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In [32] Mackey used his theory of induced representations for separable
locally compact groups [30] to attack the problem of describing the unitary
representation theory of a separable locally compact group G in terms of
the representation theories of a normal subgroup N and of the quotient
group G/N. In the case in which N is nicely embedded in G, he obtained
far-reaching generalizations of results obtained earlier for finite groups by
Clifford [12]. Mackey's main theorems were generalized to nonseparable
groups by Blattner [5.6] with weakened hypotheses concerning how N
is embedded in G. This necessitated introducing methods of proof which
were considerably less measure-theoretic than those of Mackey. In [36] a
theoryv of induced representations for C*-algebras was introduced which
has Mackey’s definition for groups as a special case. This theory for C*-
algebras can involve no measure theory, and so required techniques that
are different from those of either Mackey or Blattner. In this chapter we
prove a version of the central theorem of Mackey's analysis for group ex-
tensions by using the approach introduced in [36]. In particular, our proof
is fairly algebraic, and involves no measure theory beyond the elementary
facts about Haar measure needed, for example. to convolve continuous
functions of compact support and to construct the integrated forms of
unitary representations. Qur version of Mackey's theorem is not quite as
strong as Blattner’s, in large part because some of Blattner's hypotheses are
explicitly and essentially measure-theoretic. But our version is applicable
in many of the situations that ordinarily arise, such as the case in which the
normal subgroup is “regularly embedded.” The rather algebraic nature of
the proof given here makes some of the mechanisms involved in the situation
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somewhat more transparent. Also, some of the techniques used and inter-
mediate results obtained are of independent interest. For example, all of
Section 3 develops general information relating ideals and quotients of
C*-algebras to the imprimitivity bimodules introduced in [36], while in
other places results on weak containment (Proposition 4.1) and on the ideal
centers of C*-algebras (Proposition 5.3) are obtained. (See Note Added in
Proof, p. 80.)

The chapter is organized in the following way. In Section 1 basic defini-
tions are given and our version of Mackey's theorem is stated. Section 2 is
devoted to constructing the C*-algebras involved in the proof of the main
theorem and to establishing a crucial relation between them. Section 3,
which can be read independently, was just described. In Section 4 the
material of Section 3 is applied to the situation involved in the main theorem,
while in Section 5 systems of imprimitivity are tied into the situation by
means of ideal centers of C*-algebras. The proof of the main theorem is
then concluded in Section 6. Various alternative hypotheses (related to work
of Effros [17] and Glimm [24]) under which the main theorem remains
true are gathered together in Section 7. Finally, in Section 8 we sketch for
the reader’s convenience for remaining part of Mackey’s analysis, which
does not involve the inducing process, but is concerned with projective
representations. We make a few mincr improvements of the proofs, but
essentially all the material of this last section already exists in various places
in the literature.

1. THE STATEMENT OF THE MAIN THEOREM

In order to be able to state our main theorem we need to know what it
means for a representation of a C*-algebra to live on a given subset of the
primitive ideal space of the algebra, at least when the subset is nice. This
can be done in terms of the projection-valued measure introduced by
Glimm [25] (see also the appendix of [23]), but since we will only need to
consider subsets which are locally closed (equivalently, open in their closure,
see p. 41 of [7]), it is easier to work directly with the ideals involved.

Let 4 be a C*-algebra. We will let Prim(4) denote the primitive ideal
space of A with the hull-kernel topology [14]. By a Hermitian A-module
we will mean (as in [36. 37]) the Hilbert space of a nondegenerate =-repre-
sentation of 4. We will usually work with Hermitian modules rather than
the corresponding representations. Let ¥ be a Hermitian 4-module, let C
be a closed subset of Prim(A), and let ker(C) denote the intersection of the
primitive ideals in C. In analogy with the case of a commutative C*-algebra
and representations thereof defined by measures. we say that V lives on C
if ker(C)V = [0}. so that V can be viewed as a Hermitian module over
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A ker(C). In fact. this is the starting point for the definition of Glimm’s
projection-valued measure. Suppose now that E is a subset of Prim(4)
which is locally closed. so that E = E — E'. where E is the closure of E.
E'=E — E.and E is a closed set. We would like to say what it means for a
Hermitian 4-module I to live on E. For this it must certainly live on E.
so that it can be viewed as a module over .4/ker(E). Now by Proposition
3.2.1 of [14]. Prim(4 ker(E)) is naturally homeomorphic to E. Thus we
can view E as an open subset of Prim(A ker(E)). with complement E'.
Again. working in analogy with the commutative case. we see that to say
that V" lives on E should mean that as a module over ker(E’) it is nonde-
generate (and so Hermitian). that is. ker(£')} = 1. (Throughout this chapter
whenever we juxtapose a subset of an algebra with a subset of 2 module this
will denote the closed linear span of the products of corresponding elements.)

DeriniTioON 1.1, Let A be a C*-algebra. let V¥ be a Hermitian A-module,
and let E be a locally closed subset of Prim(A). Let E denote the closure of
E in Prim(A4) and let E' = E — E. Then we will say that V" lives on E. or that
E carries V. if ker(E)" = {0} and }" is nondegenerate as a ker(E')-module,
so that ' is a Hermitian module over ker(E’) ker(E).

Thus the category of all Hermitian A-modules that live on E is naturally
isomorphic with the category of all Hermitian modules over ker(E’) ker(E).

If H is any locally compact group.. we let C*(H) denote its group C*-
algebra [14]. and we will write Prim(H) instead of Prim(C*(H)). By a
unitary H-module we will mean the Hilbert space of a strongly continuous
unitary representation of G, as in [36]. Suppose now that G is a locally
compact group and that N is a normal subgroup of G. (Subgroups will
always be assumed to be closed.) Then the inner automorphisms of G carry
N into itself. and so G acts as a group of automorphisms of N. and so of all
structures naturally associated to N. In particular, G acts as a group of
x-automorphisms of C*(N), and this action is easilv seen to be strong
operator-continuous. As a result, G acts as a topological transformation
group on Prim(N) (see [20, 25]). In particular. if J € Prim(N), we can let
GJ denote the orbit of J in Prim(N) under the action of G and we can let
G, denote the stability subgroup of G at J. Since the primitive ideal space of
any C*-algebra is a T, topological space [14]. G, will be a closed subgroup
of G by Lemma 1 of [6]. There is, of course. a natural bijection of G/G, onto
GJ. which will be continuous, but is not. in general, a homeomorphism.

We now state our version of the main theorem of Mackey's analysis [32]
for group extensions.

THEOREM 1.1. (The Main Theorem). Let G be a locally compact group
and let N be u normal subgroup of G. Let J € Prim(N). let GJ denote the orbit
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of J in Prim(.N) under the uction of G, and ler G, denote the stabiliry subyroup
of J. We make the following hypotheses:

(1) {J} is locally closed in Prim(N).
(2)  GJ is locally closed in Prim(N), and the canonical map of GG, onto
GJ is a homeomorphism.

Then the process of inducing representations from G, to G establishes an
equivalence of the category of unitary G,-modules whose restrictions to N
live on {J | with the category of unitary G-modules whose restrictions to N live
on GJ. This equiralence will preserve weak containment of representatrions.

We remark that Mackey stated and proved his original version of this
theorem for projective representations, but the theorem for projective
representations can be easily deduced from that for ordinary representations,
as discussed, for example. in [3], and so we concern ourselves only with
ordinary representations. In Section 7 we shall examine various other
conditions which ensure that the hypotheses of Theorem 1.1 are satisfied.

We also remark that the statement about weak containment has as a
special case one of the main results (Proposition 5) of [16]. This result was
also known to Fell (as yet unpublished, but see 6.4 of [2]). See also [39].

Our method of proving Theorem 1.1 will be to find (in the next section)
C*-algebras whose categories of Hermitian modules are isomorphic with
the categories of unitary modules mentioned in the theorem, and then to
show (in Sections 3-6) that from the inducing process one obtains an im-
primitivity bimodule [36] between these C*-algebras, 5o that their categories
of modules are equivalent by Theorem 6.23 of [36].

2. THE C*-ALGEBRAS

For any locally compact group H let C.(H) denote the space of continuous
functions of compact support on H. Then on C.(H) we have the inductive
limit topology. the supremum norm || ||, . and the L'-norm. Il (for left
Haar measure on H). In addition. C(H) with convolution and its usual
involution [14] is a (dense) subalgebra of C*(H). and so can be equipped
with the norm from that algebra.

Suppose now that H is a subgroup of the locally compact group G. Then,
as discussed in Section 4 of [36], both C,(G) and C(H) can be viewed as
subalgebras of the algebra M(G) of finite measures on G (by viewing their
elements as densities against the left Haar measures of each group), and in
M(G) the convolution of an element of C.(G) on the left or right by an
element of C (H) will again be an element of C (G). For future use we state
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the formulas for these convolutions in terms of left Haar measures. where
4 denotes the modular function for G. For f € C(G)and ¢ € C(H) we have

@* fly)= r” o) fu=tvyde. fxe(y)= fﬂ forhau Hedr

forall v e G.

For any C*-algebra 4 we will let M(4) denote the double centralizer
algebra of 4 [9]. Then. according to Proposition 4.1 of [36]. the left and
right actions of C.(H) on C.(G) previously defined extend to give a x-homo-
morphism of C*(H) into M(C*(G)). It is not known whether this homo-
morphism is injective in general (see the comments after Proposition 4.1 of
[36]). However. in the case of interest to us. in which H is normal. it is an
easy consequence of Theorem 4.5 of [21] that this homomorphism is injec-
tive if G is separable. Moreover, J. M. G. Fell has pointed out (personal
communication) that this is also true in the nonseparable case as well.
Actually. a new proof of this fact will emerge later from our general theory
{Proposition 4.1).

Let H still be a subgroup of G which need not be normal in G. We will
not introduce any notation for the homomorphism of C*(H) into M(C*(G)).
but for d € C*(H) and a € C*(G) we will simply write du or ad for the action
of d on the left or right of « under this homomorphism. We remark that
since C.(H) contains an approximate identity for the inductive limit topology
for its action on C(G). C*(G) will be an essential (i.e., nondegenerate) C*(H)-
module for both the left and the right actions of C*(H) on C*(G).

