I Motivation (Vague!)

Since we can talk about $C' \cap C''$ when $C' \neq C''$, we would like to put an algebraic structure on $C(s)$, i.e., a pairing $C(s) \times U(s) \to \mathbb{Z}$.

So we need to be able to define $[C] \cap [C]$.

We use the idea of a tubular neighbourhood from topology. More precisely, we can hope to "infinitesimally" deform C:

"infinitesimally moving"

This seems to come from choosing a section $s \in N_C/s$ and its vanishing locus is the number of fixed points.

We will now discuss infinitesimal deformations and relate it to the normal sheaf.

II Embedded Deformations

Defn. Let X be a scheme over K, $Y \subseteq X$ a closed subscheme. A deformation of Y over $D := \text{Spec } K[\varepsilon]/\varepsilon^2$ in X is a

- closed subscheme $Y' \subseteq X'$, $Y = Y \times X$
- Y' flat over D
- $Y' \times_D K = Y$
Affine version: \(X \longleftrightarrow A \text{ k-algebra} B \)
\[Y \longleftrightarrow \text{an ideal } I \subseteq B \]

Embedded deformations \(\longleftrightarrow \) Ideals \(I' \subseteq B' := B[\varepsilon]/\varepsilon^2 \) such that
- \(B'/I' \) flat over \(K[\varepsilon]/\varepsilon^2 = D \)
- The image of \(I' \) in \(B = B'/\varepsilon B' \) is \(I \)
\[(B'/I') \otimes_D K = B/I \]

By the local criterion of flatness, flatness of \(B'/I' \) over \(D \) is equivalent to the exactness of:
\[0 \longrightarrow B/I \xrightarrow{\varepsilon} B'/I' \longrightarrow B/I \longrightarrow 0 \]

Prop: With notation as above, to give \(I' \subseteq B' \) such that \(B'/I' \) is flat over \(D \) and the image of \(I' \) in \(B \) is \(I \) is equivalent to giving an element of \(\text{Hom}_B(I, B/I) \).

\[0 \longrightarrow 0 \longrightarrow 0 \xrightarrow{\varepsilon} 0 \xrightarrow{\varepsilon} I' \longrightarrow I \longrightarrow 0 \]

\[0 \longrightarrow 0 \longrightarrow B \xrightarrow{\varepsilon} B' \longrightarrow B \longrightarrow 0 \]

\[0 \longrightarrow B/I \xrightarrow{\varepsilon} B'/I' \longrightarrow B/I \longrightarrow 0 \xrightarrow{\varepsilon} 0 \xrightarrow{\varepsilon} 0 \]

By 9.9-lm, exactness at the bottom \(\Rightarrow \) exactness at the top.

1. Defining a map \(\varepsilon \in \text{Hom}_B(I, B/I) \) gives the diagram on the left:

\[\begin{array}{c}
0 \\
I' \\
I
\end{array} \xrightarrow{\varepsilon} \begin{array}{c}
X \\
X'
\end{array} \xrightarrow{\varepsilon} \begin{array}{c}
B \\
B'
\end{array} \xrightarrow{\varepsilon} \begin{array}{c}
y_1 \longrightarrow x+y_1\varepsilon \\
y_2 \longrightarrow x+y_2\varepsilon
\end{array} \xrightarrow{\varepsilon} B/I \\
[X] = [y_2] \bigg]\text{ because } (x+y_1\varepsilon) - (x+y_2\varepsilon) \longrightarrow x-x = 0 \\
I' \longrightarrow I
\]

2. Conversely, given \(\varepsilon \in \text{Hom}_B(I, B/I) \) define
\[I' = \{ x+\varepsilon y \mid x \in I, y \in B \} \text{ and image of } y \text{ in } B/I \text{ is } \{0\} \]
Notes:

- $e = 0$ corresponds to $I' = I \oplus \mathfrak{e} I$, which is the trivial deformation. $Y \times D \to X \times D$.
- Can generalize to schemes: Deformations of Y over D in X:

$$\text{Hom}_X(I, \mathcal{O}_Y) = H^0(X, \mathcal{Hom}_X(I, \mathcal{O}_Y))$$

A B-module hom $I \to B/I$ Factors as $I/I^2 \to B/I$. But I/I^2 is a B/I module! Thus $\text{Hom}_B(I, B/I) = \text{Hom}_B(I/I^2, B/I)$

or

$$\text{Hom}_X(I, \mathcal{O}_Y) = \text{Hom}_Y(I/I^2, \mathcal{O}_Y).$$

Recall that $\text{Hom}_Y(I, \mathcal{O}_Y) = N_{Y/X}$ is the normal sheaf; as promised we have related these first order deformations to the normal sheaf.

