_. ,‘ B ( 5 n .m. . Rt__

Tis aoamzn. .

wﬂoomm@wsmm of dSm ooswmﬂ.mgm on mdno.auoﬁm.u. bﬁm&.%mu.m
.Hﬁoswmos woow no. , ﬂmmwu.ﬁm.aosq u.mmq

wm_:ﬁ?_m mc_ummm.m of wgznnr m_onnmm_
5._2.. >Eo__no_:a: toa %ﬁmos-z_rom,\ﬂ:

. R ._.Tmoqm_ﬁ

o ._ ,. g > Hﬁmmmmr

.ﬁrmm,io—.# ommmswﬁna as an attempt ﬁm.m?m a new proof of. m:.:.:vw.

L .Wmao:-zm.woawi theorem [5, p. 130] using techniques analogous to those
% developed in {6} Instead, we have obtained a new Radon-Nikodym
" 'theorem—one which is not a consequence of Phillips’ theorem. However,’
.,,,.Eo have not .caoz able to show that our theorem _Bv:mm E:Evm theorem

in its full monnnm:nw -
" DEFINITION 1. A subset, K, oﬁ. a wmnmnr mvmon s;: be called .%:EEN .

R if for every e > 0 there is a b € K such that b ﬂ n.?.w\ - wm__@ &v
., .?&n

i aoaonnm o_omnm convex hull™). -
‘We shall discuss the question of which mccmﬁm om. wmsmos mvmonm are

oo C ._.,,aonﬁmc_a after we. rmé ﬁﬁma m:g Eo,&a the wmaos pro&ﬁ_ 3883

nomn:da to mdoﬁo. ‘
" THEOREM 1. ra” (X, 5, E ¢n a q.m:;n boﬂsﬁw measure mvmnn. and

o ”. . .._onm be a Banach space, Let m be'a B-valued measure on S. Then %onn
. _mm wé&:& Bochner Sﬁmnmc“n ?soros .\. on X such that

e ..4.3 m_:w < S, :.m:a ona\ if

1L mis p- noES:o:m that is; iﬁmv ‘@ whenever tnmw =0,E & S.
2. thé total'variation, |-m |, of m is a finite measure. ;
3. locally nz almost his dentablé average range, that i is, given EC 'S,

S e ._._....._tmmv < «,and m:..n: € > 0, there is an m. C E, mcnr Emn tCm. 3 <e€

.A;. = _SQJ?QQ F' m. ,neq v > 2

,.:




76 e F_somnmbmnam

is: o_nma that m:.< set” s&omn o_omna convex ::: wmm a ams::m point is
anEmEo EA ,

. Now f:an:m:mcmm has mroén in Hu_ ::: ;. m isa Wm:mor %moa that
nm: be given an equivalent norm which is _Onm:u\ E.:H.ozs_w convex; then

any weakly compact convex subset 8. B is the closed conyex r:: of its
In vw_.snﬁma Question -1 has an affirmative .
answer in all such Banach spaces. Furthermore, Kadec has: sHown in -

mc.osm_w axwomna points,

{1,2] that any mammEEo Banach space can be given an equivalént norm
which is locally uniformly convex, .E_:m O:nm:om _ rmm mn mmmnﬁmﬁ:\n
answer for all separable Banach spaces.’

" To'describe a result in the opposite a:oo:o: _Q us. om: a mr&mmﬁ N of a

Bariach space- subset-dentable if. every subset of X is dentable, Then' it is

natural to ask whether every subset-dentable suhsii of a Banach: pace is

relatively inmx:\ compact.. That this need not bé the case is mroi.n by the;

following result (it is a pleasure to thank B, Kripke for moﬁwnm_ mra_.:m::m
no=<9,mmso:m which led us to this result).

. THEOREM 3. Let X be any (possibly cnno.cn.nmEov set. Hrmn nsw. :

co:nana subset 02_?5 is dentable.

