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The first author initiated in [Cl] the subject of differential
geometry for projective modules ("vector bundles") over C*-algebras,
with its apparatus of conncctions, curvature and Chern classcs. The
principal examples discussed in [Cl] were the non-commutative tori
and the projective modules over them.

In the present paper we take the first small steps in extending
Yang-Mills thcory to projective modules over a C*-algebra. Our
motivation for doing that can bc cxplained as follows. A
non-commutative C*-algebra such as the irrational rotation
C*-algcbra Ag describes a non-commutative analogue of an
ordinary 2-torus, with smooth structure prescribed by the densc
subalgebra Ag (cf. [C1]) of smooth clements. The operation which
allows one to pass from the ordinary torus T2 = V to the pscudo
torus, or more precisely from the algebra C®(V) to the algcbra A‘é’,
is the introduction of new phase factors in the product rule. It is
however not- clear at all how to associate to a non-commutative
algebra such as A°9° an ordinary manifold which would be its
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"manifold shadow". In particular, ideas rclated to the spectrum
cannot work, sincc for 8 £ Q, Ag is a simplc algebra so that its
spcctrum is a point. This goal is exactly what the Yang-Mills
problem achieves. More specifically, we shall prove in this paper
that if 2 is a finite projective module over Ag which is not a
multiple of any other projective module, then the moduli space for
connections -on € which minimize the Yang-Mills functional is
homecomorphic to (T%)¥/L, where T? is the ordinary 2-torus and I
is the group of permutations of d objects acting by permuting the
components of (T2)d, Any finite projective module over A°6° is of
the above form =9,

Projective modules over higher-dimensional non-commutative
tori are studied in [R5,R6], and in particular, many projective
modules which admit connections with constant curvature are
constructed. Most of the results discussed in the present paper
extend to thesc modules. However, there arc other projective
modules which do not admit conncctions of constant curvature, and
for which the determination of the moduli space will be more
difficult,

Many other directions for the extension of Yang-Mills theory
are suggested by, among many possibilities, the expositions in
[AB,FUI

1. THE YANG-MILLS FUNCTIONAL

We work in the setting introduced in [C1] in which the C°
structure is defined by an action of a Lie group, rather than the
more general sctting developed in [C4]. Thus we let G be a
connected Lie group with Lic algebra L, and we let (A,G,«) be a
C*-dynamical system. We let A® denote the dense *-subalgebra of
A consisting of the C”-vectors for the action « (See the appendix
of [C2)) Then the infinitesimal form of « gives an action 6§ of L
as a Lic algebra of derivations on A%,

We will assume that A is unital. Then finitely generated
projecctive (right) A-modulcs are the appropriate gencralization of
complex vector bundles over a compact space. For brevity we will
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from now on say "projective" when we mean "finitcly gencrated
projective". As indicated in Lemma 1 of [Cl], every projective
A-module, E, has a C® wversion, that is, there is a projective
A®-module % such that £ is isomorphic to E~ ®,® A. Since we will
never work with A and £, but only with A and 2%, we will for
notational simplicity denote the latter by A and £ from now on.

As discussed.in [Cl], we can always equip £ with a Hermitian
metric, that is, an A-valued positive-definite inner-product < , >a

such that
<E,m% = <n8>,, <§na>, = <§,n>,a

for ¢, n € £ and a € A, for which E is self-dual. We will always
assume that £ has been so equipped. '

Yang-Mills theory is concerned with the sct of connections (i.e.
gauge potentials) on a vector bundle. In our sctting [Cl], a
connection is a linecar map V from Z to £ ® L* such that

Vx(ga) = (Vx(i))a + i(sx(a))

forall X e L, ¢ ¢ £and a ¢ A. Furthermore, the connections arc
required to be compatible with the Hermitian metric, that is,

By(<E,N1>,) = <Vy&, N>, + <B,VyN>,

x

for all X ¢ L, & 0 ¢ As discussed in [Cl], such compatible
connections always exist. We will denote the sct of compatible
"~ connections by CC(E). If ¥v0 and V are any two connections, then
Vg — Vg’( is an element of E = End,(&), for each X ¢ L. If vand ¥
are both compatible with the Hermitian metric, then Yy — V% is a
skew-adjoint element of E for cach X ¢ L. (Note that E is a
pre-C*-algebra.) Thus, once we have fixed a compatible connection
¥V, every other compatible connection is of the form V + p where 4
is a linear map from L into E_, the set of skew-adjoint elements of
E. In other words, CC(8) is an affine space with vector space
consisting of the linear maps from L to E_.
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The curvature (i.e. gauge field) of a connection V is defined to
be the alternating bilincar form 8y on L which measures the extent
to which V fails to be a Lie algebra homomorphism, that is,

OUX,Y) = VyVy = VyVy = Vg

for X,Y € L. One finds that its values are in E. If V is compatible
with the Hermitian mctric, then the values of © are in E.

The Yang-Mills functional measures the "strength" of the
curvature of a connection. To define it we need some extra
structure. Since L is playing the role of the tangent space of A,
the analogue of a Riemannian metric on a manifold will be just an
ordinary positive definite inner-product on L. We assume given
such a Riemannian metric, which will remain fixed throughout.
This Riemannian metric determines a bilinear form on the various
spaces of alternating multilinear forms on L. If these forms have
values in an algebra, such as E, then so will the corresponding
bilinear form. We need the bilinear form especially on the space of
alternating 2-forms with values in E. For computational purposes
the casiest way to define it is in terms of an orthonormal basis, say
Zyy z, for L. Then given alternating E-valued 2-forms ¢ and ¥
we let

(0¥ = igj AZ, A Z)UZ, A Z)),

which is an e¢lement of E.

