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NON-COMMUTATIVE TORI — A CASE STUDY |
OF NON-COMMUTATIVE DIFFERENTIABLE MANIFOLDS

Marc A. Rieffel*

ABSTRACT. The non-commutative tori are perhaps the most accessible
and best studied interesting examples of non-commutative differen-
tiable manifolds. We give a survey of many of the results which
have been obtained about them.

Led by Alain Connes [Cnl, Cn3, Cn4], we have during this decade gottén a
glimpse of a new kind of maihematiéal object, namely non-commutative differ-
entiable manifolds. So far no one has given a satisfactory definition for these .
objects. But by now a number of naturally arising examples are known which
will surely be included when a good definition is found. There is every
indication that large parts of the mathematics which one does on ordinary
manifolds will be extended to non-cémmutative manifolds. Substantial motiva—
tion for doing this comes from thé contributions to issues in other areas of
mathematics which such extensions will provide [Bel, Cn3, CM, RS1, Rs2]. In
particular, one will study the index of elliptic operators on non-commutative
differentiable manifolds. This is already explicitly indicated in Connes’ original
paper on non-commutative differential geometry [Cnl], and this is one of the
ideas lying behind his work on index theorems for foliated manifolds [Cn2, CS].

Probably the most accessible interesting class of non-commutative differen-
tiable manifolds are the non-commutative tori; they are surely the best under-
stood, although many questions about them still remain open. In this report I
will try to survey much of what is known, and indicate some of the open
questions, It is my hope that readers of this report will come to feel that
non-commutative tori are not exotic objects, but rather are attractive

well-behaved objects closely associated with classical situations.

1. THE DEFINITION OF NON—COMMUTATIVE TORI. Non-commutative tori arise
naturally in a number of different_, situations. For example, they play a certain

universal role in the representation theory of Lie groups [Pgl, and they
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provide a convenient framework within which to study Schrodinger operators

with quasi-periodic potentials [Bel]. But here we will choose to approach them

from the direction which most strongly suggests their relationship to ordinary

" manifolds, ‘namely from the direction of deformation quantization [Rf8, Rf9I].
Let T" be an ordinary n-torus. We will often use real coordinates for

T", that is, view T as R/Z{ Let CQ(T") be the algebra of infinitely

differentiable complex-valued functions on T". Pick a real skew-symmetric nxn

matrix 6. Then we can use 8 to define a Poisson bracket on CQ(T") by

{f, g} =X 64y (3f/ax ) (3g/ax, )

for f, g € CQ(T").‘ The idea of deformation quantization is to seek to deform
the pointwise product of Cm(T") to a one-parameter family.of associative

products, *'h, in such a way that

lim - (f* - g, 1) /ik = {f, g .
ko A :

To this end, use the Fourier transform to carry CQ(T") to S(2"), the space
of complex-valued Schwartz functions on Z". Then the Fourier transform carries
the pointwise multiplication on CQ(T") to convolution on S(Z"). A simple

computation shows that it also carries the Poisson bracket to

{$, ¥}(p) = —4n" § $(@Q)¥(p - a)y(a, P — q)

for ¢, ¥ € 8(z") and p, q €Z", where
y(py @) = I ejkPij ’

and where the factor 4n2 comes from our convention that the Fourier

~

transform, f, for f € C (T") is defined by

n

£0) = | exp(-2mix-p)f(x)dx .
Tﬂ

For every h € R define a bicharacter, Oys OD z" by

o, (P, @) = exp(-miky(p, q)) ,
and then set o o ’
(¢x,9)(p) _=_§ ¢()¥(p - @)g (a0, P - @) .

Define the involution on S(Z ), independent of %k, to be that coming from

complex conjugation on C (T ), so that

- ¢¥(p) = #(-p) .
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For each % define the norm || ”h on S(Z") to be the operator norm for

the action-of S(Z") on EZ(Z") given by the same formula as used above to define
the product *h' Let Ch be CQ(T") but with product, involution, and norm
obtained by pulling back through the inverse Fourier transform the product *h’
involution, and norm || ”h' Then one can show [Rf8, Rf9] that the completions
of the Ch’s form a continuous field of C¥*-algebras, and that for f, g € Cm(T")

one has _
lctx,g - g, £)/ik - (£, @)ff, — 0

as k= 0. Since Cp is Just Cm(T") with its usual pointwise multiplica-
tion and supremum norm, this all means that the Ch’s form a strict deformation
quantization of CQ(T") in the direction of the Poisson bracket coming from 6,
as defined in [Rf8]. . .

We denote the algebra for h =1 by Ag. Since Ag is obtained by
deforming Cm(T“), it is natural to call Ag a non-commutative n-torus — the
"c™" version. Let Ag denote the horm completion of Ag, so that Ag is a
C*-algebra. This will be a deformation of C(T"), and so is considered the
"topological™ version of the non-commutative torus determined by 4.