Suppose now that E is a locally closed subset of Prim(H). Let E' = E-E.
so that E’ is closed. Let W be a unitary G-module. We would like to refor-
mulate the statement that the restriction Wy, of W to H lives on E. To begin.
we must have ker(E)W, = {0). This will hold if and only if

C*(G)ker(EYCHG)W = {0].
In addition. we must have ker(E\W; = Wj;. This will hold if and only if
C*G)ker(ENCHG)W = W,

Notice that C*(G)ker(E)C*(G) and C*(G)ker(E)C*G) are ideals in C*(G).
(When we say an “ideal™ in a C*-algebra we will always mean a two-sided
ideal. as these are the only ones with which we shall need to deal.) Further-
more the first ideal contains the second. However, in general. the inclusion
need not be proper. so that the quotient algebra may be the zero-dimensional
C*-algebra. This will happen if E is too small to carry the restriction to H
of any representation of G. How this can easily happen when H is normal
will become clear immediately after Proposition 2.2. Anyway, if we admit
the zero-dimensional representation as a unitary representation of a group,
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and as the only Hermitian module over the zero-dimensional C*-algebra.
then these arguments give the proof of:

PrOPOSITION 2.1.  Let H be u subgroup of a locally compact group G und
let E be u locally closed subset of Prim(H). Let E denote the closure of E and
ler E' = E — E. Then the category of unitary G-modules whose restriction to
H lives on E is isomorphic to the category of Hermitian modules over the
C*-algebra

[C*G)ker(EYC*G)]/[CHG) ker(E)C*(G)]
(which may be zero-dimensional ).

If N is a normal subgroup of G, if J &€ Prim(N), and if the hypotheses of
Theorem 1.1 are met, then it is the corresponding C*-algebras defined as in
Proposition 2.1 for J and C*(G,) and for GJ and C*{G) which we shall show
have an imprimitivity bimodule.

We pause now to obtain a bit of information concerning what kinds of
sets can carry the restriction of a representation to a normal subgroup. This
will clarify the remark preceding Proposition 2.1. If N is a normal subgroup
of the locally compact group G. then. as mentioned, G acts as a group of
automorphisms of C¥(N). For d € C*(N) and y € G we will let d” denote the
result of applying to d the automorphism corresponding to y. If I is an ideal
in C*N)and ify € G. we let [* be the ideal [d*:de 1. If[* =] forall y e G.
we say that [ is a G-invariant ideal. Tt is clear that I is a G-invariant ideal if
and only if hull(I) is a G-invariant subset of Prim(N).

ProposiTiON 2.2.  Ler N be a normal subgroup of a locally compact group
G, let W be u unitary G-module. and ler W, denote the restriction of Wito N.
Then the kernel K of (the representation corresponding ro) Wy is G-invariant.
Thus the smallest closed subser of Prim(N) which carries Wy, namely the hull
of K, is G-invariant.

Proof. Forany d e C*N), v e G, and w e W. it is easily seen that
d¥(w) = v(d(y"tw)).

Now if d € K and if v € G. we W. it follows that J*(w) = 0. so that d* e K.
Thus K is G-invariant. Q.E.D.

[t follows that if C is a closed subset of Prim(:V) that contains no non-
empty G-invariant subset, then the restriction of no unitary G-module to C
will live on C, and so the algebra of Proposition 2.1 will be zero-dimensional.

As mentioned following Proposition 2.1. our aim is to show that there is
an imprimitivity bimodule between the C*-algebra for J and C*G,) and
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that for GJ and C*(G). (We shall be more precise shortly.) To show this we
shall need to use facts that depend on the normality of N. The main such
fact relates the right and left actions of C*(N') on the various objects involved.
This does not depend on G, being a stability subgroup. and so for a while
now we will assume only that we have a locally compact group G, a normal
subgroup N, and a subgroup H containing N. Then. according to results in
Section 4 of [36]. particularly Proposition 4.10. C(G) can be viewed as a
Hermitian C (H)-rigged module over both C(G)and C(N).

Since we need to study ideals in the group C*-algebras. and these are not
in general contained in their dense subalgebras of continuous functions of
compact support. we need to extend the preceding situation to the comple-
tions. Now if 4 and B are pre-C*-algebras and if X is a Hermitian B-rigged
A-module. then it 1s natural to equip X with the norm

[xllx = [I<x x> 2

for x € X. For a proof that this is in fact a norm see Proposition 2.10 of [36].
Since the action of the pre-C*-algebra C(H) on the right of C(G) and the
C.(H)-valued inner product on C.G) are easily seen to be continuous for
this norm. as are the left actions of the pre-C*-algebras C(G) and C(N) by
Proposition 4.10 of [36]. these actions all extend to the completions. We
thus obtain:

PrOPOSITION 2.3. If X denotes the-completion of C(G) for the norm just
defined, then X is a Hermitian C* H)-rigged module over both C*(G) and
C*(N).

It is easily seen that the inductive limit topology on C.(G) is finer than
the topology from the norm defined on X. (The argument is given in the
proof of Proposition 4.11 of [36].)

Now X is an essential right C*(H)-module, and so. by applying the right-
handed versions of either Proposition 3.9 of [36] or the proof of Theorem 21
of [29]. X becomes an essential right module over M(C*(H)). Since C*(N)
is mapped into M(C*(H)) by Proposition 4.1 of [36], X becomes a right
C*(N)-module. where the action of ¢ € C(N) on any element of X of the
form f - for f € C.(G) and ¢ & C(H) (where - is defined in 4.5 of [36]) is.
by definition, given by

(f e =1 (o).

Since N is normal in both G and H. the modular functions. 4; and 4y, of
G and H. respectively. must coincide on N with the modular function of N
(15.23 of [27]) and 50 (s) = 1 for all s € N, where y(r) = (4g(r) 4y (r))! * for
re H. as in 4.2 of [36]. From this fact it is easily seen that y(y * @) = (3¢) * @
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so that (f - ¥ = (f - ) * ¢. It follows that the right action of C*(N) on X
is just given by ordinary right convolution of C (V) on C(G).

As we saw previously, C*(N) also acts on the left as bounded operators
on the space X, this action just coming from left convolution of C¢(:N) on
C.(G). We wish to show that the left and right actions of C*(\V) on X are
related in terms of the action of G as automorphisms of V, and so of C*(:V).
To do this we now examine more specifically how these automorphisms are
defined at the level of functions. Since G acts as a group of automorphisms
of N. it will act as a group of automorphisms of the measure algebra of N.
For any finite complex measure m on N and any v € G we will let m* denote
the measure obtained by applying to m the automorphism corresponding to
v. If @ € C(N), we can view ¢ as a measure on N, as mentioned, and so ¢*
is defined, as a measure. A simple computation shows that actually ¢’ is
defined by a density from C.(N), which we also denote by ¢’, and that in
fact ¢*(t) = 4,0(y~'ty) for t € N and y € G, where 4, is the factor by which
the automorphism corresponding to y changes the left Haar measure on N
(see the bottom of page 1103 of [6]).

The relation between the right and left actions of C*(.N) on X is suggested
by the easily verified relation

S *o(y)=(pdY * f(V)

for fe C(G). oe CAN), and v & G, although this relation can have no
meaning at the level of the group C*-algebras. This relation is related to
Lemma 2 of [6] or Lemma 16.1 of [23], as is the next lemma. Rather than
stating the full relation between the left and right actions immediately, the
next lemma is stated as a preliminary result (although it is the crux of the
matter), because we will need this result in exactly this form later (Proposi-
tion 5.2 and Lemma 6.3).

Lemma 2.1 (Main Lemma). Let G be a locally compact group, N a normal
subgroup of G, and H a subgroup of G containing N. Let X be the completion
of CAG) as a CH)rigged space, so that X is a Hermitian C*(H)-rigged
module over C*(N), on which C*N) also acts on the right. Let d € C*(N) and
f € CAG), with f viewed as an element of X. Then

Jd e [d*: y e support( /)] X. df € X[d*: v~ ! e support( /)],
(where the sets on the right are, as usual. taken to be closed linear spans in X).

Proof. For any - G let §. denote the positive measure of mass one at
=. Then for ¢ € C (V) it is easily seen that, as measures on G,

d.x =0 % J.,
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in analogy with the relation previously mentioned. Let 1 € C(G). We begin
by establishing the formulas

fx@*h= fc (@7 * 0. % h)f(z)d=. hxox* = fc th*d.% @ ) f(z)d=.

for the inductive limit topology on C.(G). Both integrands are easily seen
to be continuous functions of compact support from G into C.(G) for the
inductive limit topology. so. in particular. with values in C(K) where K is
an appropriate compact set in G depending on f. ¢. and h. The integrals
are taken as Bochner integrals for the supremum norm in C(K). Now point
evaluations are continuous linear functionals on C(K). and the collection of
point evaluations separates C(K). But if either formula is evaluated at points.
the two sides are seen to be equal. Thus the formulas are established.

Since the inductive limit topology on C(G) is finer than the norm topol-
ogy from X, so that the injection of C(K) into X is continuous. it follows
that the two previous formulas are also valid when the integrals are taken
as Bochner integrals for the norm on X.

We would now like to replace ¢ with d in the formulas. Clearly the func-
tion =+ &, » h is continuous for the inductive limit topology, and also for
the norm topology from X. Since the action of G on C*(N) is strongly
continuous, it follows that the function =+ [d*(é, = h)] f(z) is a continuous
function of compact support with values in X. A similar statement holds for
the other integrand. But routine estimates show that if ¢ is chosen close to
d. then the corresponding integrals are close. In this way we establish the
formulas

fldh) = f[tF(é: * h)] f(z)d=. hdf) = f[(h * 8.)d* "] fl2) d=,

in which &. * /1 and h = §_ are regarded as elements of X.
Let € > 0 be given, and choose a partition of unity {k;| in C(G) fine
enough (p. 65 of [8]) so that if y, = e support( fk;) for some i then

”d"l = d¥lleom) € EI(“f”lM)

where M = ||l1||x for the first formula, but
M = sup (||l » 6.||x : = € support(f)]

for the second. Now only a finite number of the k; will be nonzero at some
point of the support of f. For each of these choose =* e support(fk;) and
discard the rest of the k;. Then. from the formulas previously established
and the fact that Z fk; = f (where all such sums will be finite sums over the
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i for which k; has not been discarded), we have
fldhy =S f [0, * W] f(D)ki(z) d=.
Then from this we have

[ fidh) = T [ 4700 % W] fi2k) d=x
<3 [lla - a"

But it is easily seen that
[T = W)k d = 4 f % = .
Since € is arbitrary, it follows that
fldh) e [d*: v e support( f)]X.
In a similar way it is established that
hdf) e X[d*: y~ "' e support( f)].