We need next the analogue of integration over a manifold, and
we need this to be G-invariant. Accordingly, we assume given a
faithful trace, T, on A, which is invariant under the action of L on
A, that is, 8-invariant, so that T(64(a)) = 0 for all X ¢ L and a ¢
A. Then T determincs a canonical faithful trace, Tg, on E, as
explained in Proposition 2.2 of [R3]. To define Tg, We recall that
on E one defines an E-valued inner product, <, >p» DY

<6l = t<nts,
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Because E is (finitely generated) projective, every clement of E will
be a finite lincar combination of terms of form <&,n>p. Then T 1s

determined by
TE(<£,T)>E) = T(<N,8>,).
The Yang-Mills functional, YM, is defined on CC(E) by
YM() = = Tg((€g, Og)).

Since the values of ©p are in E_ it is clear that YM(V) is a
non-negative real number. The Yang-Mills problem is that of
determining the nature of the set of connections where YM attains
its minimum, or, more generally, of the set of critical points for
YM. The Yang-Mills equations are the Euler-Lagrange equations
for the variational problem of finding the critical points of YM on
CC(E). Since we will not explicitly need these equations for our
immediate purposes, we will not derive them here.

One can ask how YM depends on the choice of Hermitian
metric on E Now if [, ], is another Hermitian metric, then it is
casy to see that there is a positive invertible clement ¢ of E such
that

[8.7]4 = <e&,M>,

-

for all &€,n ¢ £ Suppose that V is a connection on E which is
compatible with [, ],. Then it is easily seen that el/2ve-1/2 g
compatible with <, >,, and that if ©' denotes the curvaturc of this
latter connection, while © denotes the curvature of V, then e =
el/2ge1/2 5o that T(®'(X,Y)) = T(6(X,Y)). It follows that
YM(el/2ve1/?) = YM(V). (Notc that e"1/% exists in E because A is
closed under the holomorphic functional calculus as discussed in
the appendix to [C2], so that E is also, since it can be realized as
pM, (A)p for some projection p in some M _(A)).

The Yang-Mills functional is invariant under a large group of
symmetries, and consequently its set of minima (and critical points)
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will be also. This group is called the group of gauge
transformations, or the gauge group of the second kind. In the
present context we do not have an analogue of the gauge group of
the first kind (the Lie group which is the structure group for the
vector bundle), and so for brevity we will refer to the group of
gauge transformations as simply the gauge group, as is frequently
done anyway.

In our context, the gauge group is just the group, UE, of
unitary elements of E, acting on CC(Z) by conjugation. To be
specific, for u € UE, V ¢ CC(E), we define 7u(V) by

F(DxE = u(T(u*E))

for € € Zand X e L. It is easily verified that Y4(V) € CC(E). It is.
also easily verified that

o *
&y @(X.Y) = ubg(X,Y)u
for X,Y ¢ L, and that
o , 8 = Uu{B8y, O *,
{8y, (@ By w)} = u{éy, Sglu
In view of the trace used in the definition of YM, it follows that
YM(7,(V)) = YM(V)

for every u ¢ UE and V ¢ CC(8). Thus YM is a well-defined
functional on the quotient space CC(E)/UE. Consequently it is
more appropriate to try to describe the set of minima for YM on
this quotient space. Equivalently, if MC(Z) denotes the set of
compatible connections where YM attains its minimum, we wish to
describe MC(2)/UE. This quotient is called the moduli space for =

2. CONNECTIONS WITH CONSTANT CURVATURE

In the next section we will consider the specific case of the
non-commutative two-tori, and the projective modules over them
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constructed in Theorcm 7 of [Cl1] or Section 13 of [C3]. Thesc
modules, as well as many of the modules over higher-dimensional
non-commutative tori constructed in [R5,R6], have very special
properties. To begin with, the Lie algebra L involved is Abelian.
Even more, the modules admit compatible connections with
constant curvature, where for Vv ¢ CC(E) we say that V has constant
curvature -if there is a complex-valued alternating 2-form « on L
such that

Oy(X,Y) = k(X,Y)I

for X,Y e L, where I denotes the identity element of E = End,(&).
(In fact, the values of k are pure-imaginary, since the values of 6y
are in E_) This simplifies enormously the analysis of the
Yang-Mills question, since we have:

2.1. THEOREM. d4dssume that L is Abelian, and that E admits
compatible connections with constant curvature. Then the set MC(E) of
compatible connections where YM attains its minimum, consists exactly
of all compatible connections with constant curvature. Furthermore, the
curvatures of all these minimizing connections will be the same.
PROOF. Let V% Dbe a compatible connection with constant
curvature % = «I. As indicated earlier, any V in CC(Z) is then of
the form Y0 + u where p¥ = —y for X ¢ L. In view of the fact
that L is Abelian, the curvature, ©, of V is easily secen to be

e=6%+ v,

where
Y(X,Y) = [V iyl = [Vystiy] + [y iyl

Now for any X ¢ L, define the "covariant derivative" gx on E by
8(T) = [Vy,T]

for T € E. Then regardless of whether L is Abclian or whether ¥V
has constant curvature, gx is easily seen to be a derivation of E for
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each X ¢ L. (But X = gx is not in general a Lie algebra
homomorphism).

2.2. LEMMA. As earlier, let T be a S-invariant trace on A, and let Tg
be the corresponding trace on E. Let V ¢ CC(E), with § its covariant
derivative on E. Then Tg IS §-invariant, in the sense that

Te(By(T) = 0

forall T € E and X € L.
PROOF. Because V is compatible, it is easily verified to be
compatible for 8 and < s > in the sense that

By(<8,M>p) = <V §,m>p + <§,9m> 0

for ¢,ne E and X ¢ L. Then

Te(By(<E,m>p) = TH(<Vyk,n>p) + TE(<E, V> )

T(<N,V98>,) + T(<V¢ME>,)

T(8x(<M,&>,)) = 0.

Since the operators of form <§,m>p span E, the desired conclusion
follows, Q.E.D.
We return to the proof of Theorem 2.1. We see that

¥(X,Y) = gx(#y) - gy(ﬂx) + [#x,#y],

and so
T(¥(X,Y)) =0

by Lemma 2.2. But then
TE(OAX,Y)HX,Y)) = (X, Y)T(¥X,Y)) = 0
and similarly for ©° and ¥ interchanged. It follows that

T({6%¥) = 0 = T,({%,6%).
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Conscquently
YM(9) = YM(Y?) = T({¥,¥)).