It will be important for us at various points that, as is easily seen; the
action of T by translation on Cm(T") is also an action by continuous
*—algebra automorphisms for the product *ﬁ (that is, the deformation quanti-
zation constructed above is T"-invariant), and so gives an action of T" on
Ag, called the dual action. This dual action is easily seen to be ergodic in
the sense that the only invariant elements of KG are the scalar multiples
of the identity element. In fact, it is shown in [OPT] that the Kg’s are
exactly all unitial C*-algebras admitting ergodic actioms of T" (with full
spectrum if the action is to be faithful). g '

Now for each p € 2" the function t + exp(2nit'p) will correspond to
a unitary operator, Up, in Kg, and the mapping p H— Up will be a projective
unitary representation of Z". Thus XO can be viewed as the C*—algebra
generated by this representation. Alternatively, if we let Uy, --- ,U,
denote the unitary operators corresponding'to the standafd basis for Z", then

they already generate KG and satisfy the relation

UU; = exp(2nif)U U, ,

and it is not difficult to show that XB is (isomorphic to) the universal C*-

algebra generated By n unitary operators which satisfy the above relétions.
When n = 2, the skew-symmetric matrix 6 is just determined by a real

number, again denoted 6, and Ag will be isomorphic to the crossed product

C*-algebra for the action of ‘Z on the circle T coming from rotation by
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angle 2n08. For this reason these algebras are often called "rotation algebras".
[AP], or "irrational rotation algebras" when 6 is irrational [Rf2].

Going back to the general case, let us define a functional, =, on S(Z") by
(¢) = ¢(0) .

Note that + 1is just the Fourier transform of Lebesgue measure on T". lLet «
denote the dual action of T" on Kg defined earlier. Then it is easily seen
that + is invariant for «, and in fact that

() = [ o, ($)dt

Tﬂ

where the left-hand side should initially be viewed as +(¢)I, where I = Uq
is the identity element of'Xg. From this, one sees that + extends to a trace
T on Ze, which is faithful. And that the only «—invariant traces on Xg are the
scalar multiples of + [Sl, Gr, OPT]. The Hilbert space obtained by applying
the GNS construction [KR] to = is easily identified with 22(2"), with the
Up’s as an orthonormal basis.

For every a € KG one can define its "Fourier coefficients" {ap} by

a, = r(aUﬁ) .

Because T is faithful, an element of KG will be determined by its "Fourier
coefficients”, though, just as with C(T"), it can be difficult to tell when a
given function on 2" is the set of "Fourier coefficients" for an element of
Kg. But at any rate, one can do for non—-commutative tori many of the same
maneuvers which one does for ordinary Fourier series in n variables. This
is additional justification for using the term "non-commutative tori".

- Because the non-commutative tori are so closely related to ordinary tori,
it is natural to expect that many of their properties will be similar to those
fof ordinary tori. In the next sections we will first discuss this question

at the "topological" level, and then at the "C " level.

2. "TOPOLOGICAL" PROPERTIES OF NON-COMMUTATIVE TORI. If 6 has sufficient
irrationality so that whenever 6(p, 2") € 2 for some p € Z" it follows that
p =0, then Kg is simple (as is Ag), i.e. has no proper two-sided ideal .[S1,
Gr, OTP]. 1In this sense Ag 1is then as far away as possible from being an
algebra of functions on a topological space. One can show in this case that
the only traces on Kg are the scalar multiples of + [S1, Gr, OTP].

If 6 is rational, then Ag -is a'bundle of full matrix algebras over a
T", the matrix size depending on the denominators of 8 [Gr, HS, OTP, Rf4].
In particular, Kg.is strongly Morita, equivalent to C(T") [Rf3]. But these
bundles are almost never trivial (i.e. product) bundles [HK, Rf4, DB].
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Even though Kg is far from being a function algebra when it is simple,
we will see in section 4 that it is still important to extend to it the notion of.
the classical dimension of a compact space [Pr]. This can be done in the
following way, described in more detail in [Rf4]. Let M be a compact space.
Then a standard theorem from classical dimension theory (proposition 3.3.2 of
[Pr]) says that the classical dimension of M is the least inieger n such
that every continuous function f from M -into R"'! can be approximated
arbitrarily closely by functions which do not contain the origin in their
ranges. Now such a function f is an (n+l)-tuple, f;, —, f_ 4;, of real-
valued functions, and the condition that f miss the Origin’is Jjust the
condition that the f;’s nowhere vanish simultaneously. Let Cgj(M) denote
the Banach algebra of real-valued continuous functions on M. Then this
" last condition just says that the ideal of Cgx(M) generated by the f;’s all
together is Cp(M). To generalize this to non-commutative algebras, one must
choose to use either left or right ideals, though for algebras with involution
this choice will make no difference. For A an algebra with identity element,
we let Lgn(A) denote the set of n-tuples of A which generate A as a left
ideal. When A is a Banach algebra, the theorem from classical dimension
theory stated above indicates that we are interested in when Lg"(A) is dense
in A". But we are interested in algebras over the complex numbers, and a
‘complex—-valued function on a compact space M will correspond to two real-
valued functions. Because of this, it will not be appropriate to use the term

"dimension", and so instead we will use the term "topological stable rank".