Now let /i run through an approximate identity consisting of positive
elements of C,(G) whose supports shrink to the identity of G. with [|A]], = 1.
From the properties of the action of C*(G) on the ieft of X it is clear that
h(df) converges to df in X, and so we have completed the proof of the first
relation of the lemma. However, C*(G) does not act on the right on X, and
so we must argue directly that f(dh) converges to fd. But

cun 102 % Allx | f(2)ki2)dz < e

lfd = flah)||x = ”ﬂl fh(:)d: - f[(f x 3.)d* " Jh(z) d=

X
< [l = 1f = 89d* [ hiz)d=,

which can be made as small as desired by choosing the support of h suffi-
ciently small. since the rest of the integrand is a continuous function with
value zero at the identity element of G. Q.ED.

A simple approximation argument lifts this result to all elements of X,
although we can no longer say anything about supports.

CoROLLARY 2.1. Letde C¥N)und xe X. Then
xde[d9)X  and  dxe X[d°],

where [d%] denotes the set of elements in C*(N) of form d* for v e G.

If we let G = H. then it is easily seen that .Y = C*(H). We thus obtain:
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n

CoROLLARY 2.2. Let N be a normal subgroup of the locally compact
group H. let a € C*(H). and let d € CX*(N). Then

due CHH)[@"]  and  ad e [d"]CHH).
COROLLARY 2.3.  Let N be a normal subgroup of the locally compuct group
H and let I be an ideal in C*(N) which is H-invariant. T hen

IC*H) = C*H)I.

COROLLARY 2.4. Let N be u normal subgroup of the locally compact
group H. and let C be a closed H-invariant subser of Prim(N). Then ker(C)
is a H-invariant ideal. so that

ker(C)C*(H) = C*H)ker(C).

Suppose now that N is a normal subgroup of G and that J € Prim(N) with
‘J ! locally closed. Let G, be the stability subgroup of J. Let ;J{¢ denote the
closure of {J!, and note that {J ¢ is a G-invariant closed subset of Prim(N)
whose kernel is just the G,-invariant ideal J itself. and that ({J}¢ — {J}) is
also a closed G,-invariant subset. Let J' = ker({J}¢ — {J]). which is equal
to C*(N)if {J) is already closed. Then J' is a G,-invariant ideal which con-
tains J. It follows from Corollary 2.4 that

C*(GJ)J’C*(GJ) = C*(GJ)J,, . C*(GJ)JC*(GJ) = C*(GJ)J.

Applying Proposition 2.1, we see that the category of unitary G,-modules
whose restriction to N lives on {J} is naturally isomorphic to the category
of Hermitian modules over the C*-algebra C*(G,)J'/C*(G,)J. Furthermore.
let GJ be the orbit of J under G, and assume that GJ is locally closed. Let

I = ker((GJ)), I' = ker({GJ)* — GJ).
Then in the same way
CHG)'CHG) = CXG)I', C*(G)IC*G) = CHG)I

and the category of unitary G-modules whose restriction to N lives on GJ is
naturally isomorphic to the category of Hermitian modules over the C*-
algebra C*(G)I'/C*(G)I. It is this pair of C*-algebras that we shall show have
an imprimitivity bimodule.

Now it follows from Section 7 of [36] that the process of inducing represen-
tations from G, up to G establishes an equivalence between the category of
Hermitian C,(G,)-modules and the category of Hermitian modules over the
imprimitivity algebra C(G x G/G,). with C(G) serving as an imprimitivity
bimodule for these two algebras. We need to study how this imprimitivity
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bimodule is related to the ideals in C*(G,) and C*(G) defined previously, and
to the corresponding quotient algebras.

3. IMPRIMITIVITY BIMODULES FOR IDEALS AND QUOTIENTS

Let B and E be pre-C*-algebras and let .X be an E-B-imprimitivity bi-
module (Definition 6.10 of [36]). We wish to relate .X to ideals in the comple-
tions of B and E and to corresponding quotient algebras. For this reason we
will need to consider the completion of .X. Now both the B-valued and the
E-valued inner products give norms with respect to which we can complete
X. Thus it is reasuring that these norms agree.

PropoSITION 3.1. Ler E and B be pre-C*-algebras and let X be an E-B-
imprimitivity bimodule. Then for any x € X,
(<, xDell = [I<x x>l
Proof

e x| = [[<x, X p{x x| = [[<e 0 gD ]| = [[Kx, 6 XD £ |
B G N Y P I [T

where the first inequality is an application of the generalized Cauchy-
Schwartz inequality in Proposition 2.9 of [36] and the second inequality is
an application of condition 2 in the definition of an imprimitivity bimodule
(6.10 of [36]). Dividing by ||<x, x> || we obtain inequality in one direction.
The opposite inequality is shown by a similar calculation. Q.E.D.

1]

It follows that the completions of X with respect to the two norms are the
same. and that we can simultaneously extend the actions of E and B to actions
of their completions. E and B, on the completion Y, so that X become an
E-B-imprimitivity bimodule. Consequently we will usually, from now on,
work with C*-algebras rather than pre-C*-algebras, although it is not usually
important that X be complete as long as actions of the (complete) C*-
algebras can be defined on it.

The following result is the analog for C*-algebras of part of Theorem 3.5(5)
on p. 65 of [4] for algebras and Proposition 8.4 of [37] for W*-algebras.

THEOREM 3.1. Let E and B he C*-ulgebrus und let X bhe un E-B-imprimi-
tivity bimodule. Then there are natural isomorphisms among

(1) the lattice of (closed two-sided) ideals of B,
(2) rthe lattice of closed E-B-submodules of X. and
(3) the lurtice of ideals of E.
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where ideals and submodules are ordered by inclusion. If J is an ideal in B. then
the E-B-subspace of X corresponding to J under the first isomorphism is

X;=lreX:{xygedforallve X,

If Y is a closed E-B-subspuce of X, then the ideal of B corresponding to Y
under the isomorphism is

I, = closed span of [{x.ybg:xe X. re Y]

Similar statements hold for E.

Lemma 3.1, With the previously defined notation we have
N =!veX:{(x.»pgelforallxeX|={reX: :{y1Dpel).

Proof. ltis clear that the first space is contained in the second. which in
turn is contained in the third. so we need to show that the third is contained
in the first. Let x € X with {(x, x>z € J. Let (i, denote a self-adjoint approxi-
mate identity for J (1.7.2 of [14]). Then. expanding {x — xi;.X — Xi;)p,
we obtain a sum of products of i, with {x.x}z which converges to zero. It
follows that xi, converges to x in the norm of X, so that x € X J. Q.E.D.

Proof of Theorem 3.1. LetJ be an ideal in B. It is clear that J contains
Ix,. But by Lemma 3.1. X, = XJ. and so [y, contains {(XJ.XJ>p =
J{X.X>pJ. which spans a dense subset of J since (X.X> is assumed to
span a dense subset of B. Thus I, = J.

Conversely, let Y be a closed E-B-submodule of X. Then X, clearly con-
tains Y. Now by Lemma 3.1. X;. = X/y. Let x, ze X and y e Y. Then

Xz, vp =X, 20N

which isin Y since Y is assumed to be E-invariant. But every element of X7y
is a limit of linear combinations of elements of the form x{z. yDgfor x. - € X,
1 e Y. It follows that X, is contained in Y.

The fact that this correspondence between ideals and submodules preserves
inclusion is clear. Q.E.D.

COROLLARY 3.1.  Let E and B be C*-algebras and ler X be an E-B-imprimi-
tivity bimodule. Let J be an ideal in B and let K be the ideal in E which cor-
responds to X ; according to Theorem 3.1. Then both {X. X ;)¢ and <X ;. XDk
are contained in and generate K. In particular. X, is a K~J-imprimirivity
himodule.



6 MARC A. RIEFFEL

COROLLARY 3.2. Ler E and B be C*-algebras and let X be an E-B-imprimi-
rivity bimodule. Let I and J be ideals in B with [ = J and let K(I) and K(J)
denote the ideals in E which correspond ro I and J according to Theorem 3.1.
Then the B-ralued inner product on X drops ro an (I:J)-valued inner product
on X, X, and the E-valued inner product drops to a (K(I)/K(J) )-L*altlgd.i{zrz‘er
product on X; X ;. so that X, X, becomes a (K(I); K(J}))-I:J-imprimitivity
bimodule.

We now show that the process previously described of passing to ideals
and quotients behaves well with respect to the inducing process. Since for
the inducing process we do not need an imprimitivity bimodule, but only a
Hermitian rigged module. we work with these instead.

PropoSITION 3.2. Ler A and B be C*-algebras, ler X be a Hermitian
B-rigged A-module, und let [ and J be ideals in B with I > J. Then X1 and XJ
are Hermitian I- and J-rigged A-modules, and X1'XJ is a Hermitian (I/J)-
rigged A-module, which we will denote by Z. Let F, denote the functor con-
sisting of inducing Hermitian (1. J)-modules up ro A. Ler D = hull(J) — hull(]),
so thar the category of Hermitian (I J)-modules is isomorphic to the category
of those Hermitian B-modules which live on the locally closed ser D. Let Fy
denote the funcror of inducing Hermitian B-modules up to A via X. Then F 5
Is naturally unitariiy equicalent to the restriction of Fy to the caregory of
Hermirian B-modules which live on D (viewed as Hermitian (I/])-modules).

Proof. The assertions concerning X1, XJ. and X are easily verified. We
must show that the indicated functors are unitarily equivalent. Let V be a
Hermitian (I 'J)-module, which we can view as a Hermitian B-module. Then
the algebraic span IV (now not closed) is a dense submodule of V, and, as
algebraic tensor products.

X@®plV = XI®, V.
Define a2 map r, from X1 x Vinto Z®, , V by
plxo)=x+ X))@

forxeXlandreV. Itis easily verified that r, is B-balanced and bilinear.
so that it lifts to a linear map. also denoted byty.of XI®,Vinto Z®,, V.
It is clear that ;- is in fact surjective. and it is easily seen that ry is an A-
module homomorphism. Furthermore. a simple calculation shows that Iy
1 an isometry with respect to the pre-inner products on these spaces (where
thaton X1 ®, V" comes from X ®p V7). But the image of X @, I} is dense in
Fy(}'), and so 1, extends to an isometry of Fy(V) into F,(}), which is sur-
jective since the image of Z ®, sV is dense in F;(17). The collection of the
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unitary maps t,- gives the desired unitary natural equivalence of the restric-
tion of Fy with F. Q.E.D.

We conclude this section by showing that the kernels of representations
induced by an imprimitivity bimodule behave well with respect to the bijec-
tion of Theorem 3.1. so that this bijection preserves primitive ideals.