Now the values of ¥ are in E_, and so the term ~Tp({%,¥}) is
non-negative. It follows that YM attains its minimum at V°,

If YM is to attain its minimum also at ¥, then we¢ must have
T((¥,¥}) = 0. Now we have assumed that T is faithful. Then 7y
will also be faithful, for if Tg(ce*) = 0, then for every § € Z we
have

0= TE(e<F,,§>Ee*) = Tp(<eg,el>p) = T(<ef,ci>,)

so that et = 0 for all &, and so ¢ = 0. Sincc ¥ has values in E, it
follows that ¥ = 0. Thus

ey = 6° = «I
Q.ED.

3. HEISENBERG MODULES FOR NON-COMMUTATIVE
TWO-TORI

We now study the specific modules over non-commutative
two-tori which are constructed in Theorem 7 of [C1] and Section 13
of [C3]. (Their construction is generalized to higher-dimensional
tori in [R5, R6]). Our notation will usually agree with that in [Cl].
‘We recall that a non-commutative two-torus, Ag, is specified by a
rcal number 8 (which need not be irrational). Let 2 = e(8), where
here and later we let e¢ denote the function defined by e(t) =
exp(2mit) for real t. Then Ag is the universal C*-algebra generated
by two unitary operators, U, and U,, subject to the condition that
U,U, = \U,U,. Or rather, for us it is the C® part thereof, with
respect to the (dual) action of the torus group G = T2, Thus, as
discussed in [Cl, C3] the elements of Ag are of the form
Zf(m,n)U’l“U;' where f is a complex-valued Schwartz function on
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Z 2 that is, f vanishes rapidly at infinity. The Lic algebra L of G
is two-dimensional, and we take as a basis for L the derivations 8,
and 6, of Ag defined by

8,(Uy) = 271U, 6,(U) =0, j # k.

Accordingly, to define connections we only need to specify them on
this basis, and we write Vv, and V, for the corresponding opcrators.
Let S(R) denote the usual Schwartz space of complex-valued
functions on the real line. To specify a module £ we will assume
given two integers, p and q with q > 0. Contrary to [CI] it will be
convenient for us to assume that p and q are relatively prime, or
that p = 0 and g = 1. Let K be a finite-dimensional Hilbert space,

and let w, and w, be unitary operators on K such that
wow,; = e(p/q)w,w,

(where € is the complex-conjugate of ¢). We do not require that K
be of dimension g, and consequently we recover the generality of
[C1]. Contrary to [Cl], we will for convenience assume that wi =
I = wg . This entails no lqss of generality, as w, and w, can
always be adjusted to satisfy this relation. (The argument, in a
related context, will be given near the end of this scction.) Thus
w, and W, provide a representation of the Heisenberg commutation
relations for the finite group Zq. Since the irreducible such
representation is unique up to equivalence, K decomposes into a
direct sum of equivalent irreducible representations.

Let € = (p/q) — 6, and let operators V1 and V2 be defined on

S(R) by
(V,8)(s) = &(s — ¢), (V,8)(s) = e(s)&(s)

for s ¢ Rand & ¢ S(R). This makes evident the further requirement
which we must put on p and q, when 98 is rational, namely that € #
0. One finds that

VvV, = e(e)V,V,
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It follows that
(Vy @ w)(V, @ w) = XV, ® w,)(V, &w,).

We now let £ = S(R) ® K, and let U; and U, be the operators acting
on the right on & defined by U; = V, ® w, for i = 1,2. Because U,
and U, act on the right, we have U,U,; = A\U,U,. We view E as
consisting of K-valued Schwartz functions on R. Then we define a
Hermitian metric (that is, A-valued inner-product) on E by

L]

<§,n>,(m,n) = J.__w <wawi {(s — me),n(s)>¢(ns)ds,

where we assume, here and later, that the ordinary inner-product
on K is linear in the second variable. Here we are also identifying
a Schwartz function f on Z?2 with the element Xf(m,n)UTUZ of A
= Ag. It is not difficult to verify that <g,m>, as defined above is
indeed a Schwartz function on Z2 and that < » >, does define an
Ag-valued inner-product on E. This can be used to show that £ is
indeed a projective Ag-module. (Modulo a Fourier transform and
some changes of notation, the proofs are indicated in [R4]) If 8 is
irrational, then we obtain in this way all projective Ag-modules up
to isomorphism, except the free modules, as can be seen from the
main theorem of [R4]. We will call the modules E constructed
above Heisenberg modules for Ag, for recasons which will soon be
apparent.
We now define a connection, ¥V, on & by

(V18)(s) = 2mi(s/€)&(s), (V4E)(s) = (dg/ds)(s).

(Note that these are reversed in [C1].) Straightforward calculations
show that this is indeed a connection; and that-it-is compatible
with the Hermitian metric defined above. Furthermore, a trivial
calculation shows that the curvature of ¥, which is determined by
[V5Y,]), is given by

[9,,9,] = = (27mi/¢)L

ot
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Thus V has constant curvature. From Theorem 2.1 it follows that ¥
minimizes the Yang-Mills functional, and that every element of
MC(2) must have curvature equal to that of V.

We wish to determine the moduli space MC(2)/UE. This is
facilitated by the fact that ¥ essentially defines a representation of
the Heisenberg commutation relations, and this representation is the
infinitesimal form of an evident representation of  the
(three-dimensional) He1scnberg Lie group, H. We view H as R® with
product defined by

(r,5,t)(r',s',t") = (r+r',s+s’ t+t'+sr .

We let 7 denote the representation on L¥RK) for which v, is the
infinitesimal generator of the one-parameter group (r,0,0) whxlc v,
is the generator for (0,5,0). Thus

(n(r,0,0)§)(t) = e(rt/e)&(t)
(n(0,5,0)€)(t) = E(t+s).
Consequently

n(0,0,t)¢ = e(t/e)& .