Turn $\{\text{Deformations of } Y \text{ over } D \text{ in } X \}$ into $\{H^0(Y, N_Y/X)\}$.

Examples (We will use $B[\mathfrak{e}]$ to denote $B[\mathfrak{e}]/\mathfrak{e}^2 \ldots$)

1. $B = \mathbb{K}[x]$
 $I = (x^n)$
 $\{\text{Deformations of } \text{Spec } \mathbb{K}[x]/(x^n) \text{ in } \mathbb{A}^1 \}$
 \[\xymatrix{ & B[\mathfrak{e}]/(x^n + \mathfrak{e} a_1 x^{n-1} + \ldots + a_n) \ar[rr] & & B[\mathfrak{e}]/(x^n + \mathfrak{e} a_1 x^{n-1} + \ldots + a_n) \ar[rr] & & B[\mathfrak{e}]/(x^n + \mathfrak{e} a_1 x^{n-1} + \ldots + a_n) \ar[rr] & & \}
 \]
 \[\begin{array}{c} a_1, \ldots, a_n \in \mathbb{K}^n \end{array}\]

 Pf. By prop.
 we need a $\mathbb{K}[x]$-module map $(x^n) \to \mathbb{K}[x]/(x^n)$ completely determined by the image of 1. Say $1 \mapsto a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$.

 Looking at the definition of I' we see $I' = (x^n + \mathfrak{e} (a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}))$.

2. $B = \mathbb{K}[x,y]$
 $I = (xy)$
 $\{\text{Deformations of } \text{Spec } \mathbb{K}[x,y]/(xy) \text{ in } \mathbb{A}^2 \}$
 \[\xymatrix{ & B[\mathfrak{e}]/(xy + \mathfrak{e} (a + xp(x) + y p(y))) \ar[rr] & & B[\mathfrak{e}]/(xy + \mathfrak{e} (a + xp(x) + y p(y))) \ar[rr] & & B[\mathfrak{e}]/(xy + \mathfrak{e} (a + xp(x) + y p(y))) \ar[rr] & & \}
 \]
 \[\begin{array}{c} a \in \mathbb{K}, p(x) \in \mathbb{K}[x], p(y) \in \mathbb{K}[y] \end{array}\]

 Pf. Same as above. $\forall \alpha \in \mathbb{K}[x,y]/(xy)$, $\alpha \equiv a + xp(x) + y p(y)$.
III. Interlude

There are many questions one can ask; here are some of them:
1) Can we deform Y without caring about its embedding?
2) What about higher order deformations? Global deformations?
3) Can we deform other structures: schemes, complexes, etc.

Unfortunately, due to the lack of time, we will only focus on 1) and briefly touch upon 2).

III. V. A Global Deformation

Example: Choose $\lambda \in K = \bar{K}$ and $\lambda \neq 0, 1$. We have a family of affine elliptic curves

$$\{ x + \lambda \} = \{ y^2 = x(x-1)(x-(\lambda+1))^3 \} \text{ over } K[t]$$

We are going to work around $t = 0$, so ignore $t = \lambda, \lambda + 1$.

1) $x + \lambda$ is not trivial over any neighborhood of 0 i.e.

$$\{ x + \lambda \text{ is trivial over } K[t] \}$$

2) $x + \lambda$ is trivial over $K[t] \setminus \{0\}$ (Exercise)
IV Deformations of Rings (Schemes, algebras will be finite type \(k \))

Defn \(X \) be a \(k \)-scheme. A deformation of \(X \) over \(k[t] \) is a scheme \(X' \), flat over \(k[t] \) together with a closed immersion \(i: X \to X' \) such that \(i^*_{\mathcal{O}_X} : X \to X' \) is an isomorphism.