ProposiTioN 3.3 Ler E and B be C*-algebras and let X be an E-B-
imprimitivity bimodule. Let V' bhe a Hermitian B-module and ler J be the kernel
of (the representation corresponding to) V. Let K be the ideal in E corresponding
to J according to Theorem 3.1 and let £17 be the Hermirian E-module obrained
by inducing V1o E via X. Then the kernel of (the representation corresponding
) B is K.

Proof. We use the notation of Theorem 3.1. Let x, v e X, so that. in
particular, {(y,zypeJ forall ze X. Let ze X. v € V. Then

Wz =x{1ng®r=xR D= 0.

so that {x. y')¢ is in the kernel of £1. Since the elements of this form span K,
it follows that K is contained in the kernel of £V, Suppose conversely that e
is an element of the kernel of £V. Then for every x & X, r e ¥ we have
e(x ® v) = 0. and so for every y € X, w e 1" we have

O=C e(x®r), y®@w) = {{yexdgltiw).

It follows that (1.ex)gisin J forall x. ve X.sothatexe X, forall xe X.
Now (X.X ) i1sassumed to span a dense subset of E, and E has an approxi-
mate identity. so e can be approximated by linear combinations of elements
of the form

e{x, yyp = {ex, yyg.

But by definition each such element is in K. since exe X ;. Thus ¢e K.
Q.E.D.

CoroLLARY 3.3, Let E and B be C*-ulgebras and let X be an E~B-imprimi-
tivity bimodule. Then the bijection of Theorem 3.1 berween ideals of B and
ideals of E restricts to a hijection herween the primitive ideals of B and the
primitive ideals of E. In particular. Prim(B) and Prim(E) are homeomorphic.

Proof. By corollary 6.25 of [36]. £} is irreducible if and only if V' is.
Q.E.D.

From Proposition 3.3 we obtain the following generalization of Theorem
6.1 of [26].
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COROLLARY 3.4, Let A and B be C*-ulgebras and let X be a Hermitian
B-rigyed A-module. Let Vi, i = 1. 2. be Hermitian B-modules. ler J, = ker(V)),
and let L; =ker(*V). If J, 2 J,. then L, 2 L,.

Proof. Let K, = ker(¥V)), so that K, 2 K, by Proposition 3.3. Then
L, = L, follows from the fact that L; = {ue A:aE < K;}. This is a special
case of the easily verified fact that if C is any C*-algebra. if E is any two-sided
ideal of C, if A is a subalgebra of C. if W is a Hermitian C-module which is
non degenerate as an E-module, and if K is the kernel of W as an E-
module (so K is an ideal in C also), then the kernel of W as an A-module is
lae A:aE= K. Q.ED.

4, THE HERMITIAN RIGGED MODULE OF AN ORBIT

In this section we apply the results of the last section to the situation of
Theorem 1.1. Actually, for the first part of this section we still do not need to
know that G, is a stability subgroup, and so we begin by assuming only
that we have a locally compact group G. a normal subgroup NV, and a sub-
group H of G which contains N. As in Section 2 we let X denote the com-
pletion of C.(G) as a C.(H)-rigged space. Then from Corollary 2.1 we
immediately conclude. in analogy with Coroilary 2.3, the foiiowing:

CoroLLary 4.1, If [ is an ideal in C*N) which is G-invariant, then
[.{Y = ‘X'I.

Setting H = N, we are now in a position to prove that for a normal
subgroup N of a locally compact group G, the *-homomorphism of C*(N)
into M(C*(G)) is injective.

ProposITION 4.1, Ler N be a normal subyroup of the locally compact
group G uand let V' be a unitary N-module. Let (°V')y denote the restriction
to N of the unitary G-module ¢V obtuined by inducing V to G. Then (V)y
weakly contains V. In particular, the homomorphism of C*(N) into M(C*(G))
is injective. Furthermore, if E is uny locully closed subset of Prim(N) that
carries V. then (°V)y is carried on any locally closed G-incariant subset of
Prim(N) that contains E.

Proof. Let X be as previously defined, but for H = V. Let K denote
the kernel of (the representation on) (°¥')y. Then K is G-invariant according

to Proposition 2.2, and so KX = XK by Corollary 4.1. We need to show
that KV' = |0]. Working symbolically. with B = C*(N), we have

0] =KUY =KX @ V) =KX ®,V = XK@,V =X®KV.
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This says that if the Hermitian B-module K1 is induced to G. one obtains
the zero-dimensional G-module. But this can only happen if K1"= {0; (as
can be seen from Theorem 5.1 of [36]).

Now the kernel of the map of C*(N) into M(C*(G)) must be contained
in the kernel of the restriction to N of every unitary representation of G.
and. in particular. in the kernel of (“17)y for every unitary N-module I".
But according to the previous paragraph this kernel must then be in the
kernel of every unitary representation of N. and so is zero.

Finally. suppose 1’ lives on the locally closed subset £ of Prim(/N). and
let D be a G-invariant locally closed subset of Prim(N) containing E. so that
1"also liveson D. Let D' = D — D and let / = ker(D). I = ker(D'). so that
is a Hermitian I' I-module. Now [ and I' are G-invariant. so that Corollary
4.1 1s applicable. Working symbolically. we have

HCT ) =IX @RV =XI®p1 =X®g[1"= 0]
U= X®V=XI"®pV =X@I'V=X®p) = (V).
Thus (“V)y is a Hermitian I’ I-module. and so lives on D. Q.ED.

We remark that the first part of Proposition 4.1 is Theorem 4.5 of [21]
or Proposition 5.3 of [22]. but without separability assumptions. J. M. G.
Fell had shown (personal communication) that the separability assumption
could be dropped. but this proof is somewhat different from his.

COROLLARY 4.2. Let N he a normul subgroup of the locally compact
group G and let E be a nonempty locally closed subset of Prim(N) which is
G-invariant. Let 1 = ker(E) and 1' = ker(E — E). so that I and I' are G-
invariant ideals. Then the algebra

CHG)I''CHG)I
is not the zero-dimensional algebra.

Proof. It is clear that I' I cannot be the zero-dimensional algebra. and
so there is at least one unitary N-module " which lives on E (use 2.10.4 of
[14]). Then (°V')y will also live on E by Proposition 4.1. But ©I” is then a
nonzero Hermitian module over C*G)I''C*G)l by Proposition 2.1. so
this algebra cannot be the zero algebra. Q.E.D.

Suppose now that. as in Theorem 1.1. J € Prim(N) and {J| is locally closed.
Let GJ be the orbit of J. and suppose that GJ is locally closed. Define the
idealsJ', I.and I" as in the paragraph after Corollary 2.4. Then from Corollary
42 the algebras C*G,)J /C*G,)J and C*G)I''/C*G)] are nonzero.
In particular. C*G,)J # C*G,)J. It follows from Theorem 3.2 that
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XCHGy)J # XCHGy)J. Itisclear that XC*(G,)J ' = XJ'.and XC*G,)J =
XJ. Thus XJ' # XJ. Furthermore, I = J, so /X = XI < XJ. Combining
this observation with the results at the end of Section 2 and in Section 3,
we obtain:

CoroLLaRY 4.3.  The space XJ'/XJ is a nonzero Hermitian C*(G,)J':
C*(G)J-rigged module over both C*(N)/I and C*G):C*(G)I. The inducing
Junctor defined by this Hermitian rigged module is equivalent to the restriction
to the category of unitary G;-modules supported on (J) of the ordinary
inducing functor from unitary G-modules to unitary G-modules.

PropostTiON 4.2, 4san I'/I-module or a C*G)I'/C*(G)I-module XJ"XJ
is still nondegenerate, and so is a Hermitian rigged module.

Proof. We need to show that
'NXJ/XJy=XJ"'XJ
or, since " is G-invariant so that I'X = X[, that
XI'N' + XJ = XJ.
To show this it sufficies to show that
I'r+J=1J.
Now I'J"=1"nJ' by 1.9.12 of [14], and so we need to show that
I'nJy+J=J.

Working with the definitions of these ideals, one finds that this relation is
equivalent to

[((GIF =GN ) =N A =T =1

But this relation is easily seen to be true. Q.ED.

PROPOSITION 4.3. The representation of '/l on XJ''XJ is faithful.

Proof. Let K be the kernel of the representation of I’ on XJ'/XJ, so
that K consists of those elements k of I' for which kXJ' < XJ. If k is such
an element and if y € G. then

KXJ = pk(y™'XJ)) < XJ.

Thus we see that K is G-invariant. Let C be the hull of K. Since I' 2 K 2 /.
it follows that

(GJF -~GJ = C<=I(GIY.
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Since C is closed and G-invariant. it follows that either C =(GJ)* — GJ or
C = (GJF. In the former case we would have K = I'. so that every element
of I’ would act as the zero operator on XJ' XJ. But this is impossible since
XJ''XJ is a nonzero Hermitian [’ J-module. It follows that K = I and the
representation is faithful. Q.ED.

We will call XJ''XJ the Hermitian rigged module associated with the
orbit GJ.

5. THE SYSTEM OF IMPRIMITIVITY

We keep the notation used at the end of the last section. Our aim is to
show that CXG)I"*C*(G)I is the imprimitivity algebra (Definition 6.4 of
[36]) of the C*(G,)J /C*(G,)J-rigged space XJ' XA'J. Now from the defini-
tion, the imprimitivity algebra of XJ'. XJ is clearly the algebra of operators
on XJ'/XJ spanned by the images of the operators {x¢, yd>, on X. for x,
ve X and ¢. deJ'. where E denotes the imprimitivity algebra of X. As
shown in Corollary 7.13 of [36]. E is normdense (for the norm on operators
on X) in CAG x G G;). which is the transformation group algebra for the
action of G on G'G, (see 7.5 of [36] or 3.11 of [18]). But C(G x G G)) =
CAG.C G G,)). and one of the ingredients of its action on X is the point-
wise multiplication of elements of C(G) by elements of C (G G,) viewed
as functions on G constant on cosets. In fact, E or C (G x G'Gy) can be
viewed as a semidirect product of C(G) with CJG G,), in the sense of
covariance algebras [40]. and the algebra C(G G,) together with its action
of pointwise multiplication on C.(G) is the system of imprimitivity for the
situation. Since C.(G/G,) defines an algebra of bounded operators on X
(Proposition 7.2 of [36]), it will also define an algebra of operators on
XJ':XJ. In this section we will study this action of C.(G G,) on XJ"'XJ.
For much of what we do it is actually slightly more convenient to study the
larger algebra C(G 'G;) of bounded continuous functions on G'G,. which
also acts as an algebra of bounded operators on X' (Proposition 7.2 of [36]),
and so on XJ ' X J.