Notice that the definitions of V and 7 do not involve w, and W,, SO
that 7 is just dim(K)-copies of the usual Schrédinger representation
of H on LZ(R), once allowance is made for e. Furthermore, E
consists of exactly the C”-vectors for 1, as discussed in [H].

As before, let E = End,(&), with E, its skew-adjoint part. As
seen earlier, any other compatible connection on £ will be of the
form V + w where w is an E-valued one-form on L. Now Ag has a
canonical trace T, which takes Zf‘(m,n)U’l”Ug"tb 1(0,0). A glance at
the definition of < , >, shows that the ordinary inner-product of
L%RK) is just T(< , >,)- Since the clements of E are bounded
operators with respect to < >4, it follows that they are bounded
for the L2%norm. In particular, the valucs of w are bounded

operators for the L%norm, so that V + w is a perturbation of V by
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bounded operators.

Suppose now that ¥ + w minimizes YM. Then Theorem 2.1 tells
us that V + w must be of constant curvature, and this curvaturc
must be cxactly the same as that for V. It follows that V + w
defines a representation of the Heisenberg commutation relations
of the same form as V. We wish to dectermine how V + w is related
~to ¥ by the gauge group, and for this we neced to know that the
representation determined by V + w exponcntiates to give a unitary
representation of H on L%(RK). In preparation for this, we note
that, as mentioned before, ¥V defines a covariant derivative, ‘3, on E,
by

5(T) = [%.T]

for T ¢ E and X ¢ L. For our immediate purposes all we need is
that gx(T) is in E for every T ¢ E. This is trivial to verify.

This puts us in position to apply Theorem 9.9¢ of [IM], with E
playing the rolec of the P of that theorem. The key hypothesis of
the thcorem is that the perturbation of the Lie algebra be by
bounded operators whose commutants with every element of the Lie
algebra are again bounded. Since we are perturbing by w, whose
values are in E, and since commutants with elements of the Lie
algebra generated by Vv, and V, are just what define 3, which
carries E into itself, this key hypothesis is satisfied. Applying
Theorem 9.9¢ of [JM], we conclude that there is a representation, p,
of H on LZ(RK) whose space of C -vectors is again Z and whose
" infinitesimal form is determined by V + w.

By the Stone-von Neumann theorem on the uniqueness of the
Heisenberg commutation relations, p will be equivalent to a certain
number of copies of the (irreducible) Schrddinger representation.
We neced to know this multiplicity. Now it is not difficult to
verify that the operator V, + iV,, when viewed just on L%(R), has
index 1. Conscquently, on L%RK) its index will be dim(K). But
(V,+w) + i(V,+w,) is a perturbation of Vv, + iV, by a bounded
operator, and it can be shown that such a perturbation will not
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change the index. Since (V+w) + i'(V2+w2) stands in the samec
position to p as vy + 19, docs to m, we conclude that p contains the
irreducible representation with multiplicity dim(K). In particular,
m and p are unitarily equivalent, and so there exists a unitary
operator, Q, on L%(RK) such that P, = Qn Q* for all x ¢ H. Note
that Q is not unique.

We nced to show that Q carries £ into itself. Let 7 and pf
denote the restrictions of m and p to the one-parameter groups with
generators Vj and VJ. + W for j = 1,2. By the usual Phillips theory
of perturbation of a single gencrator by a bounded operator, there
is a C* bounded-operator-valued function ¢’ (a cocycle) such that

I = clpl for t ¢ R. Then

mi Qnir = pj'Q = ¢} Q

It follows that Q is a C™-vector for the action of H on the algebra
of bounded operators on LERK) obtained by conjugating by 1. Let
{ € . Since E consists of exactly the C”-vectors for 1, and since

n Q) = (n,QuE)(m k),

it follows that Q& is a C™-vector for m and so is in £ That is, Q
carries £ into itself as desired. Thus Q will intertwine at the
infinitesimal level, and we have

QVXQ* = VX + (.\)x

-

for all X ¢ L, as operators on E,

Now Q need not be in E. But let us calculate the extent to
which it fails to commute with the generators of A. For ease of
notation, define operators Wj on £ by WjE, = §Uj for j = 1,2. Note
then that for £ ¢ 2

WiV Wt = (R (RU)UT = (M (0 + £8(U))U¥

v, (8) + 21is, L,
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where Sjk is the Kronecker delta. Thus
% _ .
Wj Vij = Vk + 2n18jkl.

Then

(W,QWHV(WQWH* = WQ(Y, + 2mi6, IQ*W}

e Wj(vkq-wk")'W}“+ 21'li5jk'1

- % .
= WJ.VkWj + W+ 2"153k1
(since w, commutes with Uj and so with Wj)
=V - 2nisjkI + W+ 27yl =V + W

It follows that WjQW}‘ intertwines @ and p. Consequently
Q*(WjQW}") intertwines m with itself. But because the Schrodinger
representation on L2(R) is irreducible, the only unitary intertwining
operators for m with itself are of the form I ® u where u ¢ U(K),
the group of unitary operators on K, and where I is here the
identity operator on S(R). It follows that for j = 1,2, there is a
(unique) u; € U(K) such that

W, QW= QU ® u)).

Now because of the commutation relation between U; and U,, and
so between W, and W,, it is clear that

W, W,QWiW* = W,W,QW*W% .

If we use the above definition of u,, these two sides become,
respectively,

QI @ uwu,wH) and QI ® u,wyu,wj).