- Two deformations \((X', i_1) \) and \((X_2', i_2) \) are equivalent if there's an isomorphism \(F: X_1' \to X_2' \) such that \(i_2 = F \circ i_1 \).

Affine: \(B' \) flat over \(k[t] \), a map \(i: B' \to B \) such that \(B' \otimes_k B \cong B \).

- \((B', i') \) and \((B'', i'') \) are equivalent if \(\exists \alpha: B' \to B'' \) such that \(B = B' \otimes_k B'' \cong B'' \otimes_k B' \).

As you might expect, two non-isomorphic embedded deformations can become isomorphic! To see this, one can first use Nakayama's lemma to prove the following:

Lemma Let \(B' \) and \(B'' \) be flat \(k[t] \) algebras (F.g.) and let \(\phi: B' \to B'' \) be a \(k[t] \) morphism such that the closed fibers \(\phi \otimes_k: B' \otimes_k \to B'' \) are isomorphic. Then \(\phi \) is an isomorphism!

Example The deformation of \(\text{Spec} \ k[x]/(x^n) \to \mathbb{A}^1 \) corresponding to \(B[t]/(x^n) \) and \(B[t]/(x-ae)^n = B[t]/(x-nae x^{n-1}) \) are isomorphic for any \(a \).

Define \(B[t]/(x^n) \to B[t]/(x-ae)^n \) by \(x \mapsto x-ae \) \(e \mapsto e \).

It descends to \(B/(x^n) \to B/(x-0)^n \) on the closed fibers.

We will now outline the classification of deformations. The main idea is to "erude" our deformation and study the isomorphism of embedded deformations.
Let B be a k-algebra and $S = K[x_1, \ldots, x_r]$ with a surjection $S \rightarrow B$. i.e. $B = S/I$. Then consider the canonical sequence of $k \rightarrow S \rightarrow B$

$I/I^2 \rightarrow B \otimes_{S/I} S/I \rightarrow \mathcal{O}(B) \rightarrow 0$. Evaluating we have,

$0 \rightarrow \text{Hom}_B(\mathcal{O}(B), B) \rightarrow \text{Hom}_B(B \otimes_{S/I} S/I, B) \rightarrow \text{Hom}_B(I/I^2, B)\
\downarrow T_{B/I}^{1}\
\mathcal{O} \rightarrow 0$.

Then, if first-order deformations up to isomorphism $\mathcal{D} = T_{B/I}^{1}$.

Proof: Since $\text{Hom}_B(I/I^2, B)$ classified embedded deformations, it should classify deformations.

Say (B', i') and (B'', i'') are isomorphic as deformations. Then their embedded deformations are isomorphic. By the classification, say $\xi' : I/I^2 \rightarrow B'$ and $\xi'' : I/I^2 \rightarrow B''$ were the corresponding morphisms.

1. $\xi' - \xi'' : I/I^2 \rightarrow B' \otimes B''$ takes $g \mapsto \sum q_i \frac{2g}{2x_i}$. In other words an element of $\text{Hom}_B(B \otimes_{S/I} S/I, B)$

2. converse also holds.

Example

$S = K[x, y]$

$B = K[x, y]/(xy)$. The space of deformations in just $\text{Hom}_B(B \otimes_{S/I}[xy], \mathcal{O} \otimes_{S/I} \mathcal{O})$.

What is the map $I/I^2 \rightarrow B \otimes_{S/I}[xy]$? Well if $f(x, y) = xy$, it is just

$f(x, y) q(x, y) + I^2 \rightarrow \frac{\partial}{\partial x} (f g + I) \otimes \frac{\partial}{\partial y} (fg + I)$

$= (f \partial y + f \partial x I) \otimes (fg + I)$

$= (xy + I) \otimes (xy + I)$

Thus we are only left with the affine Hilbert quotient.