Préof.. In view of Proposition 2 it suffices to show ﬂrmﬂ E“Q co:naom_
aomna convex subset of I'(X) is mmzﬁmgw Let X ‘be mcow a mcammm mnn_ let

€ > Obegiven. Let B
PR ,..,.._._um%:_a__amﬁ

There :aom not be an elemént Om K whose norm mzmsm En <mEn .w. UE we
can choose an element g m K such that __n | >s l_m\m Then So_.n is m..

finite mﬁcmoﬁ F, OWNmE& 5& M _n?: > 5 —- m\m
] kmﬁ :

v‘oﬂ any element, b, of / ,9\ ) let br denote its nmEHm_ mmogwocan ::o_

. ﬁwn m:@m@mnotﬁwvﬂrn:h? Emﬁno._nn:o:om_ﬂpﬁo _:qu _maonnamm
_QJ is m::n a:.:o:m“o:& Kris norm ooswmoﬁ Sihce ar € Ky and
_nL_ > s - ¢/6, Kr must have an extreme point, e, such that Jef >

s — ¢/6. By the Krein- K;Bm:_ theorem, as in ?owoﬂson 1, e ﬂ &(Kr —
bali(e, ¢/6)) and so there is an fin \s@,v which. separates ¢ ffom &(K —
ball(e, ¢/6)), that is, such that there is a oozﬁmﬁ r, mo". which \.?.v >r ccﬂ

S(Bs) < rfor any brin Kr — balle, ¢/6).

- Choose b € K such that f(bs) > r (so that snnomwm:_w I vw —e _“

m\s We show that & ¢£ &(K ~ ball(3, )). Suppose that ¢ & K and

.\,Q..L 2 r. Then. __D, -e| < ¢/6 E& s0 llep ~ b5l < ¢/3. >~mo stnce

Saana in E.oo*. A short, elegant E.oon. of this fact, independent: om En ionw of .

H_nqnum:w:mm and Kadec, has recently” been given by 1. Namioka and E. Asplond. in A
mnoan:,_n ?‘oo".oﬁ Ryli- Zmauoimx i's fixed point theorem” Buil. A.M.S. 73 (1967) 443-445,

afid convex, though.it need not be closed. Let K¢ ansog its closure.  Since

nhmmm = ball(®, ¢)). Let b = }
‘ ..Suppose that Fy is not. @ e)-pure. Let k, be the smallest ::nmﬁ. =2

S is 5 mmsa Emv

| ‘_?S EQOM im ) Em&

_mEon @ G closed and oo:éx it ?:oiw Emﬁ Sﬁmov\tﬁmﬁc a in D .E:_m
: Sﬁﬁov\tﬂw& isin 0, oanﬁﬁm&ncmm Ea way n which Fy was chosen.

S Q.Q ‘that E;is @:& -pure: and tﬁmv

Ua:HmEn mcamaﬁm Omenmor Mﬁmnnw o qw

:._mﬁ mmm is an:nm@ma Oroomm bE \kmb_ such that b ﬂm 0, where J =
m(F)/ u{Fo) where Fy C Esand O A u(Fo) <

mow which there'is an £, C Fysuch that t?m. v _\»_ and Eﬁm_v\tam;
is in'Q. Let F| = Fy — Ei; msa m:vwo.ﬂ.n that ﬁ_ is not (b, ¢)-pure. Let

NS be the smallest integer > 2 n.oq which there is an E, C F, such that

w(Es) & 1/ksand Sﬁmuv\:nmb isin Q. rﬁ. Fi=F —E, Oo:::_.::m
in this way we obtain a sequence {£,] of disjdint subsets of Fy, and a non-

h gnﬁomﬂ:m mnncanoa {ki} of ::mmaa ;::._ nrn Eovm:« :z: S?m. V\Em;_

- 1/k; for mm% ; and :,m. C Fo- ) £, and miz" y/

imi’

...tm.m. v;m in @ :._n: nTm. ) _\Qﬁ -~ C .Since Fp rmm m::o Bnmm:qo..
;.w:n the E,; are 9&92 kmust converge to = .-

Let Eq = \JE;, and. F.n F=F, l,m.o. Then Fis @ €)- n:..a moﬂ

;».m..ﬂm. tﬁ.vvomna SQ.J v\hﬁuu_m in- m 90: since- m;ﬂm.ol

. C E mQ. nwn: n, it ?:oim Ewﬂ _nqu < ~\Qn -~ 3 mo_. each . wc" Ky

no=<o_.mom 8 a mna so qu.. ) = _ Lo
?:m:w. we mwos that :QJ > o m:wm.cma that tAm.v o Then since
3 is t.nonzscozm SQJ o and so Sﬁm.ou\t?q& Sﬁm&\:ﬁm& Now

M EQ?E vvim Vimﬁe

Proofiof .;333 2. mEon X'is the- union of a countable :c::uﬂ. of

- subsets of finite measure; it suffices to- prove H:no_.na 2 under En as-
. $umption that X has finite' measure.