It follows that

* *
U WU, WT = U Wal, Wy
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From the fact that w,w, = e(-p/q)w,w,, we find that
(ulwl)(uzwg) = C(D/Q)(Uzwz)(ulwl)-

That is, u,w, and u,w, satisfy the same commutation relation as w,
and w,,

Now K decomposes into a direct sum of subspaces, say K,
K, of dimension q on which w, and w, give an irreducible
representation of the Heisenberg commutation relations for the
group Z Similarly K decomposes into a direct sum of subspaces,
K/, .. K' on which u1w1 and u,w, act irreducibly. It need not be
true that (uw)? = I, = (u,w,)% However clearly (u;w)? and
(u,wy)? commute w1th u,w, and u,w, Thus on each K, the
restrictions of (ulwl)q and (uzwz)q act as scalar multiples of the
identity operator. Taking any qth roots of the corresponding
scalars, we find complex numbers Bk of modulus one such that
(B kuw)q acts as the identity operator on Ky for j = 1,2. Thus
Blku w, and szu2 , acting on K/ defme an irreducible
representation of the Heisenberg commutation relations for Zq.
Since all such representations are equivalent, we can find a (not
unique) unitary operator, v, on K which simultaneously intertwines
the representations on K, and Kl: for each k, that is,

) =
v (Bjkujwj)v w; on K,

for j = 1,2 and all k. Let Bj be the operator on K which on Ky
consists of multiplication by Bjk. The above relation then becomes

* =
v (ujwj)v ijj

forj-12 on all of K.
Let Q Q(I ® v). Because m and V do not involve the w; ’s, it is
clear that Q intertwines 7 and p, and that at the mfxmtesxmal level

OV O* =
Qv Q* = Vg + Wy

But (-2 has a simpler relation to the Wj’s than does Q, for
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wj'é W= (W,QWH(W(I ® V)W)
= QI @ u)(V; ® w){I & V)(V; ® w)*
= QU @ uwvwh = QL ® vB) = QU ® B))

for all j = 1,2,

For each k we can find a real number o‘l‘ such that if M,
denotes poinfwise multiplication on S(R) by t = c(to‘l‘) then VleV’f
= ElkMk. We can also find a real number o‘; such that if T, denotes

transiation by ec‘z‘ then V2TkV;‘ = Eszk. Define the unitary

operator N, on S(RK,) by Ny = M{T, ® L. Then on S(RK,) we
“have

WN WE= B N, for j=12

Let N be defined on £ = S(RK) to be the direct sum of the N’s.
Then

WNW: = (I ® B)*N.
Let U = QN. Then
W,UW = (W,QWH(W,NWY) = Q(I @ B)(I ® BHN = U.

Thus U € E, so that U is a gauge transformation. However U nced
not intertwine 7 and p. But simple calculations show that at the
infinitesimal level we have on S(RK,)

N*ON = (MT, ® I J'V(MT, ® I ) = 7 + 2miof L.

Let o; be the eclement of E, which on each S(RK,) is multiplication
by 2nio}‘. Then on S(RK) we have

* -
NVjN-Vj+oj.

Consequently,

U(V,+0,)U* = (UN*)V(UN*)* = QVQ* =V, +u;.
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Note that every conncction of the form V + o for o as above
has the same curvature as v, and so does minimize YM.

We can summarize what we have discovered so far as follows.
3.1. PROPOSITION. The subset of MC(E) consisting of connections
of the form V + o, where o is diagonal for the decomposition of K
into irreducible representations and the diagonal entries of o are
imaginary multiples of the identity operators, meets every orbit of the
action of UE on MC(E).

4. THE MODULI SPACES FOR HEISENBERG MODULES

The space of connections of form ¥ + ¢ for o of the special
type described in Proposition 3.1 is clearly an affine space whose
vector space of translations is isomorphic to R4, where d is the
number of irreducible subspaces into which K decomposes. We
must now determine when two clements of this affine space will
be in the same orbit under the action of the gauge group.

For this purpose we use¢ the fact that £ is isomorphic to d
copies of the module obtained by requiring that w, and w, act
irreducibly on K. It will be convenient now to change notation
and let £ denote this module for irreducible K, so that we are
concerned with 2% We need to obtain quite precise information
about B = End,(E), since E = My(B). Such precise information was
already obtained in Theorem 1.1 of [R4], using the general
framework discussed in [R2], but in the slightly more complicated
situation where there is multiplicity, and with different notation.
Rather than try to explain how to adapt Theorem 1.1 of [R4] to the
present situation, it is easier juSt to rederive what we necd from
[R2].

For the vector space K we will take C( Z'q), the vector space of
complex-valued functions on Zq, so that S(R) ® K = S(R x Zq).
The group G of [R2] is then R x Zq, and as the subgroups H and K
of [R2]} we take those generated by (€,[p]) and (1/q,[1]) respectively.
So the transformation group algebra C*(H,G/K) acts on the right
on the completion of S(R x Zq). The space G/K is identified with
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T = R/Z by the mapping (t,[k]) » t — k/q. Let U, and U, denote
the operators corresponding to the gencrator of H and to the
function ¢ on T. Then by formula 2.1 of [R2] we sce that

(FUDLIK]) = &(t = ¢, [k = p])
(FUL(L[KD = e(t — k/a)E(L,[K]).

If we let w, and w, denote the operators on C( ZZq) consisting of
translation by p and multiplication by e(k/q), we sec that U, and
U, are exactly the operators we have been using earlier.

Then B, at the completed C*-algebra level, will according to
[R2] be exactly C*(K,G/H), acting on the left. The space G/H is
identified with T by the mapping (t,[k]) - (t/e — ak)/q, where a is
an integer such that ap + bq = 1 for some integer b, using the fact
that p and q are relatively prime (a = 0 if p = 0). Let Z, and Z,
be the operators corresponding to the generator of K and to the
function e on T. Then by the formula in 1.9 of [R2] we see that

(Z8)(tIKD = &t — 1/q, [k-1])
(Z,8)(t,[k]) = e((t/e — ak)/q)E(t,k).