$x y = 6$

"Truly a first order deformation"
Example \[S = K[x, y] \]
\[B = \frac{K[x, y]}{(y^2 - x^3)} \]

The map \(\mathcal{I}_Y^2 \to \mathcal{O}_Y \) is \(f_g + \mathcal{I}_Y^2 \to (2x^3 + y) \otimes (2x^3 + y) \)

where \(f(x, y) = y^2 - x^3 \)

2-dimensional space \(\mathcal{Y} \) so we also have linear forms in \(x \).

For \(X = \text{Spec} B \) in an non-singular affine scheme, then it has no non-trivial deformation.

If \(X \) is non-singular we have an exact sequence \(0 \to \mathcal{I}_X^2 \to B \otimes \mathcal{O}_X \to \mathcal{O}_X \to 0 \)
and \(\mathcal{O}_X \) is projective. Thus applying \(\text{Hom}(\mathcal{O}_X, \mathcal{O}_X) \) is exact i.e. we have a surjection \(\text{Hom}_B(B \otimes \mathcal{O}_X, B) \to \text{Hom}_B(\mathcal{I}_X^2, B) \).

Thus \(T^1 \mathcal{O}_X = 0 \).

Let \(X \) be a non-singular variety over \(k \). Then the deformations of \(X \) over \(k[t] \) are in 1-1 correspondence with the elements of the group \(H^1(X, T_X) \).

If \(X' \) be a deformation and \(U' = \left\{ U_i \right\} \) an affine covering of \(X \). On each \(U_i \),
the induced deformation \(U_i \) is trivial. Thus we have an isomorphism \(\psi_i : U_i \otimes \mathcal{O}_X \to U_i \).
Thus for \(U_{ij} = U_i \cap U_j \) we have an automorphism \(\psi_{ij} = \frac{U_{ij} \otimes \mathcal{O}_X}{U_{ij} \otimes \mathcal{O}_{X}} \).
One checks that \(\psi_{ij} \) corresponds to an element \(\Theta_{12} \in H^0(U_{ij}, T_X) \).
The \(\Theta_{12} \) satisfy the cocycle relation giving us an element of \(H^1(U_{ij}, T_X) \).
One checks that this is independent of choice of \(\mathcal{O}_j \) and thus deformations correspond to \(H^1(U_1, T_X) = H^1(X, T_X) \).
Now check the converse.

V - Obstructions

To get a better understanding of our family of deformations, we would like to lift the deformation over \(k[t] \) to higher order Artinian rings i.e. for example \(k[x]/(x) \). I'll leave it to you to define what this means.

Anyway, you start with a deformation of \(X \) over \(k[t] \) and you want to lift it to \(k[x]/(x) \). In other words lifting an element of \(H^1(X, T_X) \). By working on an affine cover one...
will obtain a couple of automorphisms and thus an element of \(H^2(X, T_X) \).

If \(X \) is a non-singular curve, deformations are unobstructed.

VI - Moduli Problems

Here's some setup for the next talk:

Vague definition: The Hilbert scheme \(\operatorname{Hilb} \) parameterizes closed subschemes of \(\mathbb{P}^n_k \) with the same Hilbert polynomial. In other words

\[
\left\{ X \in \mathbb{P}^n_k \right\}_{\text{Flat families}} \quad \longleftrightarrow \quad \left\{ \text{Morphisms } T \to \operatorname{Hilb} \right\}
\]

More precisely, the function \(\operatorname{Hilb} : (\text{Sch})^{op} \to \text{Sets} \) that maps

\[
S \mapsto \left\{ Y \in \mathbb{P}^n_S : Y \text{ flat over } S \right\}
\]

is representable by a projective scheme, which we denote by \(\operatorname{H} \) (above).

What's the tangent space to \(\operatorname{H} \) at a point \([Y]\)?

Well, a tangent vector is a morphism \(\text{Spec } k[[e]] \to \operatorname{H} \) with the closed point \((e) \mapsto [Y]\).

By the equivalence (universal property) above, this just a flat family

\[
\left\{ X \in \mathbb{P}^n_S \right\}_{\text{Flat families}} \quad \text{Spec } k[[e]] \quad \text{with } Y_0 = Y
\]

Also known as an **infinitesimal deformation** \(\xi \) of \(Y \) in \(\mathbb{P}^n_S \).