PROPOSITION 5.1.  The action of C(GiG,) on CG) commutes with the
left action of CAN). Thus the uction of C(G G,) on X commutes with the left
action of C*(N).

The proof consists of a routine computation.

Now one of the hypotheses of Theorem 1.1 is that the canonical map
from G G, to GJ is a homeomorphism. As a result of this. GJ is Hausdorfl.
and we can identify C(G G,) with C(GJ). But GJ is (identified with) Prim(!" . ]),
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and so C(G G,) becomes identified with the C*-algebra of bounded con-
tinuous functions on Prim(/” /).

Now if A is any C*-algebra, Dixmier [15] has shown that the algebra
of bounded continuous functions on Prim(4) can be identified with the
center of M(A). Dixmier does not state his results in terms of double cen-
tralizers, but it is an easy matter to restate them in this way, as remarked
by Busby on p. 371 of [11]. Dixmier based his proof on a theorem of Dauns
and Hoffmann, but he also gave an alternate proof based on a result of
Stormer. This result of Stormer has more recently been given a very short
proof by Bunce [9]. and consequently a quite direct path to Dixmier's
theorem is via Stormer’s result with Bunce’s proof. Another short proof
has just appeared in [19].

[t follows from these considerations that C(G G;) can be identified with
the center of M(I"I). Since XJ' XJ is a Hermitian rigged /"' I-module, it
is also a Hermitian rigged module over M(/"T) (by Proposition 3.9 of [36]),
and so is also a Hermitian rigged module over the center of M(/I'/I), which
we have just identified with C(G:/G,). We thus have defined two actions of
C(G/Gy) on XJ" XJ, one coming from the pointwise action of C(G.G,) on
C.(G) and the other from the identification of C(G'G,) with the center of
M(I''I). The main result of this section is that these two actions coincide.

To distinguish between the two actions in the proof. we will. for Fe
C(GiGy), denote by P the operator on XJ''XJ obtained from pointwise
multiplication on C(G) by F., while we will denote by T, the operator on
XJ''XJ obtained by identifying F with an element of the center of M(I'']).

ProposiTioN 5.2, Forany F e C(G G,), Pp = Tp.

Proof. Let de C*N) and let fe C(G), viewed as an element of X.
Then according to Lemma 2.1,

d(Ppf)=d(Ff)e X[d":y~" e support(F)],
since support(Ff) < support(F). It follows that for any x € X we have
d(Ppx)e X[d": y™" e support(F)].

Now view F as a function on GJ, and suppose it happens that de
ker(support(F)). This means that d € J* for each ' € support(F). where now
F is viewed as a function on G. But then «* € J for each y~! & support(F),
and so [d*: 1" esupport(F)] = J. Thus dP.X < XJ. so that /P, acts as
the zero operator on .XJ' XJ.

Let L(XJ' XJ) denote the algebra of bounded operators on the rigged
space XJ' XJ (Definition 2.3 of [36]). Since the representation of [’ [ on
XJ" XJ is faithful (Proposition 4.3). we can view [' [ as a subalgebra D
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of the C*-algebra L(XJ XJ). Since XJ' XJ is nondegenerate as an
I'" I-module. it suffices to show that Trd = Pgd for all d € D in order to
conclude that Tp = P,. (Note that Prd = dP; by Proposition 5.1.) Thus
the proof will be complete once we have proven the following proposition
(in which the primitive ideal space need not be assumed to be Hausdorfl).

PROPOSITION 3.3.  Ler 4 be a C*-algebra with identity and let D be a
C*-subulgebra of A (possibly withour identity). For F e C(Prim(D)) (the
alyebra of bounded continuous functions on Prim(D))., let Ty denote the
corresponding double centralizer of D. Let P be a x-homomorphism of
C(Prim(D)) into A such that

(1) P, is the identity element of A.
(2) Ppd = dPg for all F € C(Prim(D)) and d € D.
(3) If de Dand F € C(Prim(D)) and if d € ker(support(F)). then Prd = 0.

Then Ppd = Ted for all F e C(Prim (D)) and d € D.

Proof. Letde D and F e C(Prim(D)). Suppose first that for some com-
plex number m and some € > 0. we have d € ker(R) where

R = {J e Prim(D): |F(J) - m| =€)
Let
S = {J e Prim(D): |F(J) = m| > 2¢j,

so that S is contained in R. Let i be a continuous function from the com-
plex plane to the interval [0. 1] such that, for any complex number =, h(z) = 1
if |- — m| > 2¢, and h(z) = 0if | — m| < e Let Fo=h F, so that Fy is a
continuous function on Prim(D) with values in [0.1] and Fo(J) =1 for
JeS., while Fo(J)=0 for JéR. If we let G=FF,+ m(l — F,), then
F —G=(F - m)l — Fg), so that ||F — G||, <2e Furthermore G —m is
zero off of R. so that d € ker(support(G — m)). Then by hypotheses (1) and
(3) we see that P .,,d =0, so that Psd = md. It follows that

|Prd — md|| = ||Pr-qd| < 2e|ld|.

Now let d e D and F € C(Prim(A)), and assume that d = ¢* and that F
is real-valued. Let B be the C*-subalgebra of 4 generated by the Tyd for
all H e C(Prim(D)) together with the image of all of C(Prim(4)) under P.
Note that B is commutative by hypothesis (2). Let € > 0 be given, and let
{U;) be a finite covering of the closure of the range of F by open intervals of
length strictly less than e, and such that no U; meets more than two other of
the U;s. For each i choose a point m; in U, and let ¥, = F~!(U,). Then the
14 form a finite open covering of Prim(D), and |F(J) — m| <€ for J e V.
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Let (h;} be a partition of unity on the real line which is finer than the U,
together with the complement of the closure of the range of F. Discard the
functions supported in the complement of the range of F, and for each
remaining i set G; = h; = F. Then each G; is a continuous function on Prim(D)
having range in [O. 1] and value 0 off of ;. Furthermore Y G, =1 on
Prim(D). In particular, 3 Tgd = d.

Now the relation defining how a double centralizer T, is associated to
the function G; is

TG(d - GL(J)[Z, el

for evefv J e Prim(D). Since G; vanishes off of ¥, it follows that TgdeJ
for each J ¢ V;. This means that

Tgd eker{J e Prim(D): |F(J) — my| > €},
so that by the first paragraph of the proof
1Pt -mTodl| = 1PeTod = mTodl < 2]

Now for any i there are at most two j's different from i such that ii; # 0,
such that T;,Tg, # 0, and such that

(P(F'MI)TG,d)(P{F—mJ)TG!d) ?5 0.

Since all of this is happening in the commutative C*-algebra B, it is easily
seen that

I P Tod] < 6]
Since Ppd = ) PTgd. it follows that

|Prd = 3 m T dl| < 6el|d]-
- ¥ mGyl. <eso

I Ted = 2T ]| < ed]i

Consequently
HP}.'d - TFd” < 76”d”.

Since € is arbitrary, Mpd = Td. This relation extends by linearity to
arbitrary F and d. Q.ED.

CoRrOLLARY 5.1.  The homomorphism P of C(G,/G,) into the algebra of
bounded operators on XJ''XJ coming from the action on X corresponding
to pointwise multiplication on C(G), is injective, and for every de I':I and
F e ClG:/G,), we have Ped e I''l (viewed as u subalgebra of the algebra of
bounded operarors on XJ' XJ).
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Proof. According to Proposition 4.3 the representation of I'/I on
XJ'XJ is faithful. If P, = 0. then Tzd = 0 for all d € I'/I. and it follows
that Tp = 0. so that F = 0. Furthermore. for any F, Ppd = Tpde I''].

: Q.ED.

6. THE PROOF OF THE MAIN THEOREM

We have not yet shown that the representation of C*G)'/C*G)] on
XJ''XJ is injective. and in fact we will leave the proof of this fact to the end.
Consequently, we will here denote by C the image of CXG)I'/C*(G)I as
operators on XJ''XJ.

LEMMA 6.1, The imprimitivity algebra of XJ'/XJ is contained in C.

Proof. According to the definition of the imprimitivity algebra of
XJ'/XJ. it 1s the image of the subalgebra of E generated by (XJ". XJ Dg.
Now it is easily seen that I' + J 2 J'. Furthermore. if x or v is in XJ. then
X 1Dez (= X3 2Dewg,y) 15 in XJ for z € X (since J is G,-invariant). so that
{x. y)p as an operator on XJ'/XJ is the zero operator. Thus the imprimi-
tivity algebra for XJ'/XJ will be contained in the image of (XI', XI'),.
But XI' = I'X. Furthermore, since E is an ideal in the algebra of bounded
operators on X. and elements of E come out of the E-valued inner product.
elements of I" acting on the left of X will also come out of the E-valued
inner product. Thus the imprimitivity algebra for XJ'/XJ will be contained
in the image of I'{X.X)gl'. or I'EI’, and so it suffices to show that the
image of this latter algebra is contained in C.

Now the transformation group algebra C.(G x G/G,) forms a dense sub-
algebra of E, and elements of the form &(y) = g(y)F for ge C(G), Fe
CJG/G,) span a dense subspace of C(G x G/G,). Furthermore, a simple
calculation shows that the action of such a ¢ on an x € X is given by &x =
Pr(gx) (where Pp was defined just before Proposition 5.2). Thus it suffices
to show that for d.d' € I'. the operator on XJ'/XJ corresponding to dPpgd’
is in C. But according to Proposition 3.2 the operator P acts like the double
centralizer Ty, and so the above operator is the same as the operator
Trld)gd' (viewing d as an element of I'/I). and this operator is clearly in
the image of I'C*G)I’, and so in C. Thus the imprimitivity algebra for
XJ';/XJ is contained in C. Q.ED.

LeMMA 6.2.  The imprimitivity algebra of XJ'/XJ is all of C.

Proof. Since the orbit GJ is Hausdorfl. it is easily seen that J' = I' + J.
Combining this fact with the discussion in the proof of Lemma 6.1, it follows
that the imprimitivity algebra of XJ''XJ will be all of the image of I'EI",
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and so. as above. of the algebra generated by the Tx(d)gd'. But the elements
of I"'1. which are of the form Tr(d) as d ranges over I’ I and F ranges over
C.G:G,). will span a dense ideal of I''I. as is easily seen from Proposition
3.3.7 of [14]. Thus the image of I'El’ contains a dense part of the image of
C*(G)I'. and so the imprimitivity algebra of XJ' XJ is all of C. Q.E.D.