It is easily verified that
Z,Z, =e(Y)Z,Z,

where ¥ = (a8 — b)/(q® — p). Thus B = A‘b'

The connection V on £ -and the representation 1 of the
Heisenberg group will be defined by exactly the same formulas as
before, in particular ignoring the variable in ZZq. We notice that
n(r,0,0) will commute with Z, and m(0,s,0) will commute with Z,,
while

n(r,0,0)Z,n(-1,0,0) = ¢(r/q€)Z, ,

n(O,s,O)Zzn(O,—s,O) = ¢(s/qe)Z, .
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Thus conjugation by 7 is esscntially the dual group action of T2 on
Ad" (In particular, we have a special case of the situation studicd
in [CM,CU}.) Since S(R x Z,) consists of cxactly the C™-vectors for
n, the c¢ndomorphism algebra for S(R x Zq), rather than its
completion, will be exactly the C%-vectors for the dual group
action. From now on we let B denote this algebra of C™-vectors.
Then, as.with Ag, every element of B is of the form
Tg zn7)

where B is a complex-valued function vanishing rapidly at infinity
on Z2% 1t follows that every clement of E will be an n x n matrix
of such series.

We note that the infinitesimal form of the above commutation
relations between 7 and Z;,and Z, is

[Y:2,] = 78, Z,

where 7 = 2mi/eq. We now consider an E-valued form o as in
Proposition 3.1, but to simplify computation, we take its diagonal
entries to be of the form 70}‘ for j =12 and k = I, .., d, where the
ok
J
by V + o

In the same way let g be a diagonal E-valued form with

are rcal numbers. We consider the connection on =9 determined

entries 7u;.‘. We want to determine when there will be a hnitary U
¢ E such that

UMV + oU* =V +
or equivalently, such that
VU - UV = Uo - uU.

Let the entries of U be denoted by U,y € B. Then the last
equation becomes

!
[VjaUkﬂ] = Ukﬂycj - 7“}( ng .
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Now let U, be given by
_ kd
U, = L By, VAV A
Substituting this into the above equation, we obtain for j = 1

2 £
r B ymzPzd =¥ Yl (o] - iZTZ],

and similarly for j = 2. Equating coefficients of ZII"Z;1 and
dividing by 7, we obtain

BEL (m = (o] ~ 1) =0

B2 (n — (o5 — b)) = 0.

n

Thus if U*? #0, then crjj2 - u? must be an integer.

Since U is unitary, and since E = Md(A(L,) has a finite faithful
trace, we can find a permutation, p, of the integers from 1 to d
such that U*P() # 0 for all k. It follows that o}‘ and ngJ(k) differ
by an integer, for j = 1,2. Thus we sce that if V+ oand V + p are
in the same orbit under the action of the gauge group, then pu is
obtained from o by first adding intcger multiples of ¥ to the
diagonal entries of o, and o, and then by permuting all these
diagonals entries, simultancously for o; and o,

Let us sce that all such transitions from o to g are obtained
from a gauge transformation. Now conjugation by ordinary
permutation matrices in M, does not change V, but permutes the
diagonal entries of o, and o, So every permutation of the
diagonal entries (simultancously for o, and o,) comes from a gauge
transformation. On the other hand, suppose that for some integer
m we wish to add m to the kth diagonal entry of o,, without
changing o, or any of the other entries of o, Let U be the matrix
which differs from the identity matrix only by having Z]™ as the
kth diagonal entry. Then it is clear that conjugation by U does not
change o, or V,, whereas from the commutation relation given
above for Vv, and Z; we sce that UV,U* will be the sum of ¥, with
the matrix having m7y in the kth diagonal entry and 0’s elsewhere.
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By using Z, we can in the same way add intcger multiples of 7 to
the cntrics of o,. Thus for cach k the possible values of olf and 012‘
modulo integer multiples of 7, contribute a two-torus T? to the
moduli space. But permutations from the two-torus for onc value
of k to that for another value of k are permitted. Let L, denotc
the permutation group on d symbols. We have obtained the
following description of the moduli space:

4.1. THEOREM. Let p and q be integers which are either relatively
prime with q > 0, or p = 0 and q = 1, and assume that p/q # 8. Let
o denote S(R) ® K as projective right Ag-module in the way
described earlier, where dim(K) = q and the action on K is
irreducible. Let d be any positive integer, Then the moduli space
MC(Ed)/UE for compatible connections on zd
Yang-Mills functional, is homeomorphic to

which minimize the

(THYz, ,
where the action of Ly is by permutation of components.

5. MODULI SPACES FOR OTHER PROJECTIVE MODULES

If 6 is irrational, then it follows from the main theorem of
[R4] that every finitely generated projective Ag-module which is
not free is isomorphic to a Heisenberg module. But the free
modules are not Heisenberg modules. If 8 is rational, then
calculation of the dimension and Chern character of the Heisenberg
modules shows that there are sometimes even non-frce -modules
which are not Heisenberg modules. In this section we show, by
means of a little trick, how to use the information which we have
obtained about Heisenberg modules to calculate the moduli spaces
for these non-Heisenberg modules.

Our trick is based on the way compatible connections with
constant curvature behave under tensor products. For any
projective A-module Z it will be notationally convenient in this
section to denote by MC(E) the space of compatible conncctions
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with constant curvature on £ (or by MC(E,8) if we want to make
clear the relevant action of L on A). Recall that if V ¢ MC( 2) then
its covariant derivative, 8 on B = End,(E) dcfined by SX(T) =
[V T], is an action of L on B.

5.1. LEMMA. Let 8 be an action of L on a unital pre-C*-algebra A,
let Q be a projective right A-module with Hermitian metric. and let V ¢
MC()), Let B = End (9, and let 8 be the covariant «crivative on B
for V. Let be a projective right B-module, and let V' be a
connection on E for 5. Define V" on E ®y Q by

{x]

V=Vely+I; 00
that is,
V(3 @ W) = Vi(8) @ W+ E ® Vy(w).

Then V" is a connection on E ® Q for 6. If ©, ©' and ©" denote the
curvatures of Vv, V' and V", then

e'(X,Y) = 0'(X,Y) @ Iy + I ® 6(X,Y).

In particular, if V' has constant curvature then so does V". If E has a
Hermitian metric, and if V' is compatible with it, then V' is compatible
with the associated Hermitian metric on = 8y Q.