Leét &, be'the smallest integer > 2 wo_. E?o: there is a F - m mua an
E, C kmcnr that £, is (b,,¢)-pure and p{E) = 1/k,.. Let k, be the
smallest integer > 2 such. that there is a. &, & m and an E, C X ~ £,

“such that £, is @fmv -pure- and’ w(Ey) > :QS._ Ooszsc_sm in this way

we obtain‘a sequence {£;} of 9&0:.: subsets of X, a sequence {5} of ele-
ments omm and a nondecreasing sequence ki) of _:Hmﬁm with the prop-
~\h ﬁo_. each i, and if m.m X -

.C E; and F is (b, o-pure for some b & B then u(F) < 1/(ky -

m_znn k is mwm:Eam to have finite measure, &; must no=<9.mn to =,

“ mna :Am. u\tomv is-in @ mo_. nmnr m:am



B __m._.mnmw,nmvmnmm...

H_._n m__m"i mm:nﬂmrmm:on of Phillips’ 9835 ».o_. s&_n: io ﬁ:aa to
-find a new proofis obtained by replacing the word :%:SEQ: E EGo:T
esis 3 of Theorem 1 by “relatively weakly compact,”

The necessity o;wvo%omnm 1 and 2-is well known. H: Hm P,ov 1. HH.

it was shown. that an -additional necessary- condition is obtained. if i in
‘hypothesis 3 the word :moimc_n: is Rn_moaa E\ 85:5@ norm com-
pact.” But, - . :
PROPOSITION 1. Any’ .H.m_mzcoux norm oaﬁﬁmnﬁ _mc_u.m.oﬂ of a ,wmsmo:
mvmno is dentable, ’ . A

.-Proof. * First, suppose that K is a norm ooanmoﬁ convex mccmaﬁ ofa

wmnmn: space. Let b be any extreme! point of K. Then, since the norm
closure of K ~ ball(b, € does not contain b for any ¢ > 0, it follows from
part ofithe Krein-Milman theorem Emﬁw ﬂ nﬁn - ¢m=@ mvv

"~ The mnnnnm_ case follows from .

. PROPOSITION 2. Let X be m:« mccmap Omm Wmnmnr %uon If n.QO 5
aosﬁmc"m then'so is K. .

?oom Q?o: € > 0, nvooﬁ e N..nQO mcor _..rmﬁ .m‘ ﬂ m Ern_.a

- = T(e(K) ~ ball 0, q2).
m_nna b’ & oK) - m maa Qis Qomnm and convex, Q- ¢an hot ooEmE ? _
Owoommv m K= - Q. Then b m _umzﬁ? m\wv m:a 80 Tﬂ - cm:@ mvu ﬁ
- Q- Thus b6 (K = bali(b,e)). -~
We now turn to the E.o& of the m:mmn_n:@ 2. the 360583 Om
.H.rno_,na 1.’ Sitiée fnite: Imeasures are om:._na o1 measurable sets, it suffices

- to prove m:RQnsow E.aﬁ. ‘thé assumption Emv (X, .w ) is SSE\ q.mz:m. .
_ . From now.on we nnm:..o” our attention to S_m case, _

Asin 5. the xn« mﬁoﬁ in the proof.of mcan_o:nw is-a aaneavozcon

theorem analogous td tHe classical Hahn aonoﬂvom,co: 5883 <<n

Rom: the following definition from {6],

DEFINITION 2. Given b € B and ¢ > 0 we. say z._m” a set m m Sis .”.

@ €)-pure Q.o:: with fespect to u) :. Sﬁm,u\tmm.v is 5 cm:@ mv mo_. m:
m.m E such that0 < w(F) < = .-

- The appropriate decomposition theorem. for the vnomazﬁ m;:m:on is

._,mexm._s 2. Let T« S, 1) be a SEE\ o-finite measure wﬁmom mma let
m co a mém_:oa measure on S which satisfies ‘hypotheses |, 2 and 3 of
.3,833 1. Hrnn.. given ¢ > 0, there are Gomm&mw finite) mmn:oaonm {i ]
-and-{£,} of elements of 8 and u. Rm@anséq m:o: that £, is @: &)- vr:d
‘for each 7, and-X = UE,. .