» 2.1 Definition [Rf4]. Let A be a Banach algebra with identity element.
By the left topological stable rank of A, denoted 1ltsr(A), we mean the least

integer n such that Lgn(A) is dense in A" (= « if no such integer exists).

Then for a compact space M we will have tsr(C(M)) = [dim(M)/2] + 1
where [ ] denotes "integer part of". (We use t¢sr instead of Itsr for algebras
with involution, where the choice of left or right ideals gives the same result,)
An upper bound on the tsr of non—commutative tori can be obtained as
follows. Any nop-commutative torus can be constructed as a succession of
crossed products by actions of the group z, starting from a trivial action on
the one-dimensional algebra € [E12, Rf6]. But a basis result [Rf4] about tsr

is that if « is an action of Z on a C*—algebra A, then
tsr(Ax,Z) € tsr(A) + 1 .

Thus we see that if KG is a non-commutative torus based on Z", then
tsr(zg) £ n+1., Actually, when € is not rational one can show that

‘_tsr(ze) is no larger than 2, and must vbe equal to 2 if 39 is not simple.
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" But Riedel [Rdl, AP] has shown that, surprisingly, for some simple Ay one
actually has tsr(zg) = 1. How often this happens is unclear. That is, a
very open question is: '

2.2 QUESTION: Is tsr(Ag) = 1> whenever 'XG is eimple?

Let us mention that having tsr(A) = 1 is eqiuivalent to the invertible
elements being dense in A [Rf4]. While I was making final corrections to
this manuscript, Ian Putnam told me by telephone that he believes he has a
proof that the answer to Question 2.2 is always affirmative for irrational
rotatlon Cc*-algebras.

Related to the above is the very recent result of Choi and Elliott [CE]
that for a dense set of 8’s, any self-adjoint element of the ‘irrational
rotation C¥-algebra Kb can be approximated in norm by self-adjoint elements .

which have finite spectrum.

3. :VECTOR BUNDLES AND K-THEORY. Let M be a compact space and let E be
a complex vector-bundle over M. Then the space, T'(E), of continuous cross—
sections of E is a finitely generated projective module over M, and all
finitely generated. projective C(M)-modules arise in this way, according to a
theorem of Swan [Sw, Rf3]. Since we think of C*¥-algebras with identity element
as being "non-commutative compact spaces", it is then natural to view projec-
tive modules over them as being the generalization of vector bundles. (For
brevity we will say "projective" when we mean "finitely generated projective".)
Given any ring A with identity element, it is of great 1nterest to

»class1fy the isomorphism classes of progectlve A—modules Wlth the operation
of forming direct sums, these classes form an Abellan semigroup, whlch we will
denote by S(A). So one would like to describe S(A). But many examples show
that S(A) need not satisfy the cancellation law, including the case of

= C(T") for n > 5. This tends to make it difficult to describe S(A).
A potentially easier problem is first to describe the cancellative semigroup,
C(A), formed as the quotient of S(A) by forcing cancellation, that is, by
decreeing that two elements, r and s, of S(A) are equivalent if there is
a t €S(A) such that r +t = s + t. But I believe that this problem also is
unsolved for C(T") for large n — it is certainly known that the situation
becomes complicated [Rf6, Bl]. Finally, C(A) embeds in its enveloping Abelian
group ("Grothendieck groups"), denoted KO(A) Thls group is part of a
homology theory periodic of period 2. The other group, Ki(A), is defined to
be the inductive limit of the groups GL (A)/GL (A), where GL (A) is the

group of invertible kxk matrices over A wh11e GL (A) is 1ts connected
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component, and GLk(A) is embedded in GLk+1(A) by T — Tel. See [Bl];
When X is a compact space and A = C(X), these groups are just the groups
of topological K-theory.

| The first major break-through in finding techniques for calculating the
K-groups of non-commutative C*-algebras was made by Pimsner and Voiculescu
[PV1, Bl]. They obtained a periodic exact”seqﬁence for the K—groups of a
crossed product of form Ax,Z, in terms of:the K—groups of A and of the
effect of « on the K-groups of A. Because, as mentioned in the last sectioh,
a non—commutative torus Ag can be constructed as a succession of crossed
products for actlons of Z, it is easy to deduce from the lesner—V01cu1escu

exact sequence that

9)
just as happens for the topological K—groups of an_ordinary n—torus T". Note
in particular that the K-groups do not distinguish between the algebras Kg

for different 0. .

Another notable result of Pimsner and Voiculescu [PV2] of the same vintage
~ as their exact sequence, is that an irrational rotation algebra KO can be
embedded in avspecific AF C*-algebra, Bg, in such a way that the corresponding
map on the Ky—groups is an isomorphism. We recall that an AF C*-algebra is
Jjust an inductive liﬁit of finite dimensional C*—algebras, and that the AF C*-
algebras are considered to be the non—commutative analogues of Cantor sets.
(Note that Ag itself is not an AF C*—algebra since the K, group of any AF
C*—algebra‘is trivial.) That this embedding is remarkable is seen by observing
that the corresponding statement for spaces would say that one has a compact
space which is the quotient of a Cantor set in such a way that the quotient map .
gives an isomorphism of their K, groups. This seldom happens, and in particular
does not happen for ordinary tori.