It follows that the functor consisting of inducing to G unitary G,-modules
whose restrictions to N live on {J! is a full embedding of the category of
such modules into the category of unitary G-modules whose restrictions to
N live on GJ. We have thus proven what may be considered our version of
Theorem | of [6].

To complete the proof of our Main Theorem (Theorem 1.1), which also
includes our version of Theorem 2 of 6], we must show that the representa-
tion of C*G)I'/C*G)! on XJ'/XJ is faithful. That the proof of this fact
should still be somewhat delicate is perhaps not too surprising in view of
the fact that the representation of C*(G) on X need not be faithful. It will be
convenient to change our notation and hereafter let C = C*(G)I'/C*(G)I.

Now C*(G)I' is an ideal in C*(G), and so an ideal in M(C*(G)) by Propo-
sition 1.8.5 of [14]. This gives a natural homomorphism of M(C*(G)) into
M(C*(G)I'). By Proposition 3.8 of [10] there is a natural homomorphism
of M(C*G)I') into M(C) (which we do not know is surjective—see the com-
ments after Theorem 4.2 of [1]). Thus we have a natural homomorphism of
M(C*G)) into M(C). Now [’ and I can both be viewed as subalgebras of
M(C*(G)) by Proposition 4.1, and it is clear that the elements of I act as the
zero operator on C. Thus we have a natural homomorphism of ['/I into
M(C). Tt is clear that C is nondegenerate as a right or left I'/[-module, and
so an application of the left- and right-handed versions of Proposition 3.9
of [36] gives a natural homomorphism of M(I'/I) into M(C). Since we have
identified C(G/'G;) with the center of M(I'/I), it follows that we have a
homomorphism from C(G/G,) into M(C), which is defined by the relation

Fldc) = (Tg(d))c

for Fe C(G'G,), de "I, ceC, and similarly for the right action, where T;
is defined as in Proposition 5.2.

Each element of G also defines an element of M(C*(G)), and so of M(C).
In addition, G acts by left translation on C(G/G,). We show that these two
actions are related. Now T is defined by the fact that for each - e G,

Teld) = F(J)d e J*

for every d e I''I. If we let yF denote the left translate of F by y, then a
simple calculation shows that

(Teld)yY — vF(JAYdY e JF
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for every = € G. But this is the relation that defines T.£(d¥). 1t follows that
(TF(d] P. = T_\.F(ll"\.).

Then a simple calculation shows that for ¢ € C we have

VOF(de)) = (vFivtden .
By continuity we obtain:

LEmMMA 6.3, For ye G.F e C(G'G,). and ¢ & C. we have
YF(c)) = (vF)(ve.

Thus we see that C(G/G,) acts like a system of imprimitivity (as defined in
Theorem 7.18 of [36]) for the action of G on C. Furthermore. in the proof
of Lemma 6.2 we saw that I'/I is nondegenerate as a C(G.G,)-module. and
it follows that the same is true of C.

Let E denote the (norm-closed) imprimitivity algebra of the C*(G,)-rigged
space X. In the proof of Theorem 7.18 of [36] it was shown that every
unitary G-module on which C,(G/G,) acts as a system of imprimitivity
becomes an a natural way a Hermitian E-module. We would like to show
here that in the same way the maps of G and C,(G/G,) into M(C) give a
homomorphism of E into M(C). Now from Proposition 7.11 of [36] it fol-
lows that C(G x G:G,)isdense in E. Then for c e C and @ € C(G x G/G,).
with @ viewed as an element of C(G,C,(G:G,)). we can define, in analogy
with 7.20 of [36].

b = f B(y)rordy,  c® = [(1ed(r))r)dy. (6.1)

Then it is easily seen that these actions define a x-homomorphism of
CAG x G/G,) into M(C) (see the proof of Proposition 7.6 of [36]). We need
to show that this *-homomorphism is continuous, so that it extends to all
of E. Now for this purpose the most convenient information about the norm
of E that we have is that if W is a unitary G-module on which C_(G/G})
acts as a svstem of imprimitivity. then the corresponding *-representation
of C.(G x G/G,) is continuous (see the proof of Theorem 7.18 of [36]). But
suppose that W is a faithful Hermitian C-module. so that C can be identified
with a subalgebra of the algebra L(W) of the bounded operators on ¥,
Then. according to Theorem 3.9 of [10], M(C) can be identified with the
idealizer of C in L(}¥). The homomorphisms of G and C, (G G,) into M(C)
become homomorphisms into L(W¥ ). so that W becomes a unitary G-module
on which C,(G:G,) acts as a system of imprimitivity. The homomorphism
of CAG x G‘G,) into M(C) becomes the homomorphism into L(W') corre-
sponding to this system of imprimitivity. and so is continuous for the reason
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previously indicated. Thus we do obtain a homomorphism of E into M(C).
Since we saw that C is nondegenerate as a C, (G/G ,)-module, it follows that
C is nondegenerate as an E-module. We thus obtain:

Lemva 6.4, The acrions defined in (6.1) extend by continuity to give a
homomorphism of E into M(C) under which C, as a left or right E-module, is
nondegenerate.

The proof of the following lemma. which is the crux of the proof of the
faithfulness of the representation of C on XJ'/XJ, was motivated by that
part of the proof of Theorem 2 of [6] which appears on p. 1108.

Lemma 6.5. Let ae CHMG)I', and suppose that alXJ)< XJ. Then ae
C*G)IL.

Proof. If we let b denote the image of a in C, then it will suffice to show
that b* = 0. Now b* € a*C, and C is nondegenerate as a left /'-module, and
so b* € I'a*C. From Lemma 6.4, C is nondegenerate as an E-module, and
s0 b* e (X, X>gI'a*C (where we always take closed linear spans). Thus it
suffices to show that {y,x)zd*a*c =0 for all x. ve X, de!l’, and ce C.
Now E is an ideal in L(X), so by application of Proposition 3.9 of [36], we
obtain a homomorphism of L{X) into M(C). Then if & € C.(G x G/G,) and
S € CG), it is easily seen that. for any c e C,

D(flc)) = (P * f)c)
where @ * f is the element of C.(G x G/G,) [corresponding to composition
of operators in L(X)], defined [in C(G.C(G/G,))] by
(@« )2 = [D)f(y Y dy.

By continuity it follows that
eld’(c)) = (ea)e

for any ¢ € E, a' € C*(G), and ¢ € C. However, for any element S of L(X),
it is easily seen that

{3xDpS* = (1.SxDg
(see Proposition 6.3 of [36]). From all this it follows that
(roxdgd*a*e = (y,adx)ge,

so it suffices to show that the right-hand side is 0.
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Now adx e a(I'X) = a(XI) € a(XJ'). which by hypothesis is contained
in XJ. Thus it suffices to show that

{yoxdyge =0, (6.2)

where now d e J.while x, re X.ce C.

Itis easily seen that if U is a compact neighborhood of the identity element
e of G, then U{J ¢ is a closed subset of Prim(/N). and {J | is the intersection
of the U{J )¢ as the U shrink down to e;. It follows that d € J can be approx-
imated in norm by elements from the various ker(U!{J|). Thus it suffices
to show that (6.2) holds for every d e ker(U{J |°) for every compact neigh-
borhood U of ;.

Let us now fix a compact neighborhood U of ¢; and a d € ker(U{J }°). It
suffices to show that

{y.xd*ypc=0

for all x, ye X. ce C. Now for any g € C(G). viewed as an element of X.
we have

g eCgaxd*ype = (1<g, g0 . Xd* D gC, {6.3)

where B = C*(G,). But as g ranges over positive elements of C.(G) whose
supports shrink to eg, it is easily seen that {g.g>; ranges over positive
elements of C.(G,) whose supports shrink to e;. Thus if the g are suitably
normalized. the (g, g will form an approximate identity for B, so that the
right-hand side of (6.3) will converge to { 1. xd*>gc. It thus suffices to show
that

{g,xd*>ec =0 (6.4)

for all xe X, ce C, and all g € C(G) which are supported in a suitably
small neighborhood of ¢;.

In preparation for this we need to relate the action of C(G/G;) on C with
its action on C.G) by pointwise multiplication. For F e C(G'G;) we will
let P denote the operator on C(G) consisting of pointwise multiplication
by F. Then for f. g € C.(G) and 1 e G it is easily verified that

F({S.gD1)) = (Prf. gde(1)

where we identify (f.g)g with its integral kernel defined in 7.8 of [36].
and view it as an element of C(G.C.(G:G,)). Then a straightforward calcu-
lation using the preceding identity shows that. for c € C.

F({f.g0gc) = {Prf.g)gC.
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We return now to the situation in which we have a compact neighborhood
Uofes.deker(U[J])¢), xe X, and c e C. We wish to show that (6.4) holds
for all g € C.(G) which are supported in a suitably small neighborhood of
€G- As that suitably small neighborhood we choose a compact symmetric
neighborhood V' of e such that V? < U, and assume from now on that ¢
is supported in V. Choose F e C.(CJ) such that F =1 on VJ while F =0
outside ¥'*J. Viewing F as a function in C,(G/G,) and on G, we see that
Prg = ¢g. Then

g.xd*ygc = (Ppg. xd*>zc = F({gd, xDgc). (6.5)
According to the Main Lemma (Lemma 2.1).
gie[d":ve V]X.

Furthermore, for the reasons given in the proof of Lemma 6.1, the dY will
come outside the E-valued inner product. But any element of the support
of F is of the form J* with - e V2, and if y € V, then v "'z e V? < U so that
de J*"'?and d* e J°. It follows that Fd* = 0 for y € V, and so (6.5) is equal
to 0. Q.E.D.

The fact that the representation of C*(G)I'‘C*(G)I on XJ'/XJ is faithful
is an immediate consequence of Lemma 6.5. Thus we have concluded the
proof of the Main Theorem. once we have remarked that the statement
about weak containment follows easily from Proposition 6.26 of [36].

We remark that examples showing how the Main Theorem can fail when
its hypotheses are weakened can be found in [6.32].

7. ALTERNATIVE HYPOTHESES

In this section we collect various conditions which imply that the hypoth-
eses of the Main Theorem are satisfied. These conditions were suggested in
part by results appearing in [17] and [3], and there are certainly additional
conditions which can be concocted from the results appearing in these papers.
We recall now several definitions.

DerFiNtTION 7.1, A topological space is said to be ulmost Hausdorff if
every nonempty closed subset contains a nonempty open Hausdorff subset.
or equivalently. if every closed subset contains an open dense Hausdorff
subset.

