Insolvebility of the quinchic $E_{x} \cdot Roots \quad \delta_{x} x^{2} + x + 1 \quad \text{are } -\frac{1 \pm \sqrt{-3}}{2} = -\frac{1 \pm i\sqrt{3}}{2} = \omega^{\pm 1}$ Q = Q (J-3) ~ splitting Field of x²+x-1. • Roots of $x^3 - 6x + 2$ $x = -\frac{1 \pm i\sqrt{3}}{\sqrt[3]{-1+i\sqrt{3}}} - \frac{1}{2}(1\pm i\sqrt{3})\sqrt[3]{-1+i\sqrt{3}}$ $X = \frac{2}{\sqrt[3]{-1 + i\sqrt{7}}} + \sqrt[3]{-1 + i\sqrt{7}}$ So to get all the roots we do the following $\mathcal{Q} \in \mathcal{Q}(\mathcal{Q}) \subseteq \mathcal{K}(\mathcal{Q}) \subseteq \mathcal{K}(\mathcal{Q})$ $\frac{11}{k_0}$ $\frac{11}{k_1}$ $\frac{11}{k_2}$ $\frac{1}{k_2}$ $\frac{1}{k_3}$ $\frac{1}{k_1}$ $\frac{1}{k_2}$ $\frac{1}{k_1}$ $\frac{1}{k_1}$ $\frac{1}{k_2}$ $\frac{1}{k_1}$ $\frac{1}{k_1}$ $\frac{1}{k_2}$ $\frac{1}{k_1}$ $\frac{1}{k_1}$ $\frac{1}{k_2}$ $\frac{1}{k_1}$ \frac So in K3 we factored x² 6x+2. To get there ue successively added "roots" i.e. me adjoined by & where a is a root of xⁿ - a irreducible in k(x). This is what it means to solve by radically

life let
$$f \in Q(x)$$
, we say f is solvable
by radicals if there's a chain ob
subfields $Q = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_m \subseteq \mathbb{C}$ s.J.
(D) Km contain the splitting field of f (all it K_f)
(2) $K_{i+1} = K_i(d_i)$ where d_i is the root of
a polynomial of the form $x^{n_i} - b_i \in K_i[x]$
 $\forall i \leq i \leq m$.

-
$$K_i \leq K_{i+1}$$
 is called a readical softension
- Note, we may assum n_i is prime by
splitting the sytemions up: $\sqrt[n]{6} = 5\sqrt{16}$.

Then let L be the splittling Field of
$$x^{m}-1$$
 over Q
Then (cal (L/Ga) $\cong (\mathbb{Z}/m\mathbb{Z})^{*}$
and $L = Q(\mathbb{F}_{m})$ where $\mathbb{F}_{m} = e^{\frac{2\pi i}{m}}$.

Then let
$$F = \chi^m - \alpha$$
, for $\alpha \in Q$. Then the
splitting field L of F contains $g_m = e^{\frac{2\pi i}{m}}$
and $Gal(L/Q(g_m))$ is again. If
 F is invaluable $Gal(L/Q(g_m)) \geq \frac{2}{m} \frac{2}{m}$

We can suplace K by & in the previous example.

$$E_{K} \cdot \mathcal{Q} \stackrel{K_{0}}{=} \mathcal{Q} \left(5_{3} \right) \stackrel{K_{1}}{=} \mathcal{Q} \left(5_{3} , \sqrt[3]{2} \right) \stackrel{K_{2}}{=} K_{2}$$

 $fal(1) \stackrel{K_{0}}{=} 2/27$
 $fal(1) \stackrel{K_{1}}{=} 2/32$
 $fel_{1} \stackrel{K_{2}}{=} Gal(\frac{k_{2}}{k_{3}}) \stackrel{K_{1}}{=} Gal(\frac{k_{2}}{k_{3}}) \stackrel{K_{2}}{=} Gal(\frac{k_{2}}{k_{3}}) \stackrel{K_{3}}{=} Gal(\frac{k_{2}}{k_{3}}) \stackrel{K_{3}}{=} Gal(\frac{k_{2}}{k_{3}}) \stackrel{K_{3}}{=} Gal(\frac{k_{2}}{k_{3}}) \stackrel{K_{3}}{=} Gal(\frac{k_{2}}{k_{3}}) \stackrel{K_{3}}{=} Gal(\frac{k_{2}}{k_{3}}) \stackrel{K_{3}}{=} 2/32$
 $fal(\frac{k_{2}}{k_{3}}) \stackrel{K_{3}}{=$

Recall S_5 is not solvable as A_5 is simple (Huk 4) $\xi_1 z \subseteq A_5 \subseteq S_5$ and A_5 is not yelic (or abilian).

Ex.
$$S_2$$
, S_3 , S_4 are solvable
 $(\{e_3 \le \langle (w)(3w) \rangle \in (\mathbb{Z}/22)^2 = A_4 \le S_4\})$
Also any subgroup of a solvable group is
colvable.
Note Cal $(K_F/(Q) \longrightarrow S_{deq} f$. Thus
deq 2, 3, 4 polynomials one solvable by radials.
Then Let $f \in Q(x_2)$ be increduible, and suppose
 f has shadly two non-real roots. Then
(rad $(K_F/(Q) \cong S_5$.
RF (D) S_n in generated by a 2-updle and an n-updle
 $i.e. S_n = \langle (i_2)(i_2 3... n) \rangle$
(2) f has two non-real roots, then
an automorphism of C:
Maximum 4 fixes all the other roots of f
 $i.e. Y: K_F \longrightarrow R_F$ is well defined ond gives
 a transpositions.
(3) Let d be a pool of f ,
 $Q \subseteq Q(x) \subseteq K_F$