To carry the story further, Kumjian has shown [Kml] that Bg can be
embedded (unitally) in Xe. By iterating this embedding and that of Pimsner and
Voiculescu, he concludes in [Km2] that the AF algebra Bg is the increasing
limit of a sequence of subalgebras each of which is isomorphic to Kg, with

the inclusion maps all giving isomorphisms of the K, groups.

4. NON-STABLE K-THEORY. The K-groups can be viewed as defined by suitable
stabilizations. The study of what happens before stabilizing, that is, of the
semigroup S(A) itself, and of the groups GLk(A)/GL:(A) before taking the
limit, is often called non-stable K-theory. Although for ordinary n-tori ™
the semigroup S(T") is badly behaved and not yet fully understood, for large

n, it turns out that as soon as @ has any irrational entries, S(Kb) is well-
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behaved, and can be fully described [Rf6] To ‘explain this, we flrst mention
that the canon1ca1 trace + on AO (the "Lebesgue measure") determlnes a
group homomorphlsm, denoted again by =, of Ko(Ag) into R, obtalned by
extending T+ to a trace on matrices over Ag in the evident way, and then by
evaluating this extended trace on the projection matrices which define projec-
tive modules. The main result of [Rf6] says that as soon as 8 has at least
one irrational entry, then cancellation holds in S(KO) (so S(Ke) = C(Ke)),
and that the embedding of S(Ag) into Ko(Ag) identifies S(Ag) with exactly
the set of elements of KO(XG) on which + is positive. Furthermore, it is
shown in this case how to construct all projective modules over Xe, up to
isomerphism (theorems 6.1 and 7.1 and corollary 7.2 of [Rf6]). The proof
depends in a crucial way on the information about tsr(Xg) described in the
previous section, as well as the differential geometric techniques which we
will discuss shortly.

The following is a prototypical example of a (non-free) projective module
for a non—commutative two—torus [Cnl, Cn3, Rf2, Rf5]. In this case 0 is
specified by just one real number, which we again denote by 8. Let
A = exp(2nif), and let U and V be two unitary generators for Xg
satisfying the commutation relation VU = AUV. Let S(R) denote the space of
Schwartz functions on R. We let U act on S(R) by translation by 0, and V
act by multiplication by t F— exp(2nit), and extend these actions to finite
sums of products of powers of U and V. 1In the next section we will indicate
how to define an immer—product on S(R) with values in Kg; and a correspond-
ing norm. When S(R) is completed for this norm, it becomes a projective
Ke—-module which is not free [Cnl, Cn3, Rf2, Rf5]. This is certainly not an
exotic object. The projective modules over non—commutative n—-tori for higher
n, for 6 not rational, can all be decomposed as finite direct sums of
projective modules which are suitable higher dimensional generalizations
of the above module (corollary 7.2 of [Rf6]).

Already for 2—tori the contrast in non-stable K-theory between the rational
and irrational cases is quite interesting. For: T2 the cancellation property
does hold (by theorem 1.5 of chapter 8 of [Hs]), and S(T2) defines a positive
cone in K°(T2), as does S(Kg) in xo(Ke). But for T2, if one identifies
KO(TZ) (= 22) with the integer lattice points in the plane, this positive cone
can be identified with the integer lattice points in the upper half plane. In
particular, K°(T2) is not totally ordered by S(Tz). But for 6 irrational it
can be shown [PV1, Rf2] that r identifies Ko(Ag)  Z° with the dense
subgroup Z + Z8 of the real line, and that then S(Kg) is identified with the

elements of Z + Z@ which are positive real numbers. In particular, Ko(zg)
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is totally ordered by S(Ke). ‘ ”

One important consequeﬁce 6f this information aﬁoﬁf‘théIPOSitive cone is an
answer to ihe question of when, given two different irrational numbers 6 and
6, the corresponding algebras are isomorphic (a question which had remained
open for some years). The answer is that they are isomorphic if and only if
.8 = £(@ + k) for some integer k [Pvl, PV2, Rf2]. This answer was one of
the first striking applications of K-theoretic methods to C¥*-algebras.

For higher dimensional non-commutative tori these techniques are not power-
ful enough to settle the isomorphism question, and_the situation remains tanta-

lizingly unclear in spite of considerable effort [CEGJ, DEKR, Th], that is:

4.1 QUESTION: Given skew nxn matrices, 6 and 6°, when are Ke and
ng isomorphic?

The strongest partial results I am aware of are given in [BCEN], which also
contains partial results concerning when the corresponding smooth algebras Ay
are isomorphic. For information on the éase when 6 is rational see [DEKR,
Br3, Db, Rf5, Ym]. See also [Rhl, Rh2].