The equivalence of the two formulations in this definition is shown by a
simple argument (found on p. 125 of [24]) using Zorn's lemma. It is easily
seen that any subset of an almost Hausdortf space is almost Hausdorff. and
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that any subset consisting of only one element of an almost Hausdorff space
will be open in its closure.

DerNITION 7.2, Let N be a normal subgroup of the locally compact
group G. so that G acts on Prim(N'). Then N is said to be regulurly embedded
in G if the orbit space Prim(N)G with the quotient topology is almost
Hausdorff.

This definition was introduced by Blattner [6]. If N is regularly embedded
in G. then from the fact that points of Prim(N) G will be open in their clo-
sures. it follows that the orbits in Prim(N) will be open in their closures. that
is. locally closed.

We recall further that if N is a normal subgroup of the locally compact
group G. then the Borel structure on the orbit space Prim(N)/G is defined
to be the quotient of the Borel structure on Prim(N) generated by the
topology of Prim(N). and not the Borel structure generated by the quotient
topology on Prim(N):G. A Borel structure is said to be countably separated
if it contains a countable collection of subsets which separate the points of
the space. Finally. a subset of a topological space is a G; if it is the intersection
of a countable number of open sets.

ALTERNATE HYPOTHESES 7.1. In the statement of the Main Theorem the
following alternate sets of hypotheses can be used.

A. Hxpothesis 2 can be replaced by
(2)  GJ is locally closed in Prim(N) and is almost Hausdorff . and GG,
is g-compuct.
B. Hrpotheses | and 2 can be replaced by
(1) Prim(N) is almost Hausdorff .
(2) N is regularly embedded in G and GG, is G-compact.
C. Hypothesis 2 can be replaced by
(2) GJ is almost Hausdorff (which will be true if Prim(N) is almost
Hausdorff\. GJ is a Gs-subset of GJ. and G/G, is g-compact.
D. Hypotheses 1 and 2 can be replaced by
(1) Prim(N) is almost Hausdorf{ and second countable.
(2) Prim(N)iG is a Tq topological space and G:G, is g-compact.
E. Hypotheses 1 und 2 can be replaced by
(1) G is second countable and Prim(N) is almost Hausdorff .
(2)  Prim(N)/G has countably separated Borel structure.

We now give the proofs that these alternate hypotheses imply that the
hvpotheses of the Main Theorem are satisfied.
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Proof for 4. The primitive ideal space of any C*-algebra is a T locally
quasi-compact space (see 3.3.8 of [14]). Furthermore it is easily seen that any
subset of a locally quasi-compact space which is locally closed is itselflocally
quasi-compact, so that GJ is locally quasi-compact. But a simple argument
shows that any almost Hausdorff locally quasi-compact space is a Baire
space. (For facts about Baire spaces see p. 109 of [8]. The condition of almost
Hausdortfness cannot be dropped. as can be seen by considering a countable
set whose closed subsets are the finite subsets.) Thus GJ is a Baire space. The
proof now follows from the following proposition.

PROPOSITION 7.1. Let G be a locally compuct group which acts as a trans-
Jormation group on the Ty topological space M. Let m e M., and let G,, denote
the stability subgroup of m. Suppose that the orbit Gm is a Baire space and
almost Hausdorff in the relarive topology. and that GG, is o-compact. Then
the canonical mupping g of G:G,, onto Gm is u homeomorphism.

Proof. Note that G, is closed by Lemma | of [6], so that G'G,, is
Hausdorff. We begin by showing that the orbit Gm is Hausdorff. Since Gm
is assumed to be almost Hausdorff, we can find a dense relatively open
Hausdorff subset H of Gm. Then the preimage of H under ¢ will be an open
subset of G G,, and since G G,, is assumed s-compact. a countable number
of translates of this preimage will cover G G,,. It follows that a countable
number of translates of H will cover Gm, but each translate of H is again
open and dense. and so, since Gm is assumed to be a Baire space. the intersec-
tion of such a countable number of translates will be nonempty. But a point
in this intersection can be separated by open neighborhoods from any other
point in Gm. Since Gm is a homogeneous space, it follows that Gm is
Hausdorff.

The rest of the proof follows by a quite standard argument using the fact
that Gm is a Baire space (see the proof on p. 65 of [33]). Q.E.D.

We remark that this argument provides a direct proofof™(1) implies (6)” in
Theorem 1 of [24]. Phil Green has pointed out (personal communication)
thatin Proposition 7.1 and in Alternate Hypothesis A we can replace “almost
Hausdortf™ by “almost T,

Proof for B.  As mentioned, any subset consisting of a single point in an
almost Hausdorff space will be locally closed. (In particular, the space will
be T,.) Thus hypothesis | of the Main Theorem will be satisfied when
Prim(N) is almost Hausdortf. We also mentioned before that if N is regularly
embedded. then orbits in Prim(N) will be locally closed. Thus the hypotheses
of alternate hypotheses A are satisfied.
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Proof for C. Werecall from exercise 12 on p. 115 of [8] that a topological
space is said to be rorally inexhaustible (totalement inepuisable) if no nonempty
closed subset of it is meager in itself. It is then easily verified that a locally
quasi-compact almost Hausdorfl space will be totally inexhaustible. Accord-
ing to part ¢ of the exercise 6 in [8]. any G, subset of a totally inexhaustible
space Is itself totally inexhaustible. and hence Baire. Thus GJ will be a Baire
subset of Prim(N1. Thus we can apply Proposition 7.1 1o conclude that the
map from G/G, to GJ is a homeomorphism. In particular. GJ will be
Hausdorff and locally compact in the relative topology. The proof will then
be completed once we have shown:

ProposITION 7.2, Ler G be a group that acts as u transformation group on
un almost Hausdorf{” topological space M. Let me M and suppose that the
orbit Gm of m is Hausdorff and locally compact in the relative topologv. Then
Gm is locally closed in M.

Proof. We may assume that M is in fact the closure of Gm. Let H be an
open dense HausdorfT subset of M. Then H must contain some point. say n.
of Gm. Then H n Gm s a neighborhood of nin Gm and so. since Gm is locally
compact. there must be a compact neighborhood V of n in Gm contained in
H n Gm. Let W be an open subset of H whose intersection with Gm is the
interior of V. Then W ~ Gm must be closed in W, for any net of elements in
W~ Gm which converges to an element of W must have a subnet which also
converges to an element of V. since V' is compact. But H is Hausdorff so that
limits in H are unique. so the limit of such a net must be in W ~ ¥ which is
contained in W ~ Gm. Thus W A Gm is closed. We can now translate this
situation to any other point of Gm. and we find in this way that Gm is locally
closed. Q.E.D.

We remark that Lemma 17.2 of [23] shows that the conditions of Proposi-
tion 7.2 are always satisfied if G is compact.

Proof for D. Ifa group G acts as a transformation group on a space M
which is second countable. then it is easily seen that the orbit space is second
countable. (See Lemma 2.3 of [17]—Hausdorffness of M and the topology
of G are not used here.) In a second countable T, space. every point is a G,
in its closure. for by Ty-ness it must be the intersection of the intersections
with its closure of those members of a countable base for the topology which
contain it. Thus GJ is a G;-subset of its closure. and so alternate hypotheses
C are satisfied.

We remark that this argument provides a direct proof of “(2) implies (1)
and (6)" in Theorem 1 of [24].



74 MARC A. RIEFFEL

Proof for E. This is essentially the statement “(3) implies | 1)‘ aqd (6)" in
Theorem 1 of [24]. We have found no direct proof of this implication, and
so the proof seems to depend on the very deep arguments of [24].

8. G-STABLE REPRESENTATIONS

When .V is a normal subgroup of a locally compact group G which is
regularly embedded in G, the Main Theorem provides a major step in trying
to describe the unitary representations of G in terms of those of .V and of the
G, N. In this section we will. under suitable hypotheses. complete that
description. Our treatment has the feature that it involves neither cocycles
nor measure theory. However, almost all of the results of this section already
appear in one form or another in the literature. especially in [6] and [23],
and so we will allow our discussion to be quite sketchy in places.

Suppose now that N is a regularly embedded normal subgroup of the
locally compact group G, so that orbits in Prim(N) are locally closed. Then
according to Lemma 9 of [6] the restriction to N of any primary (i.e.. factor)
representation of G will live on an orbit of Prim(N). We indicate here a proof
of this fact which does not use Glimm's projection-valued measure.

ProposITION 8.1, Let N be a regularly embedded normal subgroup of the
locally compact group G und let W be a primary unitary G-module. Then there
is a G-orbit in Prim(N) (necessarily locally closed) on which Wy lives.

Proof. Let D be any closed G-invariant subset of Prim(N) and let [ be
the kernel of D. Then [ is a G-invariant ideal. so /W is a G-invariant subspace
of W. But it is easily seen that /W is also invariant under the commutant of
the action of G on W. Since W is assumed to be primary, it follows that /W
is either all of W or [0}.

Let C be the intersection of all the closed G-invariant subsets of Prim(N)
on which W, lives. Then it is easily verified that Wy lives on C, so that C is
the smallest closed G-invariant set on which W, lives. In particular, if D is a
proper closed G-invariant subset of C. then (ker(D))W = W.

Since C is closed and G-invariant. its image in Prim(N). G is closed and,
by assumption. contains a relatively open dense Hausdorff subset. Suppose
this subset contains more than one point. Then, since it is Hausdorff, it must
contain two disjoint nonempty relatively open subsets. Let the preimages in
Prim(.V) of these two subsets be denoted by E, and E,.so that E, and E,are
relatively open disjoint nonempty G-invariant subsets of C. Then € — E,
and C — E, are proper G-invariant closed subsets of C whose union is C.
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By the previous paragraph. (ker(C — Ej )W = W for j= 1. 2. Since
ker(C) = (ker(C — E,))ker(C — E.n.

it follows that (ker(C) )W = W. which contradicts the fact that W\ lives on C.
Thus C contains a dense relatively open orbit. say GJ. Since C — GJ is a
proper closed G-invariant subset of C.

(ker(C - GJNW = W,
so that 147 lives on GJ as desired. Q.ED.

Thus. in the case in which N is regularly embedded in G and Prim(N) is
?.lmOSI Hausdorfl. the Main Theorem says that in order to classify the
irreducible representations of G it suffices to look at each J e Prim(N') and
classify the representations of G, whose restrictions to N live on J 1. at least
as long as the G/G, are g-compact. Thus. letting G = G ;. we need to analyvze
the case in which J is G-invariant and find all representations of G whose
restriction to N lives on [J].