_LEMMA 1. Let the ‘hypotheses of .;aoRB N be mm:mmoa m:a :&
E mm Sand ¢ > 0begivén, with u(E) > 0. Then there is an F CE msa a
b E ww:n: Emﬁn;v > 0 and Fis (b, ¢)-pure.-

~Proof. wz :«bon:am,m 3 onﬁrnoﬂoa ! osoomo £y n m.. tﬁmt >0 mcos

,,WE {5l < sand fe
L €f30 .H.—Em e - n_m <
i f(ee) S riand so the same inequality holds for all elements of T(K -

 dentable.

P

Uo:”mv_a m:cmnﬁm of Banach mvmonm o N

“_m__ > s~ ¢/6; we: 7m<n __P,.__ > 8 m\u as s&: mm__@.q__ > - m\w
< s, -and s0 - m_@ ~ bl < m\w and e - ¢rl <
It ».o:oiw that if ¢ & K — ball(h, ¢), then

ball(a, ¢)). But f(bf) > r,andso b m &K .~ ball(s, 9
With this result in mind itis not at alf Qnm_. how one might rovn 8

_,nrmBoSENo the ansﬂmzn,m:gmnm of Banach spaces. Since every Banach _
-space can be ,moBoEnm:« aacoaana in C(X) (the wm:mnr space of alt

_ooE__E:_ ¢functions’ on some noawmoa Imﬁaoﬂm space X), this ?,o_u_na
is n@:ZEnﬁ to ,

QUESTION 2. Which mna En anssgo mcwmnﬁm of QQJ.”.

In. view oH. Theorem 3 oneis also led to ask

QUESTION 3. Which . Banach mwmnnw :m<n En property 93 all
boiinded subsets aré aoami%w

. We remark Emﬁ it is-easily checked z,.mﬂ the unit balls of the Banach

mvmonm Lo, C([0, 5 m:a h_oﬁv .&:n_.n m is: rogmmcn measure, are not

. Another a:nm:on i:or we. rm.& not.been able to resolve is whether
%ﬂm?:q ‘always comes about ommnncm,:w because of the Eomn:nn of
m:onm_v, exposed voEﬁm :Put another way
QUESTION 4. Does:thereiexist a closed, cozmana convex. set s&_nr is
an_.:mEa but which has fo strofigly aanman points? :
“In view of .;nonna 3 the Banach spéce 1 would seem to be an excel-
lent Emno in, E:_os to look for such an nxmBEa But we have not been
able to answer. Ocmm:o: 4.evenfor!'. We rémark that 5 connection with

ey

. - mzm ?.oEoB ‘we-asked whether there‘is ‘a_closed; vocsana convex subset

of I which has no extreme vo::m at m: This ncnm:o: has . now ‘been

: ..mamso_,on_ _3\ Lindenstrauss [4], who' shows that every closed, bounded,
~ convex subset of /" i§ the closed convex hull of its extreme points.

Cz_<mwm=.< o_u 0>Cmowz~> wmwxmrm<
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.



.E o . * Linear mvmnnm

Let m. k th. We mros :.EH t?mv o m:vvomm that _:Am.v > 0.
.Hwa: 8\ Lemma | %Q.m is an F ﬂ mmsm ab m B mc% that tQJ > 0 and

m._m (b, €)-pure. mc:n. N C h, moh. nmor am:a S0 rQJ < H\QQJ :

=l :
for each n. wcﬂ .». oo:<nqmam 8 0, m:a mo :QJ
. Since-p(E) =
pure. With this Q:Emn made, X' = U E],

Proof of Thearem 1. JAsin [6] let IT ao:oﬁ the set- Om all no:aa:o:m x,
consisting of a finite E::cﬂ of aéo:: elements of S of- strictly positive
‘finite measure. Then 11 becomes a directed set (up to null sets) if oy "> is
defined to mean that every element of s, oxonvﬁ for possible null sets,

.. the union of elements of m,. For omor & ﬂ we anmza a mnEEa.

integrable function f, by

Py @5\325

: © EEx -

?vano XE ao:oﬁm the ormamoﬁo:m:o ?somon_omm.v. We m:os_. ,ﬁ:wn_ﬂ:omw :

. form @ mean Omcnrw net.’

Let ¢ >0 be given,
Afe = full <& Since |m | is assumed to be a finite measure, we can find
E &€ § such that g(E) < « and [m (X = E) < €/3. Since m is
t.no::::o:w sois {m ], and so, since | m | is a finite measute, Eﬁ.n is a
8 > 0 such that if p(F) < &then. ?:_QJ < ¢/6.