While the range of the trace on_Ko(Xg) does not give enough information to
answer the isomorphism question for n > 2, it is still of much interest.
Elliott [E12] has given the following elegant description of the range of the
trace. View 68 as a (nilpotent) element of the even exterior algebra AeRﬁ,
so that we can form the element exp(8) of A°R". Let D denote the integral
lattice in L*, so that we can view A°D as the integrai lattice in A°L¥. Then
the range of the trace is obtained by the pairing <exp(8), A°D>. A proof of
this within the context of Connes theory of n-traces is contéined in Pimsner’s
~paper [Pm].

The non-stable K-theory of non-commutative tori for @ not rational has

~ further attractive properties. For example, the projective submodules of KO

" as right module over itself already generate Ko(xg) {(corollary 7.10 of [Rf5]),
and any two projections in a matrix algebra Mk(xo) which determine isomorphic
projective modules will be in the same path component of the set of projections
in M, (Rg) (theorem 8.13 of [Rf5]). For K, one finds that the natural map
 from GLk(Kg)/GLz(Kb) to Ki(Zg) is an isomorphism for all k 2 1 (theorem
8.3 of [Rf5]).

For any C¥-algebra A the group K,(A) 1is closely related to the
homotopy groups of the groups GL, (A) [Bl]. By using the results on the
non-stable K-theory of Ag described above, one can show [Rf7] that for 6 not
rational one has

n (6L (Rg)) = 22"

for all integers m 2 0 and k 2 1.
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5. HERMITIAN METRICS. Just as it is useful to eaﬁip a vector space with an
inher—product, it is uéeful to equip a vector bundle; E; with inner—products
on each fiber chosen in a contlnuous way, that is, w1th a Hermltlan metric.
We need a similar structure for prOJectlve modules over a C*—algebra [Cnl].
To see what this should be, we note that it 1s natural to con51der, for -

€, n € T(E), the function <€’~">A on M deflned by

<E,‘n>A(m) = <¢(m),. n(m)>

It will be continuous, so in A = C(M). Then < , >A can be considered to be

an A-valued inner product on Z = I'(E).  If the inner products on the fibers

are chosen to be linear in the second variable, as will be convenient, then

< >A satisfies

1) <¢, ma>, = <¢ m2 @
2) <€ w X =<, 0,

) < 0,

for ¢, n €Z and a € A. One will also have definiteness, that is, if

<¢, G)A'= 0 then ¢ = 0. But this would still be satisfied if the fiber
inner-product at one non-isolated point of M were zero while all other fiber
inner—pfoducts were definite. Thus we need to consider the stronger property
of self-duality, which holds exactly if all the fiber inner-products are

definite, namely:

4) For any linear map, ¢, from I to A‘ such that ¢(¢a) = ¢(¢)a
for all ¢ € Z and a € A, there is an 75 € £ such that
$(£) = <, 2 for all ¢ € Z.

5.1 Definition. Let A be a unital C*—algébra, and let .E be a projec-—
tive right A-module. By a Hermitian metric on EZ ﬁe mean a bi-additive A-
valued function < , >A on ZxZI which sat1sf1es propert1es 1 to 4 above.

A projective module can always be equlpped w1th a Herm1tlan metric (in many
ways) by viewing it as a summand of a free module and restr1ct1ng to it the
standard Hermitian metric on the free module. leen a. Hermitian metrlc on a

projective right A-module Z, it is natural to define a norm on Z by

el = Jle, o, 1% .
As an ekample, consider the projective module defined in the previous
section. With the notation used there, we want to define ‘a Hermitian metric
on S(R) (and then complete for the corresponding norm). For £, n € S(R) we

can hope to write <§, n>A as a finite sum
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<€, W, = K6, @, (m, UV

for suitable coefficients <¢, n>A(m, n). It turns out that the appropriate
formula is
<, n>A(m, n) = f?(r)n(r ~ m@)exp(—2ninr)dr .
Motivation fbr this formula can be found in {Rfl]. I hope that the reader
will consider this formula to be nothing especially exotic, but rather quite

similar to formulas found in traditional harmonic analysis.

6. SMOOTH STRUCTURE. As mentioned earlier, the action of T" by translation
on Cm(T") gives an action, «, on Ke, which leaves the canonical trace r

invariant. On the Fourier space S(Z") this action is given by
(ag ($))(P) = exp(2mit-p)é(p)

for t €T", p € Z" and ¢ € S(Z"). From this it is not difficult to see
that the space of C -vectors for this action on Ag is just C(1") ~ s(z")
itself, that is, our original Ag. Let 6, denote differentiation on Ag in
the k4 direction of T", that is, the infinitesimal generator for the action of

~translation on Ag in the kth direciion of T". Then 6y 1is given by
(6, ($))(p) = 2mip ¢(p) .

Each 6, is a ¥-derivation of Ag, that is, satisfies
D) (§(a)¥ = 6, (a¥)

2) 6 (ab) = §(a)b + ad, (b) .