Verification of the above statements is entircly straightforward,
but we should clarify that by the "associated Hermitian metric” we
mean that defined, as in Theorem 5.9 of [R1], by

<ftowne §>A = <W, <T),§>B§>A

for ¢,n e £ and wt ¢ Q

We also need dual modules, as defined in 6.17 of [R1], and
connections on them. For this it will be convenient to assume that
the projective modules are full. For an A-modulc Q with Hermitian
metric this means that the span of the range of <, >, is all of A,
so that Q establishes a Morita equivalence between A and B =
End,(Q). '
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52. LEMMA. Let A, 6, O, V, B and 8 be as in the previous lemma,
but assume now that Q is full. Let Q denote the dual module for Q,
that is, Q is the additive group Q, but made into an A-B-bimodule by

L]

aw = (wa*), wb = (b*w) .

Define Von 0 by §X(6) (Vx(w))w. Then V ¢ MC(H,E‘:), and the
covariant derivative of 6 is & on A.

As explained in Lemma 6.2 of [R1], if Q is full then 5 ® Qis
naturally identificd with A as A-A-bimodules by [ ® = <> y,,
while @ ®, 0 is naturally identificd with B as B-B-bimodules by v @
E - <w,f>5. We nced the corresponding facts for conncctions, when
in the next lemma 6 is viewed as a connection on the free
A-module A, and similarly for 8.

5.3. LEMMA., Let A, 8, Q, V, B and 8 be as above, with Q0 full. Then

V®I§+IQ®V

is identified with & under the natural identification of Q ®, Q with B,
while

Veol,+I5eV

is identified with & under the natural identification of a ®y Q with A.
PROOF. (Vg @ Ig + Ig ® Vy)(w ® §) = Vy(w) @ § + w @ (Vyl) ,
which is identified with

<Vy(w),{>p + <w,Vx;>B = By(<w,§>5).

The proof of the other identification is similar. Q.E.D.

5.4. PROPOSITION. Let A, 8, O, V, B and 6 be as above, and let E
be a projective B-module with Hermitian metric. Consider the map
which sends any V' in MC(E,%) to

V'@IQ+IE®V

in MC(E ®5 O,8). If Qs full, then this map has a two-sided inverse
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from MC(Z @y Q,8) t0 MC(_,S)
PROOQOF. Supposc that Q is full, so that 8 and V arc defined. Our
inverse will be the map which sends V' € MC(E &y 0,8) to

V'elg+ Iggn®V

in MC(E &5 Q &, Q,S) but with the latter 1dcnt1flcd with MC(H,S)
by means of the identification of £ @z 0 ®, Q with £ gg. Under this
map V' ® I + Iz ® V is sent to

Vel el +1;0Vel + ;8 8%,
which by Lemma 5.3 is identified with
V'iely+Iz®5,

on E @, B, which is easily secen to be identificd with V! by the map
t ®b ~ tb. Thus we have a left inverse. On the other hand,

Ve Ig + IE®Q®§
is sent to

VoI5 e In+ Ioeq ® V@ In + Iggned @ Vs
which by Lemma 5.3 is identified with

VeI, +Izeq @5,

which is easily seen to be identified with V" by the map (§{ ® w) ® a
- { ® (wa). Thus we have a right inverse. Q.E.D.

5.5. THEOREM. Let A, 5, Q, V, B and & be as above. Let E be a
projective B-module with Hermitian metric, let E = EndB(E), and
" assume that Q is full so that also E = End,(E &g Q). Thus the gauge
group UE acts on both MC(E,%) andeC(E ®g A,8). Then the bijection
used above which sends V' ¢ MC(E,8) to
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in MC(E g Q0,8) is equivariant for the action of UE, and so gives a
bijection between the corresponding orbit spaces, that is, between the
corresponding moduli spaces.

PROOF. Let u ¢ UE and let V! ¢ MC(E). Then (7,(V'))x = uVyiu¥,
which is sent to

)y
uvyu® ® Ig + Iz ® vy

=(u @Iy ® I + Iz ® Vy)(u @ I)* Q.E.D.

In order to exploit this theorem, we must arrange matters $o
that £ is a Heisenberg module, for then we can apply the results of
the previous sections. Before embarking on this, we remark that
any (non-zero) projective module over any Ag is full. If 6 is
irrational this follows from the fact that Ag is simple, while if 8 is
rational  this follows from the fact that Ag is then Morita
equivalent to C(T?).

5.6. PROPOSITION. Let 6 be any real number, let A = Ag, and let A
be a projective A-module. Then we can factor A as

d g

A B

Q

I
(O]

for some positive integer d, where Q, B, and E have the following
properties. First, Q is a projective A-module and B = End,(Q). Also
there is a real number ¢ such that B is identified with A‘P' Next, there
is a Hermitian metric on Q and a V ¢ MC(Q) such that the convariant
derivative & on B defined by V is, up to a scale factor, the usual action
of L. on A(P‘ Furthermore, 2 is a Heisenberg B-module, and & ®p Qis
not a multiple of any other projective A-module. In particular, every
projective Ag-module admits a combatible connection with constant
curvature.

PROOF. By considering the positive cone of K (Ag), which for 6
rational looks like that for KO(C(TZ)) since Ag is Morita equivalent
to C(T?), and which for © irrational is shown-in [PV] to be (Z +
Z8) N [0,*), we sce that every projective A-module is a multiple of
some projective module which itself is not a multiple of any other
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projective module. Thus it suffices to prove the proposition for the
case in which A is not a multiple of any other projective A-modulc
(sod=1).

Supposc first that € is irrational If A is not frec then, as
indicated earlier, A is a Heisenberg A-module, and so we can Iet £ =
A, B = A and Q= A, with conncction & on Q.