By Theorem 2 we can find (possibly finite) mnn:ononm _Tm }and {b,} of

elements.of § and B respectively such that E; is (4,, m\mtmmvv -pure -for
nuoz i .:Qm.v > c and £ = Cm.r :.5 E:o: @o_:m 9&93 m_aoa m. :mu

finite measure, :53 is an SSWQ. » ‘such :Eﬂ if m.o
Adml,
< i E:nmm #(Ep) = 0, 'in which ommq et
={Ei 1 < ‘n}. Then a noccna nmmnc_mso: as m:&: in E shows
:z: /e - .\.L_ < ai_ﬁnoéﬁa > wo.
Since the f, form a meast Om:ng\ net, there is an Eﬁam_‘mc_n ?:nzoz
J, to which £, ao=<9.mam in mean, _n vmz_oc_m_,

.\\% ﬁ_a\b% o
m:.m:mmm S. Eomros ::: B A )
| 55 .\\%

hﬁmov < 4. m\nﬂ .a.o = *m.?

RN

mon w:h € S. _?:Tm.v o the result mo:oim m.oE Eo t-oo:::::w o?z,.‘

0, £ can be’ adjoined to E¢ msa m_ will m.:: mn,@_,, &-_

We scek a my & 11 such E.ﬁ ; T i acﬁras

m. C m.l:g.

!
|
L

_‘mvmoo dentable?

_?u be mn infinite orthonormal sequence in H., Let K =
0 € K since the m_ converge weakly.to 0, and norm closed convex sets are

: ...  Dentable Subsets omwm:mor Spaces 75

z, 0 < tﬁm.v < o, let ™o = tm.“ It is nmm:w nsonxna that .\,\‘ &h =

Sﬁmv é:o:néna 2 o, msa 50 , T .

sE lim \ Sedy = \ \%._

The case .:Qwv » then H,ozos.m easily using the q-m::o:omm of u, ,
<<n mark’ that the proof of Thedrem 1 is ¢ssentially measure theo-
retic. All the geometric difficulties involved in ocnm_:_sm Radon-Nikodym
theéorems for the Bochner integral with values in some particular Banach
spage are contained in the problem of determining. which mcvmﬁm oﬁ. Sn
Banach space are dentable.
In particitlar, in view of the fact that we should like to obtain m:_::um

| .Wmacs Z%oawa 90085 as a oo:mgcn:na of Theorem 1, we are led to
B mmx :

OCmmeZ 1 Mm nmanw.na_mﬁméoq weakly oo:ﬁmoﬂ mz@mmﬁ of a wm:mm:

. The proof of Proposition 1 does not io_,x in this ¢ omma since an ex-

.Sda_n point & of'a closed convex set K may well be in the weak closure of

C = ball(, ¢). This is illustrated by the following well known example.
mx?sm_.m 1. Let H be an. infinite dimensional Hilbert space, and let
©({e:). Then

ﬁomw:_. closed. It is m_mo easily checked that 0 is an extreme point of K.
But it is clear that K. = #(X - ball(0, €)) for anye < 1.
. We have not beer able to’answer Question | completely, but 90

-answer is mm:gm:ﬁ in many cases. To begin with, it can bé shown by a

35:5 argument that.any bounded subset of a :::,Oaa_w convex Banach
space is dentable. Since. cEmo:sG convex spaces are reflexive, the

- .A‘_cocnaoa m:dmaa coincide with relatively Samiw ooaﬁmo" subsets, mua 50

Ocnwcon lis answered affirmatively in this case. .
To aomozco a much deeper result, we first aanm: from E
_umm_z_:Oz 3. Apointbofaset X is called .233%? exposed if there

__rq.m 8::505::8_‘ ?:o:o:m_\mcor ﬂ:mp.\@vv.\aﬁvvmoﬂm: ? m.,,_h..
b s b, and such’ Em:CAFV I..\.AS for {b,} € Kthenb,— b, - '

Also, in view &Uom:_:o: 1,.it is natural to make .

DEFINITION 4. A point b of a set K is called a &m:::w point :. b m
ncﬂ,cm:@ €)) for m: e >0,

It is easily checked that any m:,ozm_w exposed _uo:: is a an:::m no:i
Namioka has pointed out to us that the converse is not true, as there are
norm compsct sets which have extreme points which are not exposed. In

.mxmav_a I :5 ﬂo:.: Oisan nx:.aan point i?nr isnot a aa:::m point, It