These directional derivatives can be used to form "partial differential

- operators" on Ag. For example, the Laplace operator is
A-”-):d:
k

Note that A coincides in its action on the linear space Ag, with the usual
. Laplace operator on CQ(T"). Hence, as Connes has indicated [C1l], (1 - A)“1
is a compact, operator on Lz(Kg, 7). One can also define linear partial
Hifferentia1,operators‘with "non—-constant coefficients". For example a first
order operator would be of the form

L afy
for a; € Ag. Connes indicates [Cl] that one can also deveidp ah appropriate
calculus of pseudodifferential operators, index theoremé for elliptic oper-
ators, etc. 1In a different direction, Ji has studied [Ji] a generaliiation
to non—commutative tori of Toeplitz operators.

A very. important property of Ag as a subalgebra of Kg is that it is
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closed under the holomorphic functional calculus of Xe, in the sense that if
a € Ag and if f is a function analyﬂic in a neighborhood of the spectrum of
@ viewed as an element of A, then f(a) € Ag (and similarly for the krk
matrix algebras). This is an immediate consequence of results in the appendix
of [Cn2]. Much of its importance lies in the fact that it implies that the
embedding of Ag in Xb gives an isomorphism of their K-theory [Cn2].

Another attractive property of Ag as a "smooth" algebra is [BEJ] that any
derivation, &, of Ag into itself has a decomposition 6 = §4 + 5 where 6o
is a linear combination of the generators 6y *+*, 6, with coefficients in
the center of Ag, while & is an approximately inner derivation in an approp-
riate sense. Even more, if 6 satisfies a suitable diophantine approximation
condition, tHen- 5 must, in fact, be inner [BEJ]. These results are used in
[BEGJ] to classify the possible smooth actions of Lie groups on non-commutative
two-tori. See also [Jr].

Just as diffeomorphisms of ordinafy manifolds are of interest, so should
be those of non-commutative tori. Now the (generalization of) homeomorphisms
consist just of the automorphisms of Kg, while the (generalization of) diffeo-
morphisms consist of the aﬁtombrphisms which carry Ag onto itself. Elliott
[E13] has shown that for non-commutative two-tori for which 6 satisfies a
suitable diophantine approximation condition, any diffeomorphism of Ag 1is
the product of an inner automorphism coming from a unitary in Ag, a diffeo-
morphism coming from the action of T2 on Ag, and the diffeomorphism coming
from an element of SL(2, Z) acting on the generators in the natural way [Brl,
Br2]. But Kodaka [Kd] has shown that this very nice description can fail when
6 does not satisfy Elliott’s diophantine approximation condition. The "entropy"
of the diffeomorphisms coming from elements of SL(2,Z) has been discussed by
Watatani in [Wt].

In section 1 we used the fact that ordinary tori carry natural Poisson
structures. In [Xu], a definition is given of a Poisson structure on a non-
commutative algebra, and then it is shown how non—commutative tﬁo—tori carry

such Poisson structures, and their Poisson cohomology is calculated.

7. DeRHAM HOMOLOGY. Connes has shown [Cn4] that the way to generalize to
non—commutative algebras the deRham homology (defined in terms of currents) of
a differentiable manifold, is by means of his cyclic cohomology. A k-cochain
for the cyclic cohomology of an algebra A is a (k + 1)-multilinear functional

¢ on A which satisfies the cyclic condition
- — k e @ 0
4’(301 ’ ak’) = ( 1) ¢(a1’ ’ ak’ ao)

- Since Hochschild cohomology is defined in terms of general multi-linear func—
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tionals, one can apply the Hochschild coboundary operator to éyclic cochains.
One finds then that the cyclic cochains form a subcomplex of the Hochschild
complex. The cohomology groups of this subcomplex, denoted HCk(A), are by
definition the cyclic cohomology groups of A. There are natural maps from
_HCk(A) to HQF+2(A) for each k, and the limit groups for these maps of the
even groups aéﬁ of the odd groups are the even and odd parts of the non-
commutative dgﬁham cohomology of A, and their direct sum is the non—commuta-
tive deRham céhomology of A, which we denote by HdR(A). Although the
definition of cyclic cohomology makes sense for C¥-algebras, it is not for
C*—algebras tgat it has been of primary-intereét so far, but rather it is the
cyclic cohomology of suitable dense subalgebras ("smooth structures") on which
interest hasigocused, \ v v ,

Connes caiculated the cyclic cohomology and deRham cohomology of (the
smooth version of) non-commutative 2-tori in [Cn4], and more recently Nest [Ns]
has calculated the cyclic cohomology of general non—commutative tori Ag. One
obtains

an—1
HdR(AO) 2 AL = C
where L is the complexified Lie algebra of T", so L 2 C". Just as happens
for an ordinary n-torus, every cohomology class can be represented by cocycles
which are invariant under the action of T". To describe these invariant

cocycles, define 6x for any X € L by
by = L b,
where the ck’s are the coefficients of X in the standard basis for L. Then

for any p = X;A---AX, with the Xj’s in L, define ¢, on A3+1 by

«".:¢p(a°,“.’ a) = I sgn(a)-r(a°5xi(ao(1))~--«sxm(a;,(m)))

where ¢ runs over the permutations of m elements. Then the ¢#’s are
invariant, and finite sums of them represent all cohomology classes.

