maps from S to eX or
eX to S?

Me Say we had a covering p : (S, s0) �! (X, x0), Y a nice enough space and a map j : (Y, y0) �! (X, x0). Then we obtain a

factorization of j as (Y, y0)
j0�! (S, s0) �! (X, x0) iff j?p1(Y, s0) ✓ p?p1(S, s0).

So in the case when eX is the universal cover, we have p1( eX, ex0) = 0 and thus we always obtain a map eX �! S. If S was
another universal cover we will obtain maps in both directions and from this we have an isomorphism (mapping base
points to base points).

Auroux Let’s consider RP3 topologically. Compute it’s homology, fundamental group and cohomology (with Z coefficients).

Me

1 Homology: First of all RP3 admits a cell decomposition e0 [ e1 [ e2 [ e3. We obtain a cellular chain complex, 0 �! Z
d3�!

Z d2�! Z
d1�! Z �! 0. To figure out the differentials, recall that to obtain RPn from RPn�1 we attach an n�cell via the

2 : 1 cover, Sn�1 �! RPn�1. The degree of composition h : Sn�1 �! RPn�1 �! RPn�1/RPn�2 ' Sn�1 is the map dn.

The degree of the map h is the sum of the relative degrees of a generic fiber. The fiber of a point x in the codomain is
{x,�x}. Thus, the degree is just deg(id : Sn�1 �! Sn�1) + deg(antipodal : Sn�1 �! Sn�1). Since the antipodal map
Sn�1 �! Sn�1 has degree (�1)n we obtain dn = 1 + (�1)n. The complex is just

0 �! Z 0�! Z 2�! Z 0�! Z �! 0.

Thus the groups Hi(X) for i � 0 are Z, Z/2Z, 0, Z, 0, 0, . . . .
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2 Fundamental group: When one attaches a 2�cell to a space X, it corresponds to adding new relation to p1(X) coming from
the attaching map. Attaching a higher cell does nothing because the boundary is not a 1-cell. All of this is essentially a
consequence of Van-Kampen’s theorem. Thus, by our cell decomposition we see that

p1(RP3) = p1(RP1)/(relation from d2) = Zx/(x2) ' Z/2Z.

Auroux There’s an easier way to see the fundamental group, in this case, from the picture you drew.

Me Of course, we have the universal cover Sn �! RPn. This is a 2 : 1 cover and thus p1(RPn) = Z/2Z.

3 Cohomology: We can take the dual of the original complex or use the universal coefficient theorem. If we dualize we obtain,

0 � Z 0 � Z 2 � Z 0 � Z � 0.

Thus the groups Hi(X) for i � 0 are Z, 0, Z/2Z, Z, 0, 0 . . . .

Auroux What happens if you use the universal coefficient theorem?

Me It states that the exact sequence 0 �! Ext1
Z(Hk�1(RP3), Z) �! Hk(RP3, Z) �! HomZ(Hk(RP3), Z) �! 0 splits. Thus,

Hk(RP3, Z) ' HomZ(Hk(RP3), Z)� Ext1
Z(Hk�1(RP3), Z)

=

8
<

:
Z if k = 0, 3

0 else
�

8
<

:
Z/2Z if k = 2

0 else
.

We get the same result as before.

Auroux Is the conclusion of Poincaré duality satisfied in this case?

Me Indeed, abstractly, Hi(RP3, Z) ' H3�i(RP3, Z) for all i.

Auroux State Poincaré duality.

Me Let M be a compact, orientable, manifold of dimension n. Then we have an isomorphism Hi(M, Z) ⇠�! Hn�i(M, Z) given
by a 7! [M] \ a.

END After the statement of Poincare duality everyone was satisfied, and they told me to leave the room. Approximately 2
minutes later, the door opened and they said “Congratulations, you passed”!
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