Suppose next that 8.is rational or irrational, but that A is frce.
Then by the multiplicity assumption A must be A itsclf. From
Theorem 1.1 of [R4] it follows that we can find a real number ¢
such that, with B = A<P’
A = Endg(E). Let ¥ be the standard conncction on E, so that, as

there is a Heisenberg B-module E such that

seen in Section 4, the covariant derivative of V on A induces the
usual action of L on A up to a scale factor €q. By rescaling, we
find that v on Zisa compatible connection of constant curvaturc
for the usual action of L on A, whose covariant derivative on B is
the usual action of L on B up to a scalar factor. Thus it sufficces
to set O = E.

Suppose now that 6 is rational and that A is not free. Let C =
C(T?. Again, considerations of dimension and Chern character
together with the fact that stable isomorphism implies isomorphism,
or examination of Theorem 3.1 and the discussion before Theorem
3.9 of [R4], shows that cvery projective C-module is cither free or
Heisenberg. Thus if A = C we can argue exactly as for the casc of
@ irrational. If A # C, then by Theorem 3.9 of [R4], there is a
Heisenberg C-module Q' such that A = Endg(Q'). Let 0 = (Q')w,
“with connection V scaled so as to be a connection for 8, and with
covariant derivative giving the usual action of L on C up to a
scale factor. Since Q is automatically full, Q cstablishes a Morita
equivalence of A with C, and consequently any projective
A-module will be of the form E &, Q for some projecctive C-module
Z. Choose E so that A = £ @, Q. If 2 is not frec, then as stated
above, £ is.a Heisenberg C-module and we are done. If E is free,
then by the multiplicity assumption E = C, so A= Q Then, as in
the free case discussed above, we can find a B = A, and a

£4
Heisenberg B-module, say E, such that C = EndB(E).. Then
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AZ E e (28 0.

A straightforward argument shows that the conncction on z 8y A
coming from thc usual conncctions on the Heisenberg modules Q
and £ will have the desired properties. Thus the proof is complete
if we let & ®- Q be our new Q

5.7. THEOREM. Let 8 be any real number, and let d be any positive
integer. With A = Ag, consider any projective A-module of the form
M where A is not a multiple of any other projective A-module. Let N
be equipped with a Hermitian metric. Then the moduli space for the
compatible connections which minimize YM is homeomorphic to
(THY/Z,

PROOF. We¢ apply Proposition 5.6 to write A as = ®g Q where £ and
Q have the propertics stated in the proposition. Then AY = 24 o5 0
We saw in Section 1 that the moduli space for YM does not depend
on the choice of Hermitian metric, and so we can change that on A
to be the one coming from the Hermitian metrics on £ and Q. Let
&' be the usual action of L on A<P’ so that 6 = «8' for some
positive number « Then a moment’s thought shows that
multiplication by « gives a UE-equivariant map of MC(248") to
MC(Ed,‘g), where curvatures are correspondingly scaled by o2, and so
YM is scaled by o« Thus the moduli space for MC(Ed,é) is
naturally identified with that for MC(2%,6'). But by Theorem 6.6
the moduli space for MC(A4,8) is identified with that for MC(g4,8),
while by Theorem 4.1 the moduli space for MC(E,8') is
homeomorphic to (TH4/E,,  Q.E.D.

REFERENCES

[AB] M. F. Atiyah and R. Bott, The Yang-Mills equations over
Riemann surfaces, Phil. Trans. R. Soc. London A308 (1982),
523-615.

[CM] F. Combes, Crossed products and Morita equivalence, Proc.
London Math. Soc. 49 (1984), 289-306.



YANG-MILLS FOR NON-COMMUTATIVE TWO-TORI 265

[C1] A. Conncs, C*-algebres ct géomctric différenticlle, C. R. Acad.
Sc. Paris 290 (1980), 559-604.

[C2] , An analoguc of thc Thom isomorphism for crosscd
products of a C*-algebra by an action of R. Adv. Math. 39
(1981), 31-55.

[C3] , A survey of foliations and opcrator algcbras.
Opcrator algebras and applications (ed. R. V. Kadison), Proc.
Symp. Purc Math. 38 (Amer. Math. Soc.,, Providence, 1982),
521-628.

[C4] , De Rham homology and non commutative algcbra,
Pub. Math, 62 (1986), 94-144.

[CU] R. E. Curto, P. Muhly and D. P. Williams, Crossed products of
strongly Morita cquivalent C*-algebras, Proc. Amer. Math.
Soc. 90 (1984), 528-530.

[FU] D. S. Frced and K. K. Uhlenbeck, Instantons and
four-manifolds, Springer-Verlag, New York, 1984.

[H] R. Howe, The role of the Hcisenberg group in harmonic
analysis, Bull. Amer. Math. Soc. 3 (1980), 821-843.

[JM] P. E. T. Jorgensen and R. T. Moore, Opcrator Commutation
Relations, D. Riedel, Dordrecht, 1984.

[PV] M. Pimsner and D. Voiculescu, Exact scquences for K-groups
and Ext-groups of certain crossed product C*-algcbras, J.
Opcrator Theory 4 (1980), 93-118.

[R1] M. A. Rieffel, Induced representations of C*-algcbras, Adv.
Math. 13 (1974), 176-257,

[R2] R Strong Morita equivalence of certain
transformation group C*-algebras, Math. Ann. 222 (1976),
7-22.

[R3] , C*.algebras associated with irrational rotations,

Pacific J. Math. 93 (1981), 415-429.

[R4] , The canccllation theorem for projective modules
over irrational rotation C*-algebras, Proc. London Math. Soc.
47 (1983), 285-302.




266 ALAIN CONNES and MARC A, RIEFFEL

[R5] M. A. Ricffel, "Vector bundles" over higher dimensional
"non-commutative tori", Proc. Confercnce Opcrator Algcbras,
Connections with Topology and Ergodic Theory, Lecture
Notes in Math. 1132 (Springer-Verlag, Berlin, Heidcelberg
1985), 456-467.

[R6] ., Projective modules over higher dimensional
non-commutative tori, preprint.

INSTITUT DES HAUTES ETUDES SCIENTIFIQUES
35, ROUTE DE CHARTRES

91440 - BURES-SUR-YVETTE

FRANCE

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CA 94720