Let us mention that Connes shows in [Cn4] that the Hochschild cohomology
groups of a non—commutative two-torus depend on the diophantine approximation
properties of 8. We mentioned earlier that the diophantine approximation
properties are also involved in whether the invertible elements are dense,
whether approximately inner derivations are inner, and in the structure of
diffeomorphisms. It would be’interesting to find closer relations between
these four phenomena. _

The cyclic homology of an algebra A (corresponding to the deRham
cohomology of a manifold defined in terms of differential forms rather than

currents), is the homology of a quotient of the complex for Hochschild
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homology, which in turn has as k-chains elements of the (k + 1)-fold temsor
product of A with itself. Thus elements of cyclic homology will have such
tensors as ;epresentatives. The deRham homology group HdR(A) is again
defined as a limit of the cyclic homology groups.

As far as I know, no paper has yet appeared which gives an explicit calcu-
-lation of the cyclic or deRham homology of non-commutative tori. But there is
little doubt that the deRham homology group will again be Czn—i; In section 8
we will describe many elements of this group, in which it appears in the guise

of AL¥, where L*¥ is the vector space dual of L.

8. CONNECTIONS AND CURVATURE. Given a projective module, we would like to
attach to it a Chern character, having values in deRham homology. If the
module, say f, is over Ke,»we need to find a smooth version of it, that is,
an Ag—module I such that F o= E@Aezg. This can always be done [Cnl, Rf6]
because of the fact that Ag 1is closed under the holomorphic functional
calculus of K@;

Connes showed [Cnl, Cn4] that the Chern character can be constructed by
the Chern—Weil approach in terms of connections and curvature. (See also [Kal).
If £ is a projective Ag-module, then a conmection for Z is a linear map, Y,

of into L¥@: satisfying the Leibnitz rule

Il

vy(€a) = (Yy8)a + ¢oy(a)

for ail X€L, ¢€Z and a € Ag, where GX is as defined in the previous
section. Connections always exist, for one can use 6§ component-wise on free
modules, and then compress this to direct summands of free modules. If V¥
and ¥V’ are connections on Z, then a simple calculation shows that Vx - Vi
is in EndAe(E) for all X € L, so that the connections form an affine space
over the linear maps from I to EndAe(E).

The curvature of a connection measures, in the context of [Cnl], the
extent to which the connection fails to be a Lie algebra homomorphism. Since
here L is Abelian, this means that the curvature, RV, of a connection V is
defined simply by

R(X, Y) = [y, V]
for X, Y € L. It is easily seen that the values of R’ are in EndAe(E), 50
that it is a skew bilinear map on L with values there.

For the projective module S(R) over a non-commutative two—-torus described
in section 4, a connection can be defined [Cnl] by defining its values, v, and

V,, on the standard basis for L, to be
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(d¢sdt) (t)
C(2nit/0)E(t) .

(7:6) (1)
) (V26)(t)

Its curvature is then determined by its value on the wedge of the standard

basis vectors, that is, by

- [Vj_’ v2] = (2"1/9)1 s
where I is the identity operator on S(R). Analogous connections on many
projective modules over higher—dimensional non-commutative tori are explicitly

constructed in [Rf6], and their curvatures calculated.

9. CHERN CHARACTER. Let X be a projective Ag-module, and let V be a
connection on” £ with curvature RV. We wish to associate with this data a
(non-homogeneous) even cycle on Ag. This cycle will pair with the deRham
cohomology, which we saw was AL, and so determines an element, ch¥, in A°L¥.
We will specify chV by describing how its components, chz, pair with the
components, A2kL, of the even deRham cohomology of Ag. To this end we note
that when & _is equipped with a Hermitian metric, then the canonical trace, 7,
on Ag, determines [Rf2] a (non-normalized) trace, v, on E = EndAo(E) such
that v

r’(<£, ">E) = 7(<n, €>A) s
where <§, n>E is the element of E defined by <¢, n>E( = <9y, ()A. Next, let
(Rv)Ak be the exterior (wedge) kth power of RV, so that it is an alternating
2k-form with values in E. Then chy is defined by

chz =+ ((RY/2ni) ) /k!
Thus chy is in Asz*. Connes shows [Cnl] that ch’ is independent of ¥, so
k At : . k

depends onlyﬁon Z, and can fhusAbe denoted by ch,(Z). Then he defines the
total Chern e@aracter, ch(Z), of I by

ch(z) = @ach (%) ,

an element of AeL*.
For the'gfojective module Z = S(R) over a non—-commutative two-torus

deséribed earlier, straightforward computation shows [Cnl] that
chy(Z) = #Z,AZ,

where {ZJ} is the dual basis to the standard basis of L, and where the sign
depends on the orientation chosen for the basis of L. As Connes showed [Cnl,
Cn4] the Chern character of a projective module depends only on the class of
the module in K,(A), and taking Chern characters gives a homomorphism from all

of KO(A) into the even cyclic homology group. Elliott [E12] showed that for
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non—comnutative tori this homomorphism is injective, and he gave an elegant
description of its rénge inside A®L¥, as follows. As earlier, view 8 as a
(nilpotent) element of the even exterior algebra A®L, so that we can form
exp(8) in this algebra. Then contraction of elements of A°L¥ by exp(8)
defines éyﬂautdﬁg?;ﬁigm,_exp(G)J, of the exterior algebra A°L¥.  With D the
integral lattice in L¥, Elliott éhows that the range of the Chern character
on Ko(Ag) is exactly ‘ '

exp(8)41A®D

inside A®L¥. This fact is crucial for the proof of the results described in

section 4 concerning the non-stable K-theory of non-commutative tori.