We recall from [6] that an irreducible representation of a C*-algebra is
called semicompact if its range contains at least one nonzero compact
operator. and hence all compact operators. and that a primitive ideal is called
semicompact if it is the kernel of a semicompact representation. If J is a
semicompact primitive ideal which is the kernel of the semicompact represen-
tation R. then it is easily seen that the preimage under R of the ideal of all
compact operators will be the smallest ideal properly containing J, and so
will be the kernel of {J}¢ — (J}. In particular. {J! will be open in its closure.
Then. from standard facts about the algebra of compact operators (4.1 of
[14]). one immediately obtains the following special case of Lemma 8 of [6].

ProposiTION 8.2. Ler J be a semicompact idedl of a C*-algebra. Then
any- representation which lives on [J | is a direct sum of copies of the unique
(within unitary equivalence) irreducible representation whose kernel is J.

Note that a primitive ideal can easily be open in its closure without being
semicompact. For example, this will be true of the zero ideal in any simple
C*-algebra. such as the Calkin algebra. In fact, the requirement that every
primitive ideal of a C*-algebra be semicompact is equivalent to the re-
quirement that the algebra be GCR (ie.. postliminaire: see 4.3.1 of [14].
and so type I by [38]). in which case the primitive ideal space is automatically
almost Hausdorff by 4.4.5 of [14].

Anyway. we see from Proposition 8.2 that if J is a semicompact G-invariant
element of Prim(N). then the restriction to N of an irreducible unitary
G-module will live on {J! if and only if this restriction is a direct sum of



76 MARC A. RIEFFEL

copies of the irreducible unitary N-module whose kernel sis J. We now
discuss how to classify the latter.

Let J be a semicompact G-invariant primitive ideal and let V' be the
corresponding irreducible unitary N-module. Since J is G-invariant, V'~
also must have J as kernel for every x € G, so, since J is semicompact, V'~
must be equivalent to V. Thus for each x € G we can find a unitary operator
P on V such that

(xsx™Yyr = PsPT v (8.1)

forall se N.ve V. Since V' is irreducible, P, must be unique up to a scalar
multiple of modulus one. Let U(}') denote the group of unitary operators
on the Hilbert space V" and let PU(V') denote the corresponding projective
unitary group, which is the quotient of U(V) by the subgroup consisting of
the scalar muitiples of the identity operator. On U(V') the strong and weak
operator topologies agree, and with them U(V) is a topological group. We
always consider PU(V') to have the corresponding quotient topology. For
each x £ G let P, also denote its image in PU(V), which now is uniquely
determined. Then it is easily verified that P is a group homomorphism
from G into PU(V), but in general we do not know whether it is continuous.
However, if G is second countable. then one can use Polish topology to
show that P is continuous, as was done, for example, in Proposition 17.2
of [23]. Alternatively, if V is semicompact as in the case we are considering,
then P will again be continuous, as shown in Proposition 17.1 of [23]. We
include the argument here, since we can give a somewhat simpler proof of
the lemma on which it depends (Lemma 17.1 of [23]).

Levma 8.1, Let V be a Hilberr space, ler Pe U(V), and let {P,) be u
net of elements of U(V). Then the (images of the) P, converge in PU(V) to
P if and only if P,TP7! converges strongly to PTP~! for every rank one
operator T on V.

Proof. Routine arguments show that the direct implication actually holds
for all bounded operators T. We show the converse. Choose a vector o of
unit length in ¥ and let T, denote the projection on the one-dimensional
subspace spanned by v,. Then P,T,P; 'Pr, converges to PT PPy, =
Pry. Let v; denote P,T, P !Pr, divided by its length when its length is
nonzero. and eliminate the terms of length zero. so that {v;} isanetin V
that converges to Pr,. Then each ¢, is a unit vector in the range of the rank
one operator P, T,. It follows that there is a complex number of modulus
one ¢; such that t; = ¢;Pry. Let Q; = ¢,P,. Then Qivo = ¢;Pvy = r;, which
converges to Pr,.
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We show now that the Q; (which have the same image in PU(}) as the
P;). converge in U(1") to P. Note that

QiTQi—l = PiTPi.l-

so that Q;TQ; ' converges to PTP™~"' for any rank one operator T. Let ¢

be any element of 1. and chose as T any rank one operator such that Tr, = r.
Then

Qu=0Tr,= QiTQ Qg = Q;TQ HQitg — Pry) + O, TOPry,.

The first term converges to zero. while the second term converges to
PTP™!Pry = Pr as desired. Q.ED.

Let us return to the notation used in the paragraph preceding the lemma.
Then relation (8.1) lifts to elements of C*(N), so if V' is semicompact. the
hypotheses of Lemma 8.1 will be satisfied. and the continuity of P follows.
If Vis a Hilbert space and G is a topological group. then a continuous
homomorphism of G into PU(}') will be called a projective representation
of Gon V.

Let V' be a Hilbert space. G a locally compact group. and P a projective
representation of G on V. Let p denote the canonical projection of U(l)
onto PU(}'), and form the pullback of P and p. that is.

G ={xU)eG x UV): Px) = p(U)).

Then it is easily verified that G is a central topological group extension of
G by the group T of complex numbers of modulus one. As such. it is locally
compact (p. 52 of [33]). The isomorphism classes of central extensions of
G by T form an Abelian group under Baer multiplication (see [28. 34]
and p. 147 of [23]). which in the separable case is isomorphic with the
second cohomology group (defined in terms of cocycles) of G with coeffi-
cients in T [31. 34, 35]. If each element (x. U) of G is sent to the corresponding
operator U on V. one obtains an ordinary representation of G whose
restriction to T is a multiple of the standard representation of T. that is. is
of the form t+1l,- for r € T. where I, is the identity operator on V. Con-
versely. every ordinary representation of a central extension of G by T
whose restriction to T is a multiple of the standard representation defines in
an obvious way a projective representation of G. A projective representation
of G lifts to an ordinary representation of G [that is. factors through
p:UV)y =~ PU(V))] if and only if the central extension G as previously
constructed from it splits. But even then it need not come from a unique
ordinary representation. Two ordinary irreducible representations of G
define the same projective representation if and only if each is the inner
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tensor product of the other with some one-dimensional representatior
[character) of G.

Let us now return to the situation in which we have a normal subgroup
N of G and a semicompact G-invariant primitive ideal J of C*(N), with
corresponding representation R on J. Let P be the projective representation
of G which implements the equivalence of V'~ with ¥’ for x € G, as defined
carlier. Then for s € NV the equivalence of V* with ¥ can be implemented
by R;. so for s & .V we can assume that P, = R, so that P is an extension of
the ordinary representation of :V to a projective representation of G. This
result can be summarized as follows.

ProPoSITION 8.3. Let N he a normal subgroup of the locally compact
group G. Then any irreducible semicompact G-invariant ordinary representa-
tion of N can be extended to a projective representation of G.

With the previous notation. R can be viewed as a projective representa-
tion of N (coinciding with the restriction of P to N) and we can form the
corresponding central extension N of N. This extension splits via the map
s(s, R,). but N can be viewed as a normal subgroup of G. We then obtain
the following diagram of exact sequences, which is commutative in rows
and columns. but not with its diagonal maps.

~ e— -
e

-~ e

<

P

P

TN
«
e Ot ——

The diagonal map from N to G is defined by composing the map from N
to G with the splitting map defined previously from N to V. The isomorphism
class of the extension G-N of G N is called the Mackev obstruction of R or J.

We are looking for the ordinary representations of G whose restriction
to N is a multiple of R. Now uany such representation of G clearly defines
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(see the diagram) an ordinary representation of G whose restriction to N
is R. Recall that R extends to an ordinary representation. namely P. of G.
Then we can find the desired representations of G by the two-step process
of first finding all ordinary representations of G whose restriction to N is
R. and then determining which of these drop to G. The first step is accomp-
lished by the following proposition. in which H plays the role of G.

PrOPOSITION 8.4, Let N he u normual subgroup of the locally compact
group H and let R be an ordinary irreducible representation of N. Suppose
that R extends to an ordinary representarion P of H. For any ordinary repre-
sentation Q of H N. viewed as a representation of H.let P = Q denote the
inner tensor product of P with Q. Then the functor Q— P # Q is an equir-
alence benween the cateyory of ordinary representations of H N and rthe
category of ordinury representations of H whose restriction to N is a multiple
of R.

Proof. It is clear that the indicated functor gives representations of the
desired type. Suppose. conversely. that S is a representation of H whose
restriction to N is a multiple of R. If we let 1" denote the space for R and P.
then the space for S can be written in the form V' ® W where W is a Hilbert
space of dimension equal to the multiplicity of R in the restriction of § to N.
We can also assume that for each se N,

SS = RS® Iu'.
For each x e H let
T, =(P;' ®Iy)S;.

Then a simple calculation shows that each T, commutes with all operators
of the form R, ® I . Since R is irreducible. it follows from the double
commutant theorem (p. 42 of [13]) that each T, commutes with all operators
of the form M ® I,-. where M is any bounded operator on V. It follows
(p. 24 of [13]) that T, = I;-® Q, for some operator Q, on W. It is then
easily verified that Q is a unitary representation of H which is trivial on N.
so that it gives a representation of H-N. and that S = P # Q. Finally. argu-
ments similar to these show that the previously defined functor is an iso-
morphism between the corresponding spaces of intertwining operators.
Q.E.D.

We now carry out the second step. namely. we determine which of the
ordinary representations of G of the form P # Q drop to G. where Q is an
ordinary representation of G N. Now from the diagram it is clear that these
will be exactly the representations that have the subgroup T of G in their
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kernel. But it is easily calculated that these will be exactly the representa-
tions in which the restriction of Q to T is the inverse of the standard repre-
sentation, that is. Q, = t~'[,. Finally. if we now form the extension of
G'N by T which is inverse under Baer multiplication to the given extension.
then it is easily verified that the preceding Qs are exactly those representa-
tions of this inverse extension whose restriction to T is a multiple of the
standard extension. We summarize these results as follows.

ProposiTiON 8.5. Ler N be a normal subgroup of the locally compact
group G and ler J be a semicompact G-invariunt ideal in Prim(N). Then the
category of unitary G-modules whose restriction to N lives on |J! is equiv-
alent to the category of projective representations of G/N which belong to
the inverse of the Muackey obstruction of J.

We remark that Dixmier has shown (Proposition 6 of [16]) that this
equivalence preserves weak containment, at least for irreducible representa-
tions when G is second countable and N is type I.

Note Added in Proof. Extensive generalizations of the results and techniques of this
article, with applications. are contained in Philip Green. The local structure of twisted co-
variance algebras, Acra Marh. 140 (1978), 191-250.
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