10. YANG-MILLS. The Yang-Mills problem can be posed and: studied in the
context of non—commutative tori [CR, Rf10, Sp]. Let Z be a projective Ag-
module, equipped with a Hermitian metric. A connection V on % is said to

be compatible with the Hermitian metric if it satisfies the Leibnitz rule
6y(<Es m>4) = <y, md>, + <&, Vymd, o

We will let CC(Z) denote the space of compatible connections on Z. It is
easily seen to be an affine space over the linear maps from L into Eg,
‘where E_ denotes the eléments of EndAe(E) which are skew-adjoint for the
Hermitian metric.

We wish to define a functional on CC(Z) which measures the "strength" of
a connection. For this purpose we need a "Riemannian metric" on Ag. Since L
is playing the role of the tangent space of Ag, this means that we must choose
an inner—-product on L. This inner-product then determines an E-valued inner-
product, { , }, on the spacé of altérnating E-valued 2-forms on L. We can

then define a non—negative real-valued non-linear functional, YM, on CC(Z) by
L,V v
™) = -«“({R, R}).

The Yang-Mills problem is then to determine the minima and critical points for
YM. The Yang—Mills equations are the Euler-Lagrange equations for the critical
points. | '

Let UE denote the group of elements of E which are unitary (for the
Hermitian metric). This is the gauge group for our context. It acts on CC(Z)
by conjugation, and simple calculations show that YM is invariant under this
action. The set MC(Z) of minima for YM is thus invariant under the action
of UE. By definition the orbit space MC(Z)/UE is the moduli space for the
minima of YM. One has other moduli spaces for various»families of critical

points of YM.
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For non-commutative two—tori all the above can be calculated. In this case
every projective module is of the form zd where_ Z is hot a'multiple of any
other projective module. Then it is shown in [CR] that MC(V)/UE. is homeomor—
phic to ('i'z)d/sd where S, is the permutation group on d elements.

(A somewhat different approach has recently been given:in [Spl.) The moduli
spaces for critical points have a similar but sligﬁtly more complicated
description fRflO]. _

For higher dimensional non-commutative tori there are certain projective
modules to which the results for two-tori readily extend (the modules of
form V®Z in theorem 5.6 of [Rf6] where V is an "elementary"” module as in
definition 4.2 of [Rf6]). However,bfor more general modules the situation is
unclear at present, though it should be very intefesting to investigate. I
have obtained some very partial reSuIts;-which indicate the usefulness of
considering Einstein—Hermitian vector bundles, geheraliéing,those defined,

for example, in [Kb].

11. RELATIONS WITH MATHEMATICAL PHYSICS. ‘The simplest discreteASchrodinger
operators with almost-periodic potential, the almost Mathieu operators, are
closely related to non—commutative»two—tori.[Bel, BeZ2, Be3, BLT], and so the
latter have provided s cenvenient setting for their study. As earlier,

let U and V be generators for a non-commutative two-torus satisfying

VU = exp(2nif)UV. Let B be a real coupling constant. Then the corresponding

almost Mathieu operator is
H = U+ U¥+p(v+vH

Clearly H is contained in Ag. The main questions about H have to do with
its spectrum,”and in particular with how often its spectrum is a Cantor set.
The K*theoryﬁof’ Ag is relevant to this question because the.spectral projec-
tions of H for intervals whose endpoints are in gaps in the spectrum of H
will be elements of Ag, and so will contribute to the K-theory of Ag, and
can be labeled by their Chern characters. '

" The strongest results to date which use Ay were obtalned very recently by
Choi, Elllott and Yui [CEY], and state that for g =1 and for 6 a Liouville
number the spectrum of H is indeed a Cantor set, and provide information on
the labeling of the gaps in the spectrum of H. Other work in the framework of
Ag has been done by Riedel [Rd2 Rd3 Rd4], who has developed techniques which
perhaps will eventually be able to be used to obtain examples of almost Mathieu
operators whose spectrum is not a Cantor set. .

Let o« be the automorphism of Ay which carries U to U¥ and V to

V¥, It is clear that H is invariant under «, and so is contained in the
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fixed-point algebra, Ag, of x. It is thus very desirable to understand Ag,
but this has so far proved to be surprisingly elusive. In particular, it is

not known at present how to calculate the K-theory of AS. Some very partial

results about AS are contained in [BEEK]. _
Another situation in which non-commutative tori have been related to math-

ematical physics is in quantum diffusions. See . [Apl, Ap2, Ap3, HR1, HR2Z] and-

the references therein